scispace - formally typeset
Search or ask a question

Showing papers by "Marco Liuzzo published in 2016"


Journal ArticleDOI
TL;DR: In this paper, the authors report on short-term precursory variations in gas emissions related to phreatic blasts at Poas volcano, Costa Rica, as measured with an in situ multiple gas analyzer that was deployed at the edge of the erupting lake.

101 citations


Journal ArticleDOI
TL;DR: High‐frequency gas monitoring is used to track the behavior of the Turrialba Volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions, showing a remarkable shift to purely magmatic composition during the second eruptive period.
Abstract: Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San Jose. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2-rich gas (CO2/S-total>4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is similar to 8-10km deep, whereas the shallow magmatic gas source is at similar to 3-5km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000T/d SO2 and H2S/SO2>1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2<0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity.

97 citations




01 Apr 2016
Abstract: San Miguel volcano, El Salvador, erupted on 29 December 2013, after a 46year period characterized by weak activity. Prior to the eruption a trend of increasing SO2 emission rate was observed, with all values measured after mid-November greater than the average value of the previous year (similar to 310td(-1)). During the eruption, SO2 emissions increased from the level of similar to 330td(-1) to 2200td(-1), dropping after the eruption to an average level of 680td(-1). Wind measurements and SO2 emission rates during the preeruptive, syneruptive, and posteruptive stages were used to model SO2 dispersion around the volcano. Atmospheric SO2 concentration exceeded the dangerous threshold of 5 ppm in the crater region and in some sectors with medium elevation of the highly visited volcanic cone. Combining the SO2 emission rate with measured CO2/SO2, HCl/SO2, and HF/SO2 plume gas ratios, we estimate the CO2, HCl, and HF outputs for the first time on this volcano.