scispace - formally typeset
Search or ask a question

Showing papers by "Matthias Bartelmann published in 2011"


Journal ArticleDOI
TL;DR: The Cluster Lensing And Supernova Survey with Hubble (CLASH) as mentioned in this paper is a 524-orbit multi-cycle treasury program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions.
Abstract: The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit multi-cycle treasury program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of CDM. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, twenty CLASH clusters are solely X-ray selected. The X-ray selected clusters are massive (kT > 5 keV; 5 - 30 x 10^14 M_solar) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (Einstein radii > 35 arcsec at z_source = 2) to further quantify the lensing bias on concentration, to yield high resolution dark matter maps, and to optimize the likelihood of finding highly magnified high-redshift (z > 7) galaxies. The high magnification, in some cases, provides angular resolutions unobtainable with any current UVOIR facility and can yield z > 7 candidates bright enough for spectroscopic follow-up. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (sigma_phz 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of such supernovae in an epoch when the universe is matter dominated.

805 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +284 moreInstitutions (66)
TL;DR: The first all-sky sample of galaxy clusters detected blindly by the Planck satellite through the Sunyaev-Zeldovich (SZ) effect from its six highest frequencies was presented in this paper.
Abstract: We present the first all-sky sample of galaxy clusters detected blindly by the Planck satellite through the Sunyaev-Zeldovich (SZ) effect from its six highest frequencies. This early SZ (ESZ) sample is comprised of 189 candidates, which have a high signal-to-noise ratio ranging from 6 to 29. Its high reliability (purity above 95%) is further ensured by an extensive validation process based on Planck internal quality assessments and by external cross-identification and follow-up observations. Planck provides the first measured SZ signal for about 80% of the 169 previouslyknown ESZ clusters. Planck furthermore releases 30 new cluster candidates, amongst which 20 meet the ESZ signal-to-noise selection criterion. At the submission date, twelve of the 20 ESZ candidates were confirmed as new clusters, with eleven confirmed using XMM-Newton snapshot observations, most of them with disturbed morphologies and low luminosities. The ESZ clusters are mostly at moderate redshifts (86% with z below 0.3) and span more than a decade in mass, up to the rarest and most massive clusters with masses above 1 × 10 15 M� .

443 citations


Journal ArticleDOI
TL;DR: The first all-sky sample of galaxy clusters detected blindly by the Planck satellite through the Sunyaev-Zeldovich (SZ) effect from its six highest frequencies was presented in this article.
Abstract: We present the first all-sky sample of galaxy clusters detected blindly by the Planck satellite through the Sunyaev-Zeldovich (SZ) effect from its six highest frequencies. This early SZ (ESZ) sample is comprised of 189 candidates, which have a high signal-to-noise ratio ranging from 6 to 29. Its high reliability (purity above 95%) is further ensured by an extensive validation process based on Planck internal quality assessments and by external cross-identification and follow-up observations. Planck provides the first measured SZ signal for about 80% of the 169 previously-known ESZ clusters. Planck furthermore releases 30 new cluster candidates, amongst which 20 meet the ESZ signal-to-noise selection criterion. At the submission date, twelve of the 20 ESZ candidates were confirmed as new clusters, with eleven confirmed using XMM-Newton snapshot observations, most of them with disturbed morphologies and low luminosities. The ESZ clusters are mostly at moderate redshifts (86% with z below 0.3) and span more than a decade in mass, up to the rarest and most massive clusters with masses above 10^15 Msol.

413 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented precise Sunyaev-Zeldovich (SZ) effect measurements in the direction of 62 nearby galaxy clusters (z < 0.5) detected at high signal-to-noise in the first Planck all-sky dataset.
Abstract: We present precise Sunyaev-Zeldovich (SZ) effect measurements in the direction of 62 nearby galaxy clusters (z <0.5) detected at high signal-to-noise in the first Planck all-sky dataset. The sample spans approximately a decade in total mass, 10^14 < M_500 < 10^15, where M_500 is the mass corresponding to a total density contrast of 500. Combining these high quality Planck measurements with deep XMM-Newton X-ray data, we investigate the relations between D_A^2 Y_500, the integrated Compton parameter due to the SZ effect, and the X-ray-derived gas mass M_g,500, temperature T_X, luminosity L_X, SZ signal analogue Y_X,500 = M_g,500 * T_X, and total mass M_500. After correction for the effect of selection bias on the scaling relations, we find results that are in excellent agreement with both X-ray predictions and recently-published ground-based data derived from smaller samples. The present data yield an exceptionally robust, high-quality local reference, and illustrate Planck's unique capabilities for all-sky statistical studies of galaxy clusters.

219 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +249 moreInstitutions (58)
TL;DR: In this paper, the authors presented precise Sunyaev-Zeldovich (SZ) effect measurements in the direction of 62 nearby galaxy clusters (z < 0.5) detected at high signal-tonoise in the first Planck all-sky data set.
Abstract: We present precise Sunyaev-Zeldovich (SZ) effect measurements in the direction of 62 nearby galaxy clusters (z < 0.5) detected at high signal-tonoise in the first Planck all-sky data set. The sample spans approximately a decade in total mass, 2 × 10 14 M� < M500 < 2 × 10 15 M� ,w hereM500 is the mass corresponding to a total density contrast of 500. Combining these high quality Planck measurements with deep XMM-Newton X-ray data, we investigate the relations between D 2 Y500, the integrated Compton parameter due to the SZ effect, and the X-ray-derived gas mass Mg,500, temperature TX, luminosity LX,500, SZ signal analogue YX,500 = Mg,500 ×TX, and total mass M500. After correction for the effect of selection bias on the scaling relations, we find results that are in excellent agreement with both X-ray predictions and recently-published ground-based data derived from smaller samples. The present data yield an exceptionally robust, high-quality local reference, and illustrate Planck’s unique capabilities for all-sky statistical studies of galaxy clusters.

214 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, R. Ansari2, M. Arnaud3  +188 moreInstitutions (43)
TL;DR: The Planck High Frequency Instrument (HFI) is designed to measure the temperature and polarization anisotropies of the Cosmic Microwave Background and galactic foregrounds in six wide bands at an angular resolution of 10' (100 GHz), 7' (143 GHz), and 5' (217 GHz) as mentioned in this paper.
Abstract: The Planck High Frequency Instrument (HFI) is designed to measure the temperature and polarization anisotropies of the Cosmic Microwave Background and galactic foregrounds in six wide bands centered at 100, 143, 217, 353, 545 and 857 GHz at an angular resolution of 10' (100 GHz), 7' (143 GHz), and 5' (217 GHz and higher). HFI has been operating flawlessly since launch on 14 May 2009. The bolometers cooled to 100 mK as planned. The settings of the readout electronics, such as the bolometer bias current, that optimize HFI's noise performance on orbit are nearly the same as the ones chosen during ground testing. Observations of Mars, Jupiter, and Saturn verified both the optical system and the time response of the detection chains. The optical beams are close to predictions from physical optics modeling. The time response of the detection chains is close to pre-launch measurements. The detectors suffer from an unexpected high flux of cosmic rays related to low solar activity. Due to the redundancy of Planck's observations strategy, the removal of a few percent of data contaminated by glitches does not affect significantly the sensitivity. The cosmic rays heat up significantly the bolometer plate and the modulation on periods of days to months of the heat load creates a common drift of all bolometer signals which do not affect the scientific capabilities. Only the high energy cosmic rays showers induce inhomogeneous heating which is a probable source of low frequency noise.

196 citations


Journal ArticleDOI
TL;DR: The Planck High Frequency Instrument (HFI) is designed to measure the temperature and polarization anisotropies of the Cosmic Microwave Background and galactic foregrounds in six wide bands at an angular resolution of 10' (100 GHz), 7' (143 GHz), and 5' (217 GHz) as discussed by the authors.
Abstract: The Planck High Frequency Instrument (HFI) is designed to measure the temperature and polarization anisotropies of the Cosmic Microwave Background and galactic foregrounds in six wide bands centered at 100, 143, 217, 353, 545 and 857 GHz at an angular resolution of 10' (100 GHz), 7' (143 GHz), and 5' (217 GHz and higher). HFI has been operating flawlessly since launch on 14 May 2009. The bolometers cooled to 100 mK as planned. The settings of the readout electronics, such as the bolometer bias current, that optimize HFI's noise performance on orbit are nearly the same as the ones chosen during ground testing. Observations of Mars, Jupiter, and Saturn verified both the optical system and the time response of the detection chains. The optical beams are close to predictions from physical optics modeling. The time response of the detection chains is close to pre-launch measurements. The detectors suffer from an unexpected high flux of cosmic rays related to low solar activity. Due to the redundancy of Planck's observations strategy, the removal of a few percent of data contaminated by glitches does not affect significantly the sensitivity. The cosmic rays heat up significantly the bolometer plate and the modulation on periods of days to months of the heat load creates a common drift of all bolometer signals which do not affect the scientific capabilities. Only the high energy cosmic rays showers induce inhomogeneous heating which is a probable source of low frequency noise.

195 citations


Journal ArticleDOI
TL;DR: In this paper, the XMM-Newton follow-up for confirmation of Planck cluster candidates is presented, where a total of 21 candidates are confirmed as extended X-ray sources.
Abstract: We present the XMM-Newton follow-up for confirmation of Planck cluster candidates. Twenty-five candidates have been observed to date using snapshot (~10 ksec) exposures, ten as part of a pilot programme to sample a low range of signal-to-noise ratios (4 5 candidates. The sensitivity and spatial resolution of XMM-Newton allows unambiguous discrimination between clusters and false candidates. The 4 false candidates have S/N <= 4.1. A total of 21 candidates are confirmed as extended X-ray sources. Seventeen are single clusters, the majority of which are found to have highly irregular and disturbed morphologies (about ~70%). The remaining four sources are multiple systems, including the unexpected discovery of a supercluster at z=0.45. For 20 sources we are able to derive a redshift estimate from the X-ray Fe K line (albeit of variable quality). The new clusters span the redshift range 0.09 <= z <= 0.54, with a median redshift of z~0.37. A first determination is made of their X-ray properties including the characteristic size, which is used to improve the estimate of the SZ Compton parameter, Y_SZ. The follow-up validation programme has helped to optimise the Planck candidate selection process. It has also provided a preview of the X-ray properties of these newly-discovered clusters, allowing comparison with their SZ properties, and to the X-ray and SZ properties of known clusters observed in the Planck survey. Our results suggest that Planck may have started to reveal a non-negligible population of massive dynamically perturbed objects that is under-represented in X-ray surveys. However, despite their particular properties, these new clusters appear to follow the Y_SZ-Y_X relation established for X-ray selected objects, where Y_X is the product of the gas mass and temperature.

165 citations


Journal ArticleDOI
Nabila Aghanim, Monique Arnaud1, M. Ashdown2, J. Aumont  +222 moreInstitutions (51)
TL;DR: In this paper, the XMM-Newton follow-up for confirmation of Planck cluster candidates is presented, where a total of 21 candidates are confirmed as extended X-ray sources.
Abstract: We present the XMM-Newton follow-up for confirmation of Planck cluster candidates. Twenty-five candidates have been observed to date using snapshot (∼10 ks) exposures, ten as part of a pilot programme to sample a low range of signal-to-noise ratios (4 5 candidates. The sensitivity and spatial resolution of XMM-Newton allows unambiguous discrimination between clusters and false candidates. The 4 false candidates have S/N ≤ 4.1. A total of 21 candidates are confirmed as extended X-ray sources. Seventeen are single clusters, the majority of which are found to have highly irregular and disturbed morphologies (about ∼70%). The remaining four sources are multiple systems, including the unexpected discovery of a supercluster at z = 0.45. For 20 sources we are able to derive a redshift estimate from the X-ray Fe K line (albeit of variable quality). The new clusters span the redshift range 0.09 < z < 0.54, with a median redshift of z ∼ 0.37. A first determination is made of their X-ray properties including the characteristic size, which is used to improve the estimate of the SZ Compton parameter, Y500. The follow-up validation programme has helped to optimise the Planck candidate selection process. It has also provided a preview of the X-ray properties of these newly-discovered clusters, allowing comparison with their SZ properties, and to the X-ray and SZ properties of known clusters observed in the Planck survey. Our results suggest that Planck may have started to reveal a non-negligible population of massive dynamically perturbed objects that is under-represented in X-ray surveys. However, despite their particular properties, these new clusters appear to follow the Y500–YX relation established for X-ray selected objects, where YX is the product of the gas mass and temperature.

165 citations


Journal ArticleDOI
Nabila Aghanim, Monique Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, Amedeo Balbi, A. J. Banday, R. B. Barreiro, Matthias Bartelmann, J. G. Bartlett, E. Battaner, K. Benabed, Alain Benoit, J.-P. Bernard, Marco Bersanelli, R. S. Bhatia, J. J. Bock, Anna Bonaldi, J. R. Bond, J. Borrill, François R. Bouchet, Michael L. Brown, M. Bucher, Carlo Burigana, P. Cabella, Jean-François Cardoso, A. Catalano, L. Cayón, Anthony Challinor, A. Chamballu, R.-R. Chary, Lung-Yih Chiang, C. Chiang, Gayoung Chon, P. R. Christensen, E. M. Churazov, D. L. Clements, S. Colafrancesco, Stéphane Colombi, F. Couchot, A. Coulais, B. P. Crill, F. Cuttaia, A. Da Silva, Håkon Dahle, L. Danese, P. de Bernardis, G. de Gasperis, A. de Rosa, G. de Zotti, J. Delabrouille, J.-M. Delouis, F.-X. Désert, Jose M. Diego, Klaus Dolag, S. Donzelli, Olivier Doré, U. Dörl, Marian Douspis, X. Dupac, George Efstathiou, Torsten A. Enßlin, Fabio Finelli, I. Flores, Olivier Forni, M. Frailis, E. Franceschi, S. Fromenteau, S. Galeotta, K. Ganga, Ricardo Génova-Santos, M. Giard, Giovanna Giardino, Y. Giraud-Héraud, J. González-Nuevo, K. M. Górski, Serge Gratton, A. Gregorio, Alessandro Gruppuso, D. L. Harrison, Sophie Henrot-Versille, C. Hernández-Monteagudo, D. Herranz, S. R. Hildebrandt, E. Hivon, Michael P. Hobson, W. A. Holmes, W. Hovest, Roger J. Hoyland, Kevin M. Huffenberger, Andrew H. Jaffe, W. C. Jones, Mika Juvela, E. Keihänen, R. Keskitalo, Theodore Kisner, R. Kneissl, Lloyd Knox, Hannu Kurki-Suonio 
TL;DR: In this article, the relationship between the thermal Sunyaev-Zeldovich (SZ) signal and X-ray luminosity is investigated and the measured SZ signal is compared to values predicted from X-rays data.
Abstract: All-sky data from the Planck survey and the Meta-Catalogue of X-ray detected Clusters of galaxies (MCXC) are combined to investigate the relationship between the thermal Sunyaev-Zeldovich (SZ) signal and X-ray luminosity. The sample comprises ~ 1600 X-ray clusters with redshifts up to ~ 1 and spans a wide range in X-ray luminosity. The SZ signal is extracted for each object individually, and the statistical significance of the measurement is maximised by averaging the SZ signal in bins of X-ray luminosity, total mass, or redshift. The SZ signal is detected at very high significance over more than two decades in X-ray luminosity (10^43 erg/s < L_500 E(z)^-7/3 < 2 X 10^45 erg/s). The relation between intrinsic SZ signal and X-ray luminosity is investigated and the measured SZ signal is compared to values predicted from X-ray data. Planck measurements and X-ray based predictions are found to be in excellent agreement over the whole explored luminosity range. No significant deviation from standard evolution of the scaling relations is detected. For the first time the intrinsic scatter in the scaling relation between SZ signal and X-ray luminosity is measured and found to be consistent with the one in the luminosity -- mass relation from X-ray studies. There is no evidence of any deficit in SZ signal strength in Planck data relative to expectations from the X-ray properties of clusters, underlining the robustness and consistency of our overall view of intra-cluster medium properties.

160 citations


Journal ArticleDOI
Nabila Aghanim, Monique Arnaud1, M. Ashdown2, J. Aumont  +234 moreInstitutions (56)
TL;DR: In this paper, the relationship between the thermal Sunyaev-Zeldovich (SZ) signal and X-ray luminosity is investigated and the measured SZ signal is compared to values predicted from Xray data, underlining the robustness and consistency of the overall view of intra-cluster medium properties.
Abstract: All-sky data from the Planck survey and the Meta-Catalogue of X-ray detected Clusters of galaxies (MCXC) are combined to investigate the relationship between the thermal Sunyaev-Zeldovich (SZ) signal and X-ray luminosity. The sample comprises ∼1600 X-ray clusters with redshifts up to ∼1 and spans a wide range in X-ray luminosity. The SZ signal is extracted for each object individually, and the statistical significance of the measurement is maximised by averaging the SZ signal in bins of X-ray luminosity, total mass, or redshift. The SZ signal is detected at very high significance over more than two decades in X-ray luminosity (10 43 erg s −1 L500E(z) −7/3 2 × 10 45 erg s −1 ). The relation between intrinsic SZ signal and X-ray luminosity is investigated and the measured SZ signal is compared to values predicted from X-ray data. Planck measurements and X-ray based predictions are found to be in excellent agreement over the whole explored luminosity range. No significant deviation from standard evolution of the scaling relations is detected. For the first time the intrinsic scatter in the scaling relation between SZ signal and X-ray luminosity is measured and found to be consistent with the one in the luminosity – mass relation from X-ray studies. There is no evidence of any deficit in SZ signal strength in Planck data relative to expectations from the X-ray properties of clusters, underlining the robustness and consistency of our overall view of intra-cluster medium properties.

Journal ArticleDOI
TL;DR: In this paper, the authors describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which they performed to produce six temperature maps from the first 295 days of Planck-HFI survey data.
Abstract: We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857 GHz with an angular resolution ranging from 9.9 to 4.4^2. The white noise level is around 1.5 {\mu}K degree or less in the 3 main CMB channels (100--217GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project.

Journal ArticleDOI
Planck Hfi Core Team1, Peter A. R. Ade1, Nabila Aghanim, R. Ansari  +167 moreInstitutions (30)
TL;DR: In this article, the authors describe the processing of the 334 billion raw data samples from the High Frequency Instrument (hereafter HFI) which they performed to produce six temperature maps from the first 295 days of Planck-HFI survey data.
Abstract: We describe the processing of the 334 billion raw data samples from the High Frequency Instrument (hereafter HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857GHz with an angular resolution ranging from 9.9 to 4.4 arcmin. The white noise level is around 1.5 microK.degree or less in the 3 main CMB channels (100-217GHz). The photometric accuracy is better than 2% at frequencies lower or equal to 353GHz, and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the project.

Journal ArticleDOI
Nabila Aghanim1, Monique Arnaud2, M. Ashdown3, J. Aumont1  +245 moreInstitutions (57)
TL;DR: In this article, the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500 − N200) for the MaxBCG cluster catalogue is presented.
Abstract: We present the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500 − N200) for the MaxBCG cluster catalogue. Employing a multifrequency matched filter on the Planck sky maps, we measure the SZ signal for each cluster by adapting the filter according to weak-lensing calibrated mass-richness relations (N200 −M500). We bin our individual measurements and detect the SZ signal down to the lowest richness systems (N200 = 10) with high significance, achieving a detection of the SZ signal in systems with mass as low as M500 ≈ 5 × 10 13 M� . The observed Y500 − N200 relation is well modeled by a power law over the full richness range. It has a lower normalisation at given N200 than predicted based on X-ray models and published mass-richness relations. An X-ray subsample, however, does conform to the predicted scaling, and model predictions do reproduce the relation between our measured bin-average SZ signal and measured bin-average X-ray luminosities. At fixed richness, we find an intrinsic dispersion in the Y500 − N200 relation of 60% rising to of order 100% at low richness. Thanks to its all-sky coverage, Planck provides observations for more than 13 000 MaxBCG clusters and an unprecedented SZ/optical data set, extending the list of known cluster scaling laws to include SZ-optical properties. The data set offers essential clues for models of galaxy formation. Moreover, the lower normalisation of the SZ-mass relation implied by the observed SZ-richness scaling has important consequences for cluster physics and cosmological studies with SZ clusters.

Journal ArticleDOI
TL;DR: In this article, the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500-N200) for the MaxBCG cluster catalogue is presented.
Abstract: We present the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500-N200) for the MaxBCG cluster catalogue. Employing a multi-frequency matched filter on the Planck sky maps, we measure the SZ signal for each cluster by adapting the filter according to weak-lensing calibrated mass-richness relations (N200-M500). We bin our individual measurements and detect the SZ signal down to the lowest richness systems (N200=10) with high significance, achieving a detection of the SZ signal in systems with mass as low as M500~5e13 Msolar. The observed Y500-N200 relation is well modeled by a power law over the full richness range. It has a lower normalisation at given N200 than predicted based on X-ray models and published mass-richness relations. An X-ray subsample, however, does conform to the predicted scaling, and model predictions do reproduce the relation between our measured bin-average SZ signal and measured bin-average X-ray luminosities. At fixed richness, we find an intrinsic dispersion in the Y500-N200 relation of 60% rising to of order 100% at low richness. Thanks to its all-sky coverage, Planck provides observations for more than 13,000 MaxBCG clusters and an unprecedented SZ/optical data set, extending the list of known cluster scaling laws to include SZ-optical properties. The data set offers essential clues for models of galaxy formation. Moreover, the lower normalisation of the SZ-mass relation implied by the observed SZ-richness scaling has important consequences for cluster physics and cosmological studies with SZ clusters.

Journal ArticleDOI
TL;DR: In this paper, the inner mass distribution of the relaxed galaxy cluster A383 (z = 0.189) was examined in deep 16 band Hubble Space Telescope/ACS+WFC3 imaging taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) multi-cycle treasury program.
Abstract: We examine the inner mass distribution of the relaxed galaxy cluster A383 (z = 0.189), in deep 16 band Hubble Space Telescope/ACS+WFC3 imaging taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) multi-cycle treasury program. Our program is designed to study the dark matter distribution in 25 massive clusters, and balances depth with a wide wavelength coverage, 2000-16000 A, to better identify lensed systems and generate precise photometric redshifts. This photometric information together with the predictive strength of our strong-lensing analysis method identifies 13 new multiply lensed images and candidates, so that a total of 27 multiple images of nine systems are used to tightly constrain the inner mass profile gradient, dlog {Sigma}/dlog r {approx_equal} -0.6 {+-} 0.1 (r < 160 kpc). We find consistency with the standard distance-redshift relation for the full range spanned by the lensed images, 1.01 < z < 6.03, with the higher-redshift sources deflected through larger angles as expected. The inner mass profile derived here is consistent with the results of our independent weak-lensing analysis of wide-field Subaru images, with good agreement in the region of overlap ({approx}0.7-1 arcmin). Combining weak and strong lensing, the overall mass profile is well fittedmore » by a Navarro-Frenk-White profile with M{sub vir} = (5.37{sup +0.70}{sub -0.63} {+-} 0.26) Multiplication-Sign 10{sup 14} M{sub Sun} h{sup -1} and a relatively high concentration, c{sub vir} = 8.77{sup +0.44}{sub -0.42} {+-} 0.23, which lies above the standard c-M relation similar to other well-studied clusters. The critical radius of A383 is modest by the standards of other lensing clusters, r{sub E} {approx_equal} 16 {+-} 2'' (for z{sub s} = 2.55), so the relatively large number of lensed images uncovered here with precise photometric redshifts validates our imaging strategy for the CLASH survey. In total we aim to provide similarly high-quality lensing data for 25 clusters, 20 of which are X-ray-selected relaxed clusters, enabling a precise determination of the representative mass profile free from lensing bias.« less

Journal ArticleDOI
TL;DR: In this article, the authors compare the lensing properties of well defined cluster samples with those of a large set of numerically simulated objects to estimate the number of giant arcs that should arise from lensed sources at z = 2.
Abstract: Context. A long-standing problem of strong-lensing by galaxy clusters is the observed high rate of giant gravitational arcs that are not predicted in the framework of the “standard” cosmological model. This is known as the “arc statistics problem”. Recently, several other inconsistencies between the theoretical expectations and observations have been claimed regarding the large size of the Einstein rings and the high concentrations of few clusters with strong-lensing features. All these problems consistently indicate that observed galaxy clusters may be stronger gravitational lenses than expected. Aims. We aim at better understanding these problems by comparing the lensing properties of well defined cluster samples with those of a large set of numerically simulated objects. Methods. We use clusters extracted from the MareNostrum Universe to build up mock catalogs of galaxy clusters selected through their X-ray flux. We use these objects to estimate the probability distributions of lensing cross sections, Einstein rings, and concentrations for a sample of 12 MACS clusters at z > 0.5 from the literature. Results. We find that three clusters in the MACS sample have lensing cross sections and Einstein ring sizes larger than any simulated cluster in the MareNostrum Universe. We use the lensing cross sections of simulated and real clusters to estimate the number of giant arcs that should arise from lensed sources at z = 2. We find that simulated clusters produce ∼50% less arcs than observed clusters do. The medians of the distributions of the Einstein ring sizes differ by ∼25% between simulations and observations. We estimate that the concentrations of the individual MACS clusters inferred from the lensing analysis should be up to a factor of ∼2 larger than expected from the ΛCDM model because of cluster triaxiality and orientation biases that affect the lenses with the largest cross sections. In particular, we predict that for ∼20% of the clusters in the MACS sample the lensing-derived concentrations should be higher than expected by more than ∼40%. Conclusions. The arc statistics, the Einstein ring, and the concentration problems in strong lensing clusters are mitigated but not solved on the basis of our analysis. Nevertheless, owing to the lack of redshifts for most of the multiple image systems used for modeling the MACS clusters, the results of this work will need to be verified with additional data. The upcoming CLASH program will provide an ideal sample for extending our comparison.

Journal ArticleDOI
TL;DR: In this paper, a deconvolution of the moments of the apparent brightness distribution of galaxies from the telescope's point spread function (PSF) is used for weak-lensing measurements.
Abstract: We introduce a novel method for weak-lensing measurements, which is based on a mathematically exact deconvolution of the moments of the apparent brightness distribution of galaxies from the telescope's point spread function (PSF). No assumptions on the shape of the galaxy or the PSF are made. The (de)convolution equations are exact for unweighted moments only, while in practice a compact weight function needs to be applied to the noisy images to ensure that the moment measurement yields significant results. We employ a Gaussian weight function, whose centroid and ellipticity are iteratively adjusted to match the corresponding quantities of the source. The change of the moments caused by the application of the weight function can then be corrected by considering higher order weighted moments of the same source. Because of the form of the deconvolution equations, even an incomplete weighting correction leads to an excellent shear estimation if galaxies and PSF are measured with a weight function of identical size. We demonstrate the accuracy and capabilities of this new method in the context of weak gravitational lensing measurements with a set of specialized tests and show its competitive performance on the GREAT08 Challenge data. A complete c++ implementation of the method can be requested from the authors.

Journal ArticleDOI
TL;DR: In this paper, the Kaiser-Squires-Broadhurst (KSB) method is used to estimate the shear from surface-brightness moments of small and noisy galaxy images.
Abstract: We analyse the Kaiser–Squires–Broadhurst (KSB) method to estimate gravitational shear from surface-brightness moments of small and noisy galaxy images. We identify three potentially problematic assumptions. These are as follows. (1) While gravitational shear must be estimated from averaged galaxy images, KSB derives a shear estimate from each individual image and then takes the average. Since the two operations do not commute, KSB gives biased results. (2) KSB implicitly assumes that galaxy ellipticities are small, while weak gravitational lensing only assures that the change in ellipticity due to the shear is small. (3) KSB does not invert the convolution with the point spread function (PSF), but gives an approximate PSF correction which – even for a circular PSF – holds only in the limit of circular sources. The effects of assumptions (2) and (3) partially counteract in a way dependent on the width of the weight function and of the PSF. We quantitatively demonstrate the biases due to all assumptions, extend the KSB approach consistently to third order in the shear and ellipticity and show that this extension lowers the biases substantially. The issue of proper PSF deconvolution will be addressed in Melchior et al.

Journal ArticleDOI
TL;DR: Moka, a new algorithm for simulating the gravitational lensing signal from cluster-sized haloes is presented, which implements the most recent results from numerical simulations to create realistic cluster-scale lenses with properties independent of numerical resolution.
Abstract: Strong gravitational lensing is a powerful tool for probing the matter distribution in the cores of massive dark matter haloes. Recent and ongoing analyses of galaxy cluster surveys (MACS, CFHTLS, SDSS, SGAS, CLASH, LoCuSS) have adressed the question of the nature of the dark matter distribution in clusters. N-body simulations of cold dark-matter haloes consistently find that haloes should be characterized by a concentration-mass relation that decreases monotonically with halo mass, and populated by a large amount of substructures, representing the cores of accreted progenitor halos. It is important for our understanding of dark matter to test these predictions. We present MOKA, a new algorithm for simulating the gravitational lensing signal from cluster-sized haloes. It implements the most recent results from numerical simulations to create realistic cluster-scale lenses with properties independent of numerical resolution. We perform systematic studies of the strong lensing cross section as a function of halo structures. We find that the strong lensing cross sections depend most strongly on the concentration and on the inner slope of the density profile of a halo, followed in order of importance by halo triaxiality and the presence of a bright central galaxy.

Journal ArticleDOI
TL;DR: In this paper, the authors compare the observed and simulated arc statistics, in terms of the mean number of arcs per cluster, the distribution of number of arc per cluster and the angular separation distribution.
Abstract: It has been debated for a decade whether there is a large overabundance of strongly lensed arcs in galaxyclusters, compared to expectations from Λ cold dark matter cosmology. We perform ray tracing through the most massive haloes of the Millennium simulation at several redshifts in their evolution, using the Hubble Ultra Deep Field as a source image, to produce realistic simulated lensed images. We compare the lensed arc statistics measured from the simulations to those of a sample of 45 X-ray selected clusters, observed with the Hubble Space Telescope, that we have analysed in Horesh et al. The observations and the simulations are matched in cluster masses, redshifts, observational effects, and the algorithmic arc detection and selection. At z= 0.6, there are too few massive-enough clusters in the Millennium volume for a proper statistical comparison with the observations. At redshifts 0.3 < z < 0.5, however, we have large numbers of simulated and observed clusters, and the latter are an unbiased selection from a complete sample. For these redshifts, we find excellent agreement between the observed and simulated arc statistics, in terms of the mean number of arcs per cluster, the distribution of number of arcs per cluster and the angular separation distribution. At z≈ 0.2 some conflict remains, with real clusters being ~3 times more efficient arc producers than their simulated counterparts. This may arise due to selection biases in the observed subsample at this redshift, to some mismatch in masses between the observed and simulated clusters or to physical effects that arise at low redshift and enhance the lensing efficiency, but which are not represented by the simulations.

Journal ArticleDOI
TL;DR: In this paper, a large set of realistic maps of different lensing quantities starting from light cones extracted from large dark matter only N-body simulations with initial conditions corresponding to different levels of primordial local non-Gaussianity strength f NL was built.
Abstract: While usually cosmological initial conditions are assumed to be Gaussian, inflationary theories can predict a certain amount of primordial non-Gaussianity which can have an impact on the statistical properties of the lensing observables. In order to evaluate this effect, we build a large set of realistic maps of different lensing quantities starting from light cones extracted from large dark matter only N-body simulations with initial conditions corresponding to different levels of primordial local non-Gaussianity strength f NL . Considering various statistical quantities (probability distribution function, power spectrum, shear in aperture, skewness and bispectrum), we find that the effect produced by the presence of primordial non-Gaussianity is relatively small, being of the order of few per cent for values of |f NL | compatible with the present cosmic microwave background constraints and reaching at most 10-15 per cent for the most extreme cases with |f NL | = 1000. We also discuss the degeneracy of this effect with the uncertainties due to the power spectrum normalization σ 8 and matter density parameter Ω m , finding that an error in the determination of σ 8 (Ω m ) of about 3 (10) per cent gives differences comparable with non-Gaussian models having f NL = ±1000. These results suggest that the possible presence of an amount of primordial non-Gaussianity corresponding to |f NL | = 100 is not hampering a robust determination of the main cosmological parameters in present and future weak lensing surveys, while a positive detection of deviations from the Gaussian hypothesis is possible only by breaking the degeneracy with other cosmological parameters and using data from deep surveys covering a large fraction of the sky.

Journal ArticleDOI
TL;DR: In this article, the authors reconstruct the expansion history of the universe in a model-independent approach based on the largest homogeneously reduced set of Type Ia supernova luminosity data currently available.
Abstract: Based on the largest homogeneously reduced set of Type Ia supernova luminosity data currently available -- the Union2 sample -- we reconstruct the expansion history of the Universe in a model-independent approach. Our method tests the geometry of the Universe directly without reverting to any assumptions made on its energy content. This allows us to constrain Dark Energy models and non-standard cosmologies in a straightforward way. The applicability of the presented method is not restricted to testing cosmological models. It can be a valuable tool for pointing out systematic errors hidden in the supernova data and planning future Type Ia supernova cosmology campaigns.

Posted Content
Planck Hfi Core Team, Peter A. R. Ade, Nabila Aghanim, R. Ansari, M. Arnaud, M. Ashdown, Jonathan Aumont, A. J. Banday, Matthias Bartelmann, J. G. Bartlett, E. Battaner, K. Benabed, Aurélien Benoit, J.-P. Bernard, M. Bersanelli, James J. Bock, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, Tom Bradshaw, M. Bucher, J.-F. Cardoso, G. Castex, A. Catalano, Anthony Challinor, A. Chamballu, Ranga-Ram Chary, Xin Chen, C. Chiang, Sarah E. Church, D. L. Clements, J.-M. Colley, Stéphane Colombi, F. Couchot, A. Coulais, C. Cressiot, B. P. Crill, Martin Crook, P. de Bernardis, J. Delabrouille, J.-M. Delouis, F.-X. Désert, Klaus Dolag, H. Dole, O. Doré, M. Douspis, Jo Dunkley, George Efstathiou, C. Filliard, Olivier Forni, P. Fosalba, K. Ganga, M. Giard, D. Girard, Y. Giraud-Héraud, R. Gispert, K. M. Górski, Steven Gratton, Matthew Joseph Griffin, G. Guyot, J. Haissinski, D. L. Harrison, George Helou, Sophie Henrot-Versille, C. Hernández-Monteagudo, S. R. Hildebrandt, Richard Hills, E. Hivon, Michael P. Hobson, W. A. Holmes, Kevin M. Huffenberger, Andrew H. Jaffe, W. C. Jones, Jean Kaplan, R. Kneissl, Lloyd Knox, M. Kunz, G. Lagache, J.-M. Lamarre, Andrew E. Lange, Anthony Lasenby, A. Lavabre, Charles R. Lawrence, M. Le Jeune, Claude Leroy, Julien Lesgourgues, A. Lewis, J. F. Macías-Pérez, C. J. MacTavish, Bruno Maffei, Nazzareno Mandolesi, Robert G. Mann, Francine R. Marleau, D. J. Marshall, Silvia Masi, Tomotake Matsumura, I. McAuley, Peregrine McGehee, J.-B. Melin 
11 Jan 2011
TL;DR: In this paper, the authors describe the processing of the 334 billion raw data samples from the High Frequency Instrument (hereafter HFI) which they performed to produce six temperature maps from the first 295 days of Planck-HFI survey data.
Abstract: We describe the processing of the 334 billion raw data samples from the High Frequency Instrument (hereafter HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857GHz with an angular resolution ranging from 9.9 to 4.4 arcmin. The white noise level is around 1.5 microK.degree or less in the 3 main CMB channels (100-217GHz). The photometric accuracy is better than 2% at frequencies lower or equal to 353GHz, and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the project.

Journal ArticleDOI
TL;DR: In this paper, a parameter-free analytic model was developed to include the effects of mergers into the theoretical modelling of the X-ray temperature function of galaxy clusters, which is based on the dynamics of spherical rather than ellipsoidal collapse.
Abstract: We develop a parameter-free analytic model to include the effects of mergers into the theoretical modelling of the X-ray temperature function of galaxy clusters. We include this description into our model for the cluster population based on fluctuations of the gravitational potential, which avoids any reference to mass. Comparisons with a numerical simulation reveal that the theoretical model is in good agreement with the simulation results. We show that building the model on the dynamics of spherical rather than ellipsoidal collapse yields better results if emission-weighted temperatures are used, while ellipsoidal collapse yields good agreement between model and simulation for mass-weighted temperatures. Analysing two different samples of X-ray clusters, we quantify the influence of mergers and a conversion between different temperature definitions on the joint determination of Omega_m0 and sigma_8. If effects of mergers are included, temperature functions based on cluster masses and on the gravitational potential built on spherical collapse are in good agreement with other cosmological probes without any conversion of temperatures.

Journal ArticleDOI
TL;DR: In this paper, a PINpointing Orbit-Crossing Collapsed Hierarchical Object (PINOCCHIO) algorithm for studying the relative velocity statistics of merging haloes in Lagrangian perturbation theory is presented.
Abstract: Subject of this paper is a detailed analysis of the PINpointing Orbit-Crossing Collapsed HIerarchical Object (PINOCCHIO) algorithm for studying the relative velocity statistics of merging haloes in Lagrangian perturbation theory. Given a cosmological background model, a power spectrum of fluctuations as well as a Gaussian linear density contrast field δl is generated on a cubic grid, which is then smoothed repeatedly with Gaussian filters. For each Lagrangian particle at position q and each smoothing radius R, the collapse time, the velocities and ellipsoidal truncation are computed using Lagrangian perturbation theory. The collapsed medium is then fragmented into isolated objects by an algorithm designed to mimic the accretion and merger events of hierarchical collapse. Directly after the fragmentation process the mass function, merger histories of haloes and the statistics of the relative velocities at merging are evaluated. We reimplemented the algorithm in C++, recovered the mass function and optimized the construction of halo merging histories. When compared with the output of the Millennium Simulation our results suggest that the PINOCCHIO is well suited for studying relative velocities of merging haloes and is able to reproduce the pairwise velocity distribution.

Book ChapterDOI
01 Jan 2011
TL;DR: In this article, the authors summarized how cosmic structures could have developed under these circumstances and what they are characterized by, and the scenario of an early inflationary phase suggests that they arose from vacuum fluctuations of a primordial quantum field.
Abstract: Two simple symmetry assumptions combined with general relativity lead to the class of Friedmann cosmological models on which the standard model for the structure and the evolution of the Universe is built. Within this model, dark matter dominates structures on the scales of galaxies and larger, and dark energy has dominated the expansion of the Universe since about half its present age. This chapter summarizes how cosmic structures could have developed under these circumstances and what they are characterized by. As to the origin of cosmic structures, the scenario of an early inflationary phase suggests that they arose from vacuum fluctuations of a primordial quantum field.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of non-linear calibration relations on cosmological parameter estimates from weak lensing if a simpler, linear calibration relation is assumed and showed that the nonlinear relation introduces a bias in the shear-correlation amplitude and thus a bias on the cosmology parameters Omega_matter and sigma_8.
Abstract: As recently shown by Viola et al., the common (KSB) method for measuring weak gravitational shear creates a non-linear relation between the measured and the true shear of objects. We investigate here what effect such a non-linear calibration relation may have on cosmological parameter estimates from weak lensing if a simpler, linear calibration relation is assumed. We show that the non-linear relation introduces a bias in the shear-correlation amplitude and thus a bias in the cosmological parameters Omega_matter and sigma_8. Its direction and magnitude depends on whether the point-spread function is narrow or wide compared to the galaxy images from which the shear is measured. Substantial over- or underestimates of the cosmological parameters are equally possible, depending also on the variant of the KSB method. Our results show that for trustable cosmological-parameter estimates from measurements of weak lensing, one must verify that the method employed is free from ellipticity-dependent biases or monitor that the calibration relation inferred from simulations is applicable to the survey at hand.

Journal ArticleDOI
TL;DR: In this paper, the authors present results from strong-lens modelling of 10,000 SDSS clusters, to establish the universal distribution of Einstein radii, and show that an accurate determination of the Einstein radius and mass can be achieved blindly, in an automated way, without requiring multiple images as input.
Abstract: We present results from strong-lens modelling of 10,000 SDSS clusters, to establish the universal distribution of Einstein radii Detailed lensing analyses have shown that the inner mass distribution of clusters can be accurately modelled by assuming light traces mass, successfully uncovering large numbers of multiple-images Approximate critical curves and the effective Einstein radius of each cluster can therefore be readily calculated, from the distribution of member galaxies and scaled by their luminosities We use a subsample of 10 well-studied clusters covered by both SDSS and HST to calibrate and test this method, and show that an accurate determination of the Einstein radius and mass can be achieved by this approach "blindly", in an automated way, and without requiring multiple images as input We present the results of the first 10,000 clusters analysed in the range $01 =073^{+002}_{-003}$, $\sigma=0316^{+0004}_{-0002}$, and with higher abundance of large $\theta_{e}$ clusters than predicted by $\Lambda$CDM We visually inspect each of the clusters with $\theta_{e}>40 \arcsec$ ($z_{s}=2$) and find that $\sim20%$ are boosted by various projection effects detailed here, remaining with $\sim40$ real giant-lens candidates, with a maximum of $\theta_{e}=69\pm12 \arcsec$ ($z_{s}=2$) for the most massive candidate, in agreement with semi-analytic calculations The results of this work should be verified further when an extended calibration sample is available

Journal ArticleDOI
TL;DR: In this paper, the authors derived a new set of equations relating the measured spin-1 and spin-3 distortions to the lensing fields up to first order in the shear, the flexion, the product of shear and flexion and the morphological properties of the galaxy sample.
Abstract: Gravitational flexion, caused by derivatives of the gravitational tidal field, is potentially important for the analysis of the dark-matter distribution in gravitational lenses, such as galaxy clusters or the dark-matter haloes of galaxies. Flexion estimates rely on measurements of galaxy-shape distortions with spin-1 and spin-3 symmetry. We show in this paper that and how such distortions are generally caused not only by the flexion itself, but also by coupling terms of the form (shear $\times$ flexion), which have hitherto been neglected. Similar coupling terms occur between intrinsic galaxy ellipticities and the flexion. We show, by means of numerical tests, that neglecting these terms can introduce biases of up to 85% on the $F$ flexion and 150% on the $G$ flexion for galaxies with an intrinsic ellipticity dispersion of $\sigma_{\epsilon}=0.3$. In general, this bias depends on the strength of the lensing fields, the ellipticity dispersion, and the concentration of the lensed galaxies. We derive a new set of equations relating the measured spin-1 and spin-3 distortions to the lensing fields up to first order in the shear, the flexion, the product of shear and flexion, and the morphological properties of the galaxy sample. We show that this new description is accurate with a bias $\leq 7%$ (spin-1 distortion) and $\leq 3%$ (spin-3 distortion) even close to points where the flexion approach breaks down due to merging of multiple images. We propose an explanation why a spin-3 signal could not be measured yet and comment on the difficulties in using a model-fitting approach to measure the flexion signal.