scispace - formally typeset
Search or ask a question

Showing papers by "Peter W. Gething published in 2012"


Journal ArticleDOI
TL;DR: A contemporary global map of national-level dengue status is generated that assigns a relative measure of certainty and identifies gaps in the available evidence and provides a preliminary estimate of population at risk with an upper bound of 3.97 billion people.
Abstract: Background: Dengue is a growing problem both in its geographical spread and in its intensity, and yet current global distribution remains highly uncertain. Challenges in diagnosis and diagnostic methods as well as highly variable national health systems mean no single data source can reliably estimate the distribution of this disease. As such, there is a lack of agreement on national dengue status among international health organisations. Here we bring together all available information on dengue occurrence using a novel approach to produce an evidence consensus map of the disease range that highlights nations with an uncertain dengue status. Methods/Principal Findings: A baseline methodology was used to assess a range of evidence for each country. In regions where dengue status was uncertain, additional evidence types were included to either clarify dengue status or confirm that it is unknown at this time. An algorithm was developed that assesses evidence quality and consistency, giving each country an evidence consensus score. Using this approach, we were able to generate a contemporary global map of national-level dengue status that assigns a relative measure of certainty and identifies gaps in the available evidence. Conclusion: The map produced here provides a list of 128 countries for which there is good evidence of dengue occurrence, including 36 countries that have previously been classified as dengue-free by the World Health Organization and/or the US Centers for Disease Control. It also identifies disease surveillance needs, which we list in full. The disease extents and limits determined here using evidence consensus, marks the beginning of a five-year study to advance the mapping of dengue virus transmission and disease risk. Completion of this first step has allowed us to produce a preliminary estimate of population at risk with an upper bound of 3.97 billion people. This figure will be refined in future work.

1,318 citations


Journal ArticleDOI
TL;DR: A global map of the dominant vector species (DVS) of malaria that makes use of predicted distribution maps for individual species or species complexes is described and highlights the spatial variability in the complexity of the vector situation.
Abstract: Background: Global maps, in particular those based on vector distributions, have long been used to help visualise the global extent of malaria. Few, however, have been created with the support of a comprehensive and extensive evidence-based approach. Methods: Here we describe the generation of a global map of the dominant vector species (DVS) of malaria that makes use of predicted distribution maps for individual species or species complexes. Results: Our global map highlights the spatial variability in the complexity of the vector situation. In Africa, An. gambiae, An. arabiensis and An. funestus are co-dominant across much of the continent, whereas in the AsianPacific region there is a highly complex situation with multi-species coexistence and variable species dominance. Conclusions: The competence of the mapping methodology to accurately portray DVS distributions is discussed. The comprehensive and contemporary database of species-specific spatial occurrence (currently available on request) will be made directly available via the Malaria Atlas Project (MAP) website from early 2012.

575 citations


Journal ArticleDOI
TL;DR: This first systematic effort to map the global endemicity of Plasmodium vivax is presented, intended to contribute to a much-needed paradigm shift towards geographically stratified and evidence-based planning for P. v Vivax control and elimination.
Abstract: Background: Current understanding of the spatial epidemiology and geographical distribution of Plasmodium vivax is far less developed than that for P. falciparum, representing a barrier to rational strategies for control and elimination. Here we present the first systematic effort to map the global endemicity of this hitherto neglected parasite. Methodology and Findings: We first updated to the year 2010 our earlier estimate of the geographical limits of P. vivax transmission. Within areas of stable transmission, an assembly of 9,970 geopositioned P. vivax parasite rate (PvPR) surveys collected from 1985 to 2010 were used with a spatiotemporal Bayesian model-based geostatistical approach to estimate endemicity age-standardised to the 1–99 year age range (PvPR1–99) within every 565 km resolution grid square. The model incorporated data on Duffy negative phenotype frequency to suppress endemicity predictions, particularly in Africa. Endemicity was predicted within a relatively narrow range throughout the endemic world, with the point estimate rarely exceeding 7% PvPR1–99. The Americas contributed 22% of the global area at risk of P. vivax transmission, but high endemic areas were generally sparsely populated and the region contributed only 6% of the 2.5 billion people at risk (PAR) globally. In Africa, Duffy negativity meant stable transmission was constrained to Madagascar and parts of the Horn, contributing 3.5% of global PAR. Central Asia was home to 82% of global PAR with important high endemic areas coinciding with dense populations particularly in India and Myanmar. South East Asia contained areas of the highest endemicity in Indonesia and Papua New Guinea and contributed 9% of global PAR.

543 citations


Journal ArticleDOI
TL;DR: A map of glucose-6-phosphate dehydrogenase deficiency prevalence and severity is presented and individuals with the deficiency are at risk of mild to severe hemolysis when taking the antimalarial primaquine.
Abstract: Background Primaquine is a key drug for malaria elimination. In addition to being the only drug active against the dormant relapsing forms of Plasmodium vivax, primaquine is the sole effective treatment of infectious P. falciparum gametocytes, and may interrupt transmission and help contain the spread of artemisinin resistance. However, primaquine can trigger haemolysis in patients with a deficiency in glucose-6-phosphate dehydrogenase (G6PDd). Poor information is available about the distribution of individuals at risk of primaquine-induced haemolysis. We present a continuous evidence-based prevalence map of G6PDd and estimates of affected populations, together with a national index of relative haemolytic risk. Methods and Findings Representative community surveys of phenotypic G6PDd prevalence were identified for 1,734 spatially unique sites. These surveys formed the evidence-base for a Bayesian geostatistical model adapted to the gene's X-linked inheritance, which predicted a G6PDd allele frequency map across malaria endemic countries (MECs) and generated population-weighted estimates of affected populations. Highest median prevalence (peaking at 32.5%) was predicted across sub-Saharan Africa and the Arabian Peninsula. Although G6PDd prevalence was generally lower across central and southeast Asia, rarely exceeding 20%, the majority of G6PDd individuals (67.5% median estimate) were from Asian countries. We estimated a G6PDd allele frequency of 8.0% (interquartile range: 7.4–8.8) across MECs, and 5.3% (4.4–6.7) within malaria-eliminating countries. The reliability of the map is contingent on the underlying data informing the model; population heterogeneity can only be represented by the available surveys, and important weaknesses exist in the map across data-sparse regions. Uncertainty metrics are used to quantify some aspects of these limitations in the map. Finally, we assembled a database of G6PDd variant occurrences to inform a national-level index of relative G6PDd haemolytic risk. Asian countries, where variants were most severe, had the highest relative risks from G6PDd. Conclusions G6PDd is widespread and spatially heterogeneous across most MECs where primaquine would be valuable for malaria control and elimination. The maps and population estimates presented here reflect potential risk of primaquine-associated harm. In the absence of non-toxic alternatives to primaquine, these results represent additional evidence to help inform safe use of this valuable, yet dangerous, component of the malaria-elimination toolkit. Please see later in the article for the Editors' Summary

421 citations


Journal ArticleDOI
TL;DR: Detailed data assembly combined with geospatial modelling can provide nation-wide audits of geographical access to care at birth to support systemic maternal health planning, human resource deployment, and strategic targeting.
Abstract: Appropriate facility-based care at birth is a key determinant of safe motherhood but geographical access remains poor in many high burden regions. Despite its importance, geographical access is rarely audited systematically, preventing integration in national-level maternal health system assessment and planning. In this study, we develop a uniquely detailed set of spatially-linked data and a calibrated geospatial model to undertake a national-scale audit of geographical access to maternity care at birth in Ghana, a high-burden country typical of many in sub-Saharan Africa. We assembled detailed spatial data on the population, health facilities, and landscape features influencing journeys. These were used in a geospatial model to estimate journey-time for all women of childbearing age (WoCBA) to their nearest health facility offering differing levels of care at birth, taking into account different transport types and availability. We calibrated the model using data on actual journeys made by women seeking care. We found that a third of women (34%) in Ghana live beyond the clinically significant two-hour threshold from facilities likely to offer emergency obstetric and neonatal care (EmONC) classed at the ‘partial’ standard or better. Nearly half (45%) live that distance or further from ‘comprehensive’ EmONC facilities, offering life-saving blood transfusion and surgery. In the most remote regions these figures rose to 63% and 81%, respectively. Poor levels of access were found in many regions that meet international targets based on facilities-per-capita ratios. Detailed data assembly combined with geospatial modelling can provide nation-wide audits of geographical access to care at birth to support systemic maternal health planning, human resource deployment, and strategic targeting. Current international benchmarks of maternal health care provision are inadequate for these purposes because they fail to take account of the location and accessibility of services relative to the women they serve.

129 citations


Book ChapterDOI
TL;DR: The evidence of the biological limits of its contemporary distribution and the global population at risk (PAR) of the disease within endemic countries indicates that the public health significance of P. vivax is likely to have been seriously underestimated.
Abstract: Plasmodium vivax occurs globally and thrives in both temperate and tropical climates. Here, we review the evidence of the biological limits of its contemporary distribution and the global population at risk (PAR) of the disease within endemic countries. We also review the most recent evidence for the endemic level of transmission within its range and discuss the implications for burden of disease assessments. Finally, the evidence-base for defining the contemporary distribution and PAR of P. vivax are discussed alongside a description of the vectors of human malaria within the limits of risk. This information along with recent data documenting the severe morbid and fatal consequences of P. vivax infection indicates that the public health significance of P. vivax is likely to have been seriously underestimated.

118 citations


Journal ArticleDOI
TL;DR: Global funding for malaria control is substantially less than required and inequity in funding is pronounced in some regions particularly when considering the distinct goals of malaria control and malaria elimination.
Abstract: The last decade has seen a dramatic increase in international and domestic funding for malaria control, coupled with important declines in malaria incidence and mortality in some regions of the world. As the ongoing climate of financial uncertainty places strains on investment in global health, there is an increasing need to audit the origin, recipients and geographical distribution of funding for malaria control relative to populations at risk of the disease. A comprehensive review of malaria control funding from international donors, bilateral sources and national governments was undertaken to reconstruct total funding by country for each year 2006 to 2010. Regions at risk from Plasmodium falciparum and/or Plasmodium vivax transmission were identified using global risk maps for 2010 and funding was assessed relative to populations at risk. Those nations with unequal funding relative to a regional average were identified and potential explanations highlighted, such as differences in national policies, government inaction or donor neglect. US$8.9 billion was disbursed for malaria control and elimination programmes over the study period. Africa had the largest levels of funding per capita-at-risk, with most nations supported primarily by international aid. Countries of the Americas, in contrast, were supported typically through national government funding. Disbursements and government funding in Asia were far lower with a large variation in funding patterns. Nations with relatively high and low levels of funding are discussed. Global funding for malaria control is substantially less than required. Inequity in funding is pronounced in some regions particularly when considering the distinct goals of malaria control and malaria elimination. Efforts to sustain and increase international investment in malaria control should be informed by evidence-based assessment of funding equity.

85 citations


Journal ArticleDOI
02 Nov 2012-Science
TL;DR: Better targeting of antimalarials to people who need them will maximize the impact of interventions in the private sector and help achieve near zero deaths from malaria by 2015.
Abstract: The Roll Back Malaria (RBM) Partnership has set an ambitious target of achieving near zero deaths from malaria by 2015 ( 1 ). Scale-up of insecticide-treated nets, indoor residual spraying of insecticide, and increased access to treatment with artemisinin-based combination therapies (ACTs) over the past decade have led to reductions in malaria incidence of more than 50% in 43 countries, including 8 in Africa ( 2 ). However, as an estimated 655,000 malaria deaths still occurred in 2010 ( 2 ), with the great majority in sub-Saharan Africa, substantial challenges remain.

48 citations


Journal ArticleDOI
TL;DR: Except for the Americas, the patterns of significantly lower P. vivax transmission in urban areas have been found globally, regionally, nationally and by dominant vector species here, following trends observed previously for P. falciparum.
Abstract: Many recent studies have examined the impact of urbanization on Plasmodium falciparum malaria endemicity and found a general trend of reduced transmission in urban areas. However, none has examined the effect of urbanization on Plasmodium vivax malaria, which is the most widely distributed malaria species and can also cause severe clinical syndromes in humans. In this study, a set of 10,003 community-based P. vivax parasite rate (Pv PR) surveys are used to explore the relationships between Pv PR in urban and rural settings. The Pv PR surveys were overlaid onto a map of global urban extents to derive an urban/rural assignment. The differences in Pv PR values between urban and rural areas were then examined. Groups of Pv PR surveys inside individual city extents (urban) and surrounding areas (rural) were identified to examine the local variations in Pv PR values. Finally, the relationships of Pv PR between urban and rural areas within the ranges of 41 dominant Anopheles vectors were examined. Significantly higher Pv PR values in rural areas were found globally. The relationship was consistent at continental scales when focusing on Africa and Asia only, but in the Americas, significantly lower values of Pv PR in rural areas were found, though the numbers of surveys were small. Moreover, except for the countries in the Americas, the same trends were found at national scales in African and Asian countries, with significantly lower values of Pv PR in urban areas. However, the patterns at city scales among 20 specific cities where sufficient data were available were less clear, with seven cities having significantly lower Pv PR values in urban areas and two cities showing significantly lower Pv PR in rural areas. The urban–rural Pv PR differences within the ranges of the dominant Anopheles vectors were generally, in agreement with the regional patterns found. Except for the Americas, the patterns of significantly lower P. vivax transmission in urban areas have been found globally, regionally, nationally and by dominant vector species here, following trends observed previously for P. falciparum. To further understand these patterns, more epidemiological, entomological and parasitological analyses of the disease at smaller spatial scales are needed.

43 citations


Journal ArticleDOI
17 May 2012-PLOS ONE
TL;DR: Most Indonesians living with endemic P. vivax experience relatively low risk of infection, however, blood surveys for this parasite are likely relatively insensitive and certainly do not detect the dormant liver stage reservoir of infection.
Abstract: Background Plasmodium vivax imposes substantial morbidity and mortality burdens in endemic zones. Detailed understanding of the contemporary spatial distribution of this parasite is needed to combat it. We used model based geostatistics (MBG) techniques to generate a contemporary map of risk of Plasmodium vivax malaria in Indonesia in 2010.

42 citations