scispace - formally typeset
Search or ask a question

Showing papers by "Michael F. Whiting published in 2015"


Journal ArticleDOI
TL;DR: A phylogeny of beetles based on DNA sequence data from eight nuclear genes, including six single‐copy nuclear protein‐coding genes, for 367 species representing 172 of 183 extant families provides a uniquely well‐resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera.
Abstract: © 2015 The Authors. Systematic Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society This is an open access article under the terms of the Creative Commons AttributionߚNonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

419 citations


Journal ArticleDOI
TL;DR: A robust phylogeny of Orthoptera is established including 36 of 40 families representing all 15 currently recognized superfamilies and based on complete mitochondrial genomes and four nuclear loci, in order to test previous phylogenetic hypotheses and to provide a framework for a natural classification and a reference for studying the pattern of divergence and diversification.

211 citations


Journal ArticleDOI
TL;DR: A large‐scale phylogenetic study is presented for Cucujoidea (Coleoptera), a diverse superfamily of beetles that historically has been taxonomically difficult, and many formal changes to cucujiform beetle classification are proposed.
Abstract: A large-scale phylogenetic study is presented for Cucujoidea (Coleoptera), a diverse superfamily of beetles that historically has been taxonomically difficult. This study is the most comprehensive analysis of cucujoid taxa to date, with DNA sequence data sampled from eight genes (four nuclear, four mitochondrial) for 384 coleopteran taxa, including exemplars of 35 (of 37) families and 289 genera of Cucujoidea. Maximum-likelihood analyses of these data present many significant relationships, some proposed previously and some novel. Tenebrionoidea and Lymexyloidea are recovered together and Cleroidea forms the sister group to this clade. Chrysomeloidea and Curculionoidea are recovered as sister taxa and this clade (Phytophaga) forms the sister group to the core Cucujoidea (Cucujoidea s.n.). The nitidulid series is recovered as the earliest-diverging core cucujoid lineage, although the earliest divergences among core Cucujoidea are only weakly supported. The cerylonid series (CS) is recovered as monophyletic and is supported as a major Cucujiform clade, sister group to the remaining superfamilies of Cucujiformia. Currently recognized taxa that were not recovered as monophyletic include Cucujoidea, Endomychidae, Cerylonidae and Bothrideridae. Biphyllidae and Byturidae were recovered in Cleroidea. The remaining Cucujoidea were recovered in two disparate major clades: one comprising the nitidulid series + erotylid series + Boganiidae and Hobartiidae + cucujid series, and the other comprising the cerylonid series. Propalticidae are recovered within Laemophloeidae. The cerylonid series includes two major clades, the bothriderid group and the coccinellid group. Akalyptoischiidae are recovered as a separate clade from Latridiidae. Eupsilobiinae are recovered as the sister taxon to Coccinellidae. In light of these findings, many formal changes to cucujiform beetle classification are proposed. Biphyllidae and Byturidae are transferred to Cleroidea. The cerylonid series is formally recognized as a new superfamily, Coccinelloidea stat.n. Current subfamilies elevated (or re-elevated) to family status include: Murmidiidae stat.n., Teredidae stat.n., Euxestidae stat.n., Anamorphidae stat.rev., Eupsilobiidae stat.n., and Mycetaeidae stat.n. The following taxa are redefined and characterized: Cleroidea s.n., Cucujoidea s.n., Cerylonidae s.n., Bothrideridae s.n., Endomychidae s.n. A new subfamily, Cyclotominae stat.n., is described. Stenotarsinae syn.n. is formally subsumed within a new concept of Endomychinae s.n.

160 citations


Journal ArticleDOI
TL;DR: A molecular phylogenetic study based on a comprehensive taxon sampling of 259 flea taxa, suggesting that Theria (placental mammals and marsupials) represent the most likely ancestral host group of extant Siphonaptera, with marsupial occupying a more important role than previously assumed.

81 citations


Journal ArticleDOI
TL;DR: The results support the placement of Psammoecus Latreille within Telephanini and also recover a paraphyletic Telephanus Erichson, and several suprageneric laemophloeid clades are recovered and discussed as potential higher‐level groups.
Abstract: Of all the superfamilies within the megadiverse order Coleoptera (Insecta), Cucujoidea (Cucujiformia) is arguably the most problematic taxonomically. The families comprising Cucujidae s.l. (Silvanidae, Laemophloeidae, Passandridae and Cucujidae s.s. represent a large portion of cucujoid diversity. Herein we present the results of a rigorous molecular phylogenetic analysis of Cucujidae s.l. using maximum-likelihood and Bayesian analyses of seven genes. Representatives of over half of the families of Cucujoidea (excluding the cerylonid series), as well as a broad sampling of Silvanidae and Laemophloeidae, were analysed. The monophyly of Cucujidae s.l. is rejected but a subgrouping of taxa that may form the core of a natural cucujoid lineage is recovered. This clade consists of two large monophyletic groups including several families each. Relationships among these smaller cucujoid groups are discussed, including several novel phylogenetic hypotheses, whereas morphological characters considered significant for classification in Cucujidae s.l. are evaluated in light of these phylogenetic hypotheses. Silvaninae, Telephanini, Brontini and Brontinae are recovered as monophyletic in the Bayesian analysis, but the former two are recovered as paraphyletic in the maximum-likelihood analysis. Our results support the placement of Psammoecus Latreille within Telephanini and also recover a paraphyletic Telephanus Erichson. Silvaninae is divided into three lineages, each representing a potential tribal lineage. Laemophloeidae is rendered paraphyletic in all analyses by Propalticidae and the latter is herein formally transferred to Laemophloeidae stat.n. Several suprageneric laemophloeid clades are recovered and discussed as potential higher-level groups. Laemophloeus Dejean is not recovered as monophyletic.

31 citations


Posted ContentDOI
24 Jan 2015-bioRxiv
TL;DR: A molecular phylogenetic study based on a comprehensive taxon sampling of 259 flea taxa, suggesting that Theria (placental mammals and marsupials) represent the most likely ancestral host group of extant Siphonaptera, with marsupial occupying a more important role than previously assumed.
Abstract: Fleas (order Siphonaptera) are highly-specialized, diverse blood-feeding ectoparasites of mammals and birds with an enigmatic evolutionary history and obscure origin. We here present a molecular phylogenetic study based on a comprehensive taxon sampling of 259 flea taxa, representing 16 of the 18 extant families of this order. A Bayesian phylogenetic tree with strong nodal support was recovered, consisting of seven sequentially derived lineages with Macropsyllidae at the base and Stephanocircidae as the second basal group. Divergence times of flea lineages were estimated based on fossil records and host specific associations to bats (Chiroptera), showing that the common ancestor of extant Siphonaptera split from its closest mecopteran sister group in the Early Cretaceous and basal lineages diversified during the Late Cretaceous. However, most of the intraordinal divergence into families took place after the K-Pg boundary. Ancestral states of host association and biogeographical distribution were reconstructed, suggesting with high likelihood that fleas originated in the southern continents (Gondwana) and migrated from South America to their extant distributions in a relatively short time frame. Theria (placental mammals and marsupials) represent the most likely ancestral host group of extant Siphonaptera, with marsupials occupying a more important role than previously assumed. Major extant flea families evolved in connection to post K-Pg diversification of Placentalia. The association of fleas with monotremes and birds is likely due to later secondary host association. These results suggest a relatively distant relationship between true siphonapterans and the fossil “fleas” recently discovered in Mesozoic formations of Northeast Asia.

5 citations