scispace - formally typeset
Search or ask a question

Showing papers by "Paul Coucke published in 2009"


Journal ArticleDOI
TL;DR: It is confirmed that the majority of clinical manifestations of Marfan syndrome increase with age, which emphasizes the poor applicability of the international criteria to this diagnosis in childhood and the need for follow-up monitoring in cases of clinical suspicion of Mar fan syndrome.
Abstract: From a large series of 1009 probands with pathogenic FBN1 mutations, data for 320 patients <18 years of age at the last follow-up evaluation were analyzed (32%). At the time of diagnosis, the median age was 6.5 years. At the last examination, the population was classified as follows: neonatal Marfan syndrome, 14%; severe Marfan syndrome, 19%; classic Marfan syndrome, 32%; probable Marfan syndrome, 35%. Seventy-one percent had ascending aortic dilation, 55% ectopia lentis, and 28% major skeletal system involvement. Even when aortic complications existed in childhood, the rates of aortic surgery and aortic dissection remained low (5% and 1%, respectively). Some diagnostic features (major skeletal system involvement, striae, dural ectasia, and family history) were more frequent in the 10- to <18-year age group, whereas others (ascending aortic dilation and mitral abnormalities) were more frequent in the population with neonatal Marfan syndrome. Only 56% of children could be classified as having Marfan syndrome, according to international criteria, at their last follow-up evaluation when the presence of a FBN1 mutation was not considered as a major feature, with increasing frequency in the older age groups. Eighty-five percent of child probands fulfilled international criteria after molecular studies, which indicates that the discovery of a FBN1 mutation can be a valuable diagnostic aid in uncertain cases. The distributions of mutation types and locations in this pediatric series revealed large proportions of probands carrying mutations located in exons 24 to 32 (33%) and in-frame mutations (75%). Apart from lethal neonatal Marfan syndrome, we confirm that the majority of clinical manifestations of Marfan syndrome increase with age, which emphasizes the poor applicability of the international criteria to this diagnosis in childhood and the need for follow-up monitoring in cases of clinical suspicion of Marfan syndrome.

147 citations


Journal ArticleDOI
TL;DR: The entire FBN2 gene was directly sequenced in 32 probands clinically diagnosed with CCA and it showed that the phenotype of theFBN2 positive patients was comparable to all previously published FBn2‐positive patients, and the FBN 2‐negative patients in this cohort were clinically indistinguishable from all published FBN1‐ positive patients harboring a FBNN2 mutation, suggesting locus heterogeneity.
Abstract: Beals-Hecht syndrome or congenital contractural arachnodactyly (CCA) is a rare, autosomal dominant connective tissue disorder characterized by crumpled ears, arachnodactyly, contractures, and scoliosis. Recent reports also mention aortic root dilatation, a finding previously thought to differentiate the condition from Marfan syndrome (MFS). In many cases, the condition is caused by mutations in the fibrillin 2 gene (FBN2) with 26 mutations reported so far, all located in the middle region of the gene (exons 23-34). We directly sequenced the entire FBN2 gene in 32 probands clinically diagnosed with CCA. In 14 probands, we found 13 new and one previously described FBN2 mutation including a mutation in exon 17, expanding the region in which FBN2 mutations occur in CCA. Review of the literature showed that the phenotype of the FBN2 positive patients was comparable to all previously published FBN2-positive patients. In our FBN2-positive patients, cardiovascular involvement included mitral valve prolapse in two adult patients and aortic root enlargement in three patients. Whereas the dilatation regressed in one proband, it remained marked in a child proband (z-score: 4.09) and his father (z-score: 2.94), warranting echocardiographic follow-up. We confirm paradoxical patellar laxity and report keratoconus, shoulder muscle hypoplasia, and pyeloureteral junction stenosis as new features. In addition, we illustrate large intrafamilial variability. Finally, the FBN2-negative patients in this cohort were clinically indistinguishable from all published FBN2-positive patients harboring a FBN2 mutation, suggesting locus heterogeneity.

86 citations


Journal ArticleDOI
TL;DR: It is suggested that the 3-hydroxylation function of P3H1 is restricted to the 736AA splice form, and the longer lived patients develop a severe osteochondrodysplasia that overlaps with, but has some distinctive features from, AD OI.
Abstract: Background: Recessive forms of osteogenesis imperfecta (OI) may be caused by mutations in LEPRE1 , encoding prolyl 3-hydroxylase-1 (P3H1) or in CRTAP , encoding cartilage associated protein. These proteins constitute together with cyclophilin B (CyPB) the prolyl 3-hydroxylation complex that hydroxylates the Pro986 residue in both the type I and type II collagen α1-chains. Methods: We screened LEPRE1 , CRTAP and PPIB (encoding CyPB) in a European/Middle Eastern cohort of 20 lethal/severe OI patients without a type I collagen mutation. Results: Four novel homozygous and compound heterozygous mutations were identified in LEPRE1 in four probands. Two probands survived the neonatal period, including one patient who is the eldest reported patient (177/12 years) so far with P3H1 deficiency. At birth, clinical and radiologic features were hardly distinguishable from those in patients with autosomal dominant (AD) severe/lethal OI. Follow-up data reveal that the longer lived patients develop a severe osteochondrodysplasia that overlaps with, but has some distinctive features from, AD OI. A new splice site mutation was identified in two of the four probands, affecting only one of three LEPRE1 mRNA splice forms, detected in this study. The affected splice form encodes a 736 amino acid (AA) protein with a “KDEL” endoplasmic reticulum retention signal. While western blotting and immunocytochemical analysis of fibroblast cultures revealed absence of this P3H1 protein, mass spectrometry and SDS-urea-PAGE data showed severe reduction of α1(I)Pro986 3-hydroxylation and overmodification of type I (pro)collagen chains in skin fibroblasts of the patients. Conclusion: These findings suggest that the 3-hydroxylation function of P3H1 is restricted to the 736AA splice form.

78 citations


Journal ArticleDOI
TL;DR: Even if the exons 24–32 location appears as a major cause of the severity of the phenotype in patients with a mutation in this region, other factors such as the type of mutation or modifier genes might also be relevant.
Abstract: Mutations in the FBN1 gene cause Marfan syndrome (MFS) and a wide range of overlapping phenotypes. The severe end of the spectrum is represented by neonatal MFS, the vast majority of probands carrying a mutation within exons 24-32. We previously showed that a mutation in exons 24-32 is predictive of a severe cardiovascular phenotype even in non-neonatal cases, and that mutations leading to premature truncation codons are under-represented in this region. To describe patients carrying a mutation in this so-called 'neonatal' region, we studied the clinical and molecular characteristics of 198 probands with a mutation in exons 24-32 from a series of 1013 probands with a FBN1 mutation (20%). When comparing patients with mutations leading to a premature termination codon (PTC) within exons 24-32 to patients with an in-frame mutation within the same region, a significantly higher probability of developing ectopia lentis and mitral insufficiency were found in the second group. Patients with a PTC within exons 24-32 rarely displayed a neonatal or severe MFS presentation. We also found a higher probability of neonatal presentations associated with exon 25 mutations, as well as a higher probability of cardiovascular manifestations. A high phenotypic heterogeneity could be described for recurrent mutations, ranging from neonatal to classical MFS phenotype. In conclusion, even if the exons 24-32 location appears as a major cause of the severity of the phenotype in patients with a mutation in this region, other factors such as the type of mutation or modifier genes might also be relevant.

71 citations


Journal ArticleDOI
TL;DR: It is shown that mutations in the signal peptide (SP) domain of the preproá1(V)‐collagen chain causeclassic EDS, and the observation that decreased availability of type V (pro)collagen is a key factor and a shared mechanism in the pathogenesis of classic EDS is supported.
Abstract: Classic Ehlers-Danlos syndrome (EDS) is a heritable connective tissue disease characterized by skin hyperextensibility, atrophic scarring, joint hypermobility and generalized tissue fragility. Mutations in COL5A1 and COL5A2, encoding the type V collagen proalpha1- and proalpha2-chain, are found in approximately 50% of patients with classic EDS. The majority of mutations lead to a non-functional COL5A1 allele, as a result of the introduction of a premature stopcodon in one COL5A1 transcript. A minority of mutations affect the structure of the type V collagen central helical domain. We show that mutations in the signal peptide (SP) domain of the preproa1(V)-collagen chain cause classic EDS. The missense mutations (p.L25R and p.L25P) are located in the crucial hydrophobic SP core, which is indispensible for preprotein translocation into the endoplasmic reticulum. As a result, mutant type V procollagen is retained within the cell, leading to a decreased amount of type V collagen in the extracellular matrix and disturbed collagen fibrillogenesis. Our findings further support the observation that decreased availability of type V (pro)collagen is a key factor and a shared mechanism in the pathogenesis of classic EDS.

59 citations


Journal ArticleDOI
TL;DR: It is concluded that patients with FBN1 mutation and only one major clinical criterion or with only minor clinical criteria of one or more organ system do exist but represent only 5% of the adult cohort.
Abstract: Mutations in the FBN1 gene cause Marfan syndrome (MFS) and have been associated with a wide range of milder overlapping phenotypes. A proportion of patients carrying a FBN1 mutation does not meet diagnostic criteria for MFS, and are diagnosed with "other type I fibrillinopathy." In order to better describe this entity, we analyzed a subgroup of 146 out of 689 adult propositi with incomplete "clinical" international criteria (Ghent nosology) from a large collaborative international study including 1,009 propositi with a pathogenic FBN1 mutation. We focused on patients with only one major clinical criterion, [including isolated ectopia lentis (EL; 12 patients), isolated ascending aortic dilatation (17 patients), and isolated major skeletal manifestations (1 patient)] or with no major criterion but only minor criteria in 1 or more organ systems (16 patients). At least one component of the Ghent nosology, insufficient alone to make a minor criterion, was found in the majority of patients with isolated ascending aortic dilatation and isolated EL. In patients with isolated EL, missense mutations involving a cysteine were predominant, mutations in exons 24-32 were underrepresented, and no mutations leading to a premature truncation were found. Studies of recurrent mutations and affected family members of propositi with only one major clinical criterion argue for a clinical continuum between such phenotypes and classical MFS. Using strict definitions, we conclude that patients with FBN1 mutation and only one major clinical criterion or with only minor clinical criteria of one or more organ system do exist but represent only 5% of the adult cohort.

49 citations