scispace - formally typeset
Search or ask a question

Showing papers by "Massimiliano Rinaldi published in 2013"


Journal ArticleDOI
Luca Amendola1, Stephen Appleby2, Anastasios Avgoustidis3, David Bacon4, Tessa Baker5, Marco Baldi6, Marco Baldi7, Marco Baldi8, Nicola Bartolo9, Nicola Bartolo7, Alain Blanchard10, Camille Bonvin11, Stefano Borgani12, Stefano Borgani7, Enzo Branchini7, Enzo Branchini13, Clare Burrage3, Stefano Camera, Carmelita Carbone14, Carmelita Carbone7, Luciano Casarini15, Luciano Casarini16, Mark Cropper17, Claudia de Rham18, J. P. Dietrich19, Cinzia Di Porto, Ruth Durrer11, Anne Ealet, Pedro G. Ferreira5, Fabio Finelli7, Juan Garcia-Bellido20, Tommaso Giannantonio19, Luigi Guzzo7, Luigi Guzzo14, Alan Heavens18, Lavinia Heisenberg21, Catherine Heymans22, Henk Hoekstra23, Lukas Hollenstein, Rory Holmes, Zhiqi Hwang24, Knud Jahnke25, Thomas D. Kitching17, Tomi S. Koivisto26, Martin Kunz11, Giuseppe Vacca27, Eric V. Linder28, M. March29, Valerio Marra30, Carlos Martins31, Elisabetta Majerotto11, Dida Markovic32, David J. E. Marsh33, Federico Marulli8, Federico Marulli7, Richard Massey34, Yannick Mellier35, Francesco Montanari36, David F. Mota15, Nelson J. Nunes37, Will J. Percival32, Valeria Pettorino38, Valeria Pettorino39, Cristiano Porciani, Claudia Quercellini, Justin I. Read40, Massimiliano Rinaldi41, Domenico Sapone42, Ignacy Sawicki43, Roberto Scaramella, Constantinos Skordis44, Constantinos Skordis43, Fergus Simpson45, Andy Taylor22, Shaun A. Thomas, Roberto Trotta18, Licia Verde45, Filippo Vernizzi38, Adrian Vollmer, Yun Wang46, Jochen Weller19, T. G. Zlosnik47 
TL;DR: Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program as discussed by the authors, which will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shift of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky.
Abstract: Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015–2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid’s Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

1,211 citations


Journal ArticleDOI
TL;DR: When the Higgs field is nonminimally coupled to gravity, there exists a family of spherically symmetric particlelike solutions to the field equations that are the only globally regular and asymptotically flat distributions with finite energy of theHiggs field around compact objects.
Abstract: When the Higgs field is nonminimally coupled to gravity, there exists a family of spherically symmetric particlelike solutions to the field equations. These monopoles are the only globally regular and asymptotically flat distributions with finite energy of the Higgs field around compact objects. Moreover, spontaneous scalarization is strongly amplified for specific values of their mass and compactness.

18 citations


Journal ArticleDOI
TL;DR: In this article, the authors considered the entropy associated to the phonons generated via the Hawking mechanism in a sonic hole in a Bose-Einstein condensate (BEC) and showed that transverse excitations can cure the infrared divergence that appears in the (1+1)-dimensional case, by acting as an effective mass for phonons.
Abstract: We consider the entropy associated to the phonons generated via the Hawking mechanism in a sonic hole in a Bose–Einstein condensate (BEC). In a previous paper, we looked at the (1+1)-dimensional case both in the hydrodynamic limit and in the case when high-frequency dispersion is taken in account. Here, we extend the analysis, based on the 't Hooft brick wall model, by including transverse excitations. We show that they can cure the infrared divergence that appears in the (1+1)-dimensional case, by acting as an effective mass for the phonons. In the hydrodynamic limit, where high-frequency dispersion is neglected, the ultraviolet divergence remains. On the contrary, in the dispersive case the entropy not only is finite, but it is completely fixed by the geometric parameters of the system.

12 citations


Journal ArticleDOI
TL;DR: It is argued that the result presented in "Origin of cosmic magnetic fields" by L. Campanelli is unphysical.
Abstract: We argue that the result presented in "Origin of cosmic magnetic fields" by L. Campanelli [arXiv:1304.6534] is unphysical.

10 citations


Journal ArticleDOI
TL;DR: In this paper, the authors consider a cosmological model where inflation is induced by corrections to the energy density coming from the non-commutativity of spacetime and show that the very rapid inflationary expansion typical of this model is responsible for a burst of particle production which ends inflation and leads to a radiation-dominated phase.
Abstract: We consider a cosmological model which has recently been proposed in the literature and where inflation is induced by corrections to the energy density coming from the non-commutativity of spacetime. We show that the very rapid inflationary expansion typical of this model is responsible for a burst of particle production which ends inflation and leads to a radiation-dominated phase. We analytically estimate the energy density of these particles and we confront the results with more precise numerical calculations. We estimate the number of inflationary e-folds before the back-reaction of the radiation energy density overcomes the non-commutative effects and terminates inflation naturally.

3 citations