scispace - formally typeset
Search or ask a question

Showing papers in "PLOS Neglected Tropical Diseases in 2012"


Journal ArticleDOI
TL;DR: A contemporary global map of national-level dengue status is generated that assigns a relative measure of certainty and identifies gaps in the available evidence and provides a preliminary estimate of population at risk with an upper bound of 3.97 billion people.
Abstract: Background: Dengue is a growing problem both in its geographical spread and in its intensity, and yet current global distribution remains highly uncertain. Challenges in diagnosis and diagnostic methods as well as highly variable national health systems mean no single data source can reliably estimate the distribution of this disease. As such, there is a lack of agreement on national dengue status among international health organisations. Here we bring together all available information on dengue occurrence using a novel approach to produce an evidence consensus map of the disease range that highlights nations with an uncertain dengue status. Methods/Principal Findings: A baseline methodology was used to assess a range of evidence for each country. In regions where dengue status was uncertain, additional evidence types were included to either clarify dengue status or confirm that it is unknown at this time. An algorithm was developed that assesses evidence quality and consistency, giving each country an evidence consensus score. Using this approach, we were able to generate a contemporary global map of national-level dengue status that assigns a relative measure of certainty and identifies gaps in the available evidence. Conclusion: The map produced here provides a list of 128 countries for which there is good evidence of dengue occurrence, including 36 countries that have previously been classified as dengue-free by the World Health Organization and/or the US Centers for Disease Control. It also identifies disease surveillance needs, which we list in full. The disease extents and limits determined here using evidence consensus, marks the beginning of a five-year study to advance the mapping of dengue virus transmission and disease risk. Completion of this first step has allowed us to produce a preliminary estimate of population at risk with an upper bound of 3.97 billion people. This figure will be refined in future work.

1,318 citations


Journal ArticleDOI
TL;DR: The basal position of the ZIKV strain isolated in Malaysia in 1966 suggests that the recent outbreak in Micronesia was initiated by a strain from Southeast Asia.
Abstract: Background: Zika virus (ZIKV) is a mosquito-borne flavivirus distributed throughout much of Africa and Asia. Infection with the virus may cause acute febrile illness that clinically resembles dengue fever. A recent study indicated the existence of three geographically distinct viral lineages; however this analysis utilized only a single viral gene. Although ZIKV has been known to circulate in both Africa and Asia since at least the 1950s, little is known about the genetic relationships between geographically distinct virus strains. Moreover, the geographic origin of the strains responsible for the epidemic that occurred on Yap Island, Federated States of Micronesia in 2007, and a 2010 pediatric case in Cambodia, has not been determined. Methodology/Principal Findings: To elucidate the genetic relationships of geographically distinct ZIKV strains and the origin of the strains responsible for the 2007 outbreak on Yap Island and a 2010 Cambodian pediatric case of ZIKV infection, the nucleotide sequences of the open reading frame of five isolates from Cambodia, Malaysia, Nigeria, Uganda, and Senegal collected between 1947 and 2010 were determined. Phylogenetic analyses of these and previously published ZIKV sequences revealed the existence of two main virus lineages (African and Asian) and that the strain responsible for the Yap epidemic and the Cambodian case most likely originated in Southeast Asia. Examination of the nucleotide and amino acid sequence alignments revealed the loss of a potential glycosylation site in some of the virus strains, which may correlate with the passage history of the virus. Conclusions/Significance: The basal position of the ZIKV strain isolated in Malaysia in 1966 suggests that the recent outbreak in Micronesia was initiated by a strain from Southeast Asia. Because ZIKV infection in humans produces an illness clinically similar to dengue fever and many other tropical infectious diseases, it is likely greatly misdiagnosed and underreported.

688 citations


Journal ArticleDOI
TL;DR: This first systematic effort to map the global endemicity of Plasmodium vivax is presented, intended to contribute to a much-needed paradigm shift towards geographically stratified and evidence-based planning for P. v Vivax control and elimination.
Abstract: Background: Current understanding of the spatial epidemiology and geographical distribution of Plasmodium vivax is far less developed than that for P. falciparum, representing a barrier to rational strategies for control and elimination. Here we present the first systematic effort to map the global endemicity of this hitherto neglected parasite. Methodology and Findings: We first updated to the year 2010 our earlier estimate of the geographical limits of P. vivax transmission. Within areas of stable transmission, an assembly of 9,970 geopositioned P. vivax parasite rate (PvPR) surveys collected from 1985 to 2010 were used with a spatiotemporal Bayesian model-based geostatistical approach to estimate endemicity age-standardised to the 1–99 year age range (PvPR1–99) within every 565 km resolution grid square. The model incorporated data on Duffy negative phenotype frequency to suppress endemicity predictions, particularly in Africa. Endemicity was predicted within a relatively narrow range throughout the endemic world, with the point estimate rarely exceeding 7% PvPR1–99. The Americas contributed 22% of the global area at risk of P. vivax transmission, but high endemic areas were generally sparsely populated and the region contributed only 6% of the 2.5 billion people at risk (PAR) globally. In Africa, Duffy negativity meant stable transmission was constrained to Madagascar and parts of the Horn, contributing 3.5% of global PAR. Central Asia was home to 82% of global PAR with important high endemic areas coinciding with dense populations particularly in India and Myanmar. South East Asia contained areas of the highest endemicity in Indonesia and Papua New Guinea and contributed 9% of global PAR.

543 citations


Journal ArticleDOI
TL;DR: An integrated approach to disease surveillance involving both human health and veterinary services would allow a better understanding of disease dynamics at the animal-human interface, as well as a more cost-effective utilisation of resources.
Abstract: Background This report presents a systematic review of scientific literature published between 1990–2010 relating to the frequency of human brucellosis, commissioned by WHO. The objectives were to identify high quality disease incidence data to complement existing knowledge of the global disease burden and, ultimately, to contribute towards the calculation of a Disability-Adjusted Life Years (DALY) estimate for brucellosis. Methods/Principal Findings Thirty three databases were searched, identifying 2,385 articles relating to human brucellosis. Based on strict screening criteria, 60 studies were selected for quality assessment, of which only 29 were of sufficient quality for data analysis. Data were only available from 15 countries in the regions of Northern Africa and Middle East, Western Europe, Central and South America, Sub-Saharan Africa, and Central Asia. Half of the studies presented incidence data, six of which were longitudinal prospective studies, and half presented seroprevalence data which were converted to incidence rates. Brucellosis incidence varied widely between, and within, countries. Although study biases cannot be ruled out, demographic, occupational, and socioeconomic factors likely play a role. Aggregated data at national or regional levels do not capture these complexities of disease dynamics and, consequently, at-risk populations or areas may be overlooked. In many brucellosis-endemic countries, health systems are weak and passively-acquired official data underestimate the true disease burden. Conclusions High quality research is essential for an accurate assessment of disease burden, particularly in Eastern Europe, the Asia-Pacific, Central and South America and Africa where data are lacking. Providing formal epidemiological and statistical training to researchers is essential for improving study quality. An integrated approach to disease surveillance involving both human health and veterinary services would allow a better understanding of disease dynamics at the animal-human interface, as well as a more cost-effective utilisation of resources.

401 citations


Journal ArticleDOI
TL;DR: The upgraded genome of Schistosoma mansoni will form a fundamental dataset to underpin further advances in schistosome research and is consolidated into a searchable format within the GeneDB and SchistoDB databases.
Abstract: Schistosomiasis is one of the most prevalent parasitic diseases, affecting millions of people in developing countries. Amongst the human-infective species, Schistosoma mansoni is also the most commonly used in the laboratory and here we present the systematic improvement of its draft genome. We used Sanger capillary and deep-coverage Illumina sequencing from clonal worms to upgrade the highly fragmented draft 380 Mb genome to one with only 885 scaffolds and more than 81% of the bases organised into chromosomes. We have also used transcriptome sequencing (RNA-seq) from four time points in the parasite's life cycle to refine gene predictions and profile their expression. More than 45% of predicted genes have been extensively modified and the total number has been reduced from 11,807 to 10,852. Using the new version of the genome, we identified trans-splicing events occurring in at least 11% of genes and identified clear cases where it is used to resolve polycistronic transcripts. We have produced a high-resolution map of temporal changes in expression for 9,535 genes, covering an unprecedented dynamic range for this organism. All of these data have been consolidated into a searchable format within the GeneDB (www.genedb.org) and SchistoDB (www.schistodb.net) databases. With further transcriptional profiling and genome sequencing increasingly accessible, the upgraded genome will form a fundamental dataset to underpin further advances in schistosome research.

393 citations


Journal ArticleDOI
TL;DR: This systematic review adds to the understanding of the global burden of brucellosis, one of the most common zoonoses worldwide, and the severe, debilitating, and chronic impact of bru cellosis is highlighted.
Abstract: Background The objectives of this systematic review, commissioned by WHO, were to assess the frequency and severity of clinical manifestations of human brucellosis, in view of specifying a disability weight for a DALY calculation. Methods/Principal Findings Thirty three databases were searched, with 2,385 articles published between January 1990–June 2010 identified as relating to human brucellosis. Fifty-seven studies were of sufficient quality for data extraction. Pooled proportions of cases with specific clinical manifestations were stratified by age category and sex and analysed using generalized linear mixed models. Data relating to duration of illness and risk factors were also extracted. Severe complications of brucellosis infection were not rare, with 1 case of endocarditis and 4 neurological cases per 100 patients. One in 10 men suffered from epididymo-orchitis. Debilitating conditions such as arthralgia, myalgia and back pain affected around half of the patients (65%, 47% and 45%, respectively). Given that 78% patients had fever, brucellosis poses a diagnostic challenge in malaria-endemic areas. Significant delays in appropriate diagnosis and treatment were the result of health service inadequacies and socioeconomic factors. Based on disability weights from the 2004 Global Burden of Disease Study, a disability weight of 0.150 is proposed as the first informed estimate for chronic, localised brucellosis and 0.190 for acute brucellosis. Conclusions This systematic review adds to the understanding of the global burden of brucellosis, one of the most common zoonoses worldwide. The severe, debilitating, and chronic impact of brucellosis is highlighted. Well designed epidemiological studies from regions lacking in data would allow a more complete understanding of the clinical manifestations of disease and exposure risks, and provide further evidence for policy-makers. As this is the first informed estimate of a disability weight for brucellosis, there is a need for further debate amongst brucellosis experts and a consensus to be reached.

360 citations


Journal ArticleDOI
TL;DR: STH reinfections occur rapidly after treatment, particularly for A. lumbricoides and T. trichiura, and there is a need for frequent anthelmintic drug administrations to maximize the benefit of preventive chemotherapy.
Abstract: BACKGROUND: Soil-transmitted helminth (STH) infections (i.e., Ascaris lumbricoides, hookworm, and Trichuris trichiura) affect more than a billion people. Preventive chemotherapy (i.e., repeated administration of anthelmintic drugs to at-risk populations), is the mainstay of control. This strategy, however, does not prevent reinfection. We performed a systematic review and meta-analysis to assess patterns and dynamics of STH reinfection after drug treatment. METHODOLOGY: We systematically searched PubMed, ISI Web of Science, EMBASE, Cochrane Database of Systematic Reviews, China National Knowledge Infrastructure, WanFang Database, Chinese Scientific Journal Database, and Google Scholar. Information on study year, country, sample size, age of participants, diagnostic method, drug administration strategy, prevalence and intensity of infection pre- and posttreatment, cure and egg reduction rate, evaluation period posttreatment, and adherence was extracted. Pooled risk ratios from random-effects models were used to assess the risk of STH reinfection after treatment. Our protocol is available on PROSPERO, registration number: CRD42011001678. PRINCIPAL FINDINGS: From 154 studies identified, 51 were included and 24 provided STH infection rates pre- and posttreatment, whereas 42 reported determinants of predisposition to reinfection. At 3, 6, and 12 months posttreatment, A. lumbricoides prevalence reached 26% (95% confidence interval (CI): 16-43%), 68% (95% CI: 60-76%) and 94% (95% CI: 88-100%) of pretreatment levels, respectively. For T. trichiura, respective reinfection prevalence were 36% (95% CI: 28-47%), 67% (95% CI: 42-100%), and 82% (95% CI: 62-100%), and for hookworm, 30% (95% CI: 26-34%), 55% (95% CI: 34-87%), and 57% (95% CI: 49-67%). Prevalence and intensity of reinfection were positively correlated with pretreatment infection status. CONCLUSION: STH reinfections occur rapidly after treatment, particularly for A. lumbricoides and T. trichiura. Hence, there a need for frequent anthelmintic drug administrations to maximize the benefit of preventive chemotherapy. Integrated control approaches emphasizing health education and environmental sanitation are needed to interrupt transmission of STH

339 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Aedes aegypti and found that the extent of pathogen reduction can be influenced by the strain of bacterium.
Abstract: Incidence of disease due to dengue (DENV), chikungunya (CHIKV) and yellow fever (YFV) viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 10 4 times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachiabased strategy also holds considerable promise for YFV and CHIKV suppression.

335 citations


Journal ArticleDOI
TL;DR: The presented maps of different HAT risk levels will help to develop site-specific strategies for control and surveillance, and to monitor progress achieved by ongoing efforts aimed at the elimination of sleeping sickness.
Abstract: Background: Human African trypanosomiasis (HAT), also known as sleeping sickness, persists as a public health problem in several sub-Saharan countries. Evidence-based, spatially explicit estimates of population at risk are needed to inform planning and implementation of field interventions, monitor disease trends, raise awareness and support advocacy. Comprehensive, geo-referenced epidemiological records from HAT-affected countries were combined with human population layers to map five categories of risk, ranging from ‘‘very high’’ to ‘‘very low,’’ and to estimate the corresponding at-risk population. Results: Approximately 70 million people distributed over a surface of 1.55 million km 2 are estimated to be at different levels of risk of contracting HAT. Trypanosoma brucei gambiense accounts for 82.2% of the population at risk, the remaining 17.8% being at risk of infection from T. b. rhodesiense. Twenty-one million people live in areas classified as moderate to very high risk, where more than 1 HAT case per 10,000 inhabitants per annum is reported. Discussion: Updated estimates of the population at risk of sleeping sickness were made, based on quantitative information on the reported cases and the geographic distribution of human population. Due to substantial methodological differences, it is not possible to make direct comparisons with previous figures for at-risk population. By contrast, it will be possible to explore trends in the future. The presented maps of different HAT risk levels will help to develop site-specific strategies for control and surveillance, and to monitor progress achieved by ongoing efforts aimed at the elimination of sleeping sickness.

318 citations


Journal ArticleDOI
TL;DR: It is shown that the mosquito's microbiota influences dengue virus infection of the mosquito, which in turn activates its antibacterial responses, which influences the microbial load of the mosquitoes midgut.
Abstract: Dengue virus is one of the most important arboviral pathogens and the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. It is transmitted between humans by the mosquitoes Aedes aegypti and Aedes albopictus, and at least 2.5 billion people are at daily risk of infection. During their lifecycle, mosquitoes are exposed to a variety of microbes, some of which are needed for their successful development into adulthood. However, recent studies have suggested that the adult mosquito's midgut microflora is critical in influencing the transmission of human pathogens. In this study we assessed the reciprocal interactions between the mosquito's midgut microbiota and dengue virus infection that are, to a large extent, mediated by the mosquito's innate immune system. We observed a marked decrease in susceptibility to dengue virus infection when mosquitoes harbored certain field-derived bacterial isolates in their midgut. Transcript abundance analysis of selected antimicrobial peptide genes suggested that the mosquito's microbiota elicits a basal immune activity that appears to act against dengue virus infection. Conversely, the elicitation of the mosquito immune response by dengue virus infection itself influences the microbial load of the mosquito midgut. In sum, we show that the mosquito's microbiota influences dengue virus infection of the mosquito, which in turn activates its antibacterial responses.

301 citations


Journal ArticleDOI
TL;DR: Great strides have been made towards elimination of several endemic NTDs, including lymphatic filariasis in Egypt and Yemen; schistosomiasis in Iran, Morocco, and Oman; and trachoma in Morocco, Algeria, Iran, Libya, Oman, Saudi Arabia, Tunisia, and the United Arab Emirates.
Abstract: The neglected tropical diseases (NTDs) are highly endemic but patchily distributed among the 20 countries and almost 400 million people of the Middle East and North Africa (MENA) region, and disproportionately affect an estimated 65 million people living on less than US$2 per day. Egypt has the largest number of people living in poverty of any MENA nation, while Yemen has the highest prevalence of people living in poverty. These two nations stand out for having suffered the highest rates of many NTDs, including the soil-transmitted nematode infections, filarial infections, schistosomiasis, fascioliasis, leprosy, and trachoma, although they should be recognized for recent measures aimed at NTD control. Leishmaniasis, especially cutaneous leishmaniasis, is endemic in Syria, Iran, Iraq, Libya, Morocco, and elsewhere in the region. Both zoonotic (Leishmania major) and anthroponotic (Leishmania tropica) forms are endemic in MENA in rural arid regions and urban regions, respectively. Other endemic zoonotic NTDs include cystic echinococcosis, fascioliasis, and brucellosis. Dengue is endemic in Saudi Arabia, where Rift Valley fever and Alkhurma hemorrhagic fever have also emerged. Great strides have been made towards elimination of several endemic NTDs, including lymphatic filariasis in Egypt and Yemen; schistosomiasis in Iran, Morocco, and Oman; and trachoma in Morocco, Algeria, Iran, Libya, Oman, Saudi Arabia, Tunisia, and the United Arab Emirates. A particularly noteworthy achievement is the long battle waged against schistosomiasis in Egypt, where prevalence has been brought down by regular praziquantel treatment. Conflict and human and animal migrations are key social determinants in preventing the control or elimination of NTDs in the MENA, while local political will, strengthened international and intersectoral cooperative efforts for surveillance, mass drug administration, and vaccination are essential for elimination.

Journal ArticleDOI
TL;DR: The forces driving the persistence of helminthiases as a public health problem despite the many control initiatives that have been put in place are provided; the main obstacles that impede progress are identified; and recent advances, opportunities, and challenges for the understanding of the biology, epidemiology, and control of these infections are discussed.
Abstract: A disproportionate burden of helminthiases in human populations occurs in marginalised, low-income, and resource-constrained regions of the world, with over 1 billion people in developing areas of sub-Saharan Africa, Asia, and the Americas infected with one or more helminth species. The morbidity caused by such infections imposes a substantial burden of disease, contributing to a vicious circle of infection, poverty, decreased productivity, and inadequate socioeconomic development. Furthermore, helminth infection accentuates the morbidity of malaria and HIV/AIDS, and impairs vaccine efficacy. Polyparasitism is the norm in these populations, and infections tend to be persistent. Hence, there is a great need to reduce morbidity caused by helminth infections. However, major deficiencies exist in diagnostics and interventions, including vector control, drugs, and vaccines. Overcoming these deficiencies is hampered by major gaps in knowledge of helminth biology and transmission dynamics, platforms from which to help develop such tools. The Disease Reference Group on Helminths Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. In this review, we provide an overview of the forces driving the persistence of helminthiases as a public health problem despite the many control initiatives that have been put in place; identify the main obstacles that impede progress towards their control and elimination; and discuss recent advances, opportunities, and challenges for the understanding of the biology, epidemiology, and control of these infections. The helminth infections that will be discussed include: onchocerciasis, lymphatic filariasis, soil-transmitted helminthiases, schistosomiasis, food-borne trematodiases, and taeniasis/cysticercosis.

Journal ArticleDOI
TL;DR: It is demonstrated that models using temperature and rainfall could be simple, precise, and low cost tools for dengue forecasting which could be used to enhance decision making on the timing, scale of vector control operations, and utilization of limited resources.
Abstract: INTRODUCTION: An accurate early warning system to predict impending epidemics enhances the effectiveness of preventive measures against dengue fever. The aim of this study was to develop and valida ...

Journal ArticleDOI
TL;DR: There is a strong negative linear correlation between the genome copy of Wolbachia and d Dengue virus with a dengue infection completely removed when Wolbacha density reaches a certain level, which will aid in understanding the mechanism of Wol Bachia-mediated pathogen interference and developing novel methods to block disease transmission by mosquitoes carrying native Wolbachian infections.
Abstract: Wolbachia is a maternal transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce viral interference and spread into mosquito vector population makes it possible to develop Wolbachia as a biological control agent for dengue control. While Wolbachia induces resistance to dengue virus in the transinfected Aedes aegypti mosquitoes, a similar effect was not observed in Aedes albopictus, which naturally carries Wolbachia infection but still serves as a dengue vector. In order to understand the mechanism of this lack of Wolbachia-mediated viral interference, we used both Ae. albopictus cell line (Aa23) and mosquitoes to characterize the impact of Wolbachia on dengue infection. A serial of sub-lethal doses of antibiotic treatment was used to partially remove Wolbachia in Aa23 cells and generate cell cultures with Wolbachia at different densities. We show that there is a strong negative linear correlation between the genome copy of Wolbachia and dengue virus with a dengue infection completely removed when Wolbacha density reaches a certain level. We then compared Wolbachia density between transinfected Ae. aegypti and naturally infected Ae. albopictus. The results show that Wolbachia density in midgut, fatbody and salivary gland of Ae. albopictus is 80-, 18-, and 24-fold less than that of Ae. aegypti, respectively. We provide evidence that Wolbachia density in somatic tissues of Ae. albopictus is too low to induce resistance to dengue virus. Our results will aid in understanding the mechanism of Wolbachia-mediated pathogen interference and developing novel methods to block disease transmission by mosquitoes carrying native Wolbachia infections.

Journal ArticleDOI
TL;DR: Comparisons of data from animal models of the acute and chronic phases of infection, and data from clinical series provide information about the mechanisms of CHIKV infection–associated inflammation, viral persistence in monocytes-macrophages, and their link to chronic signs.
Abstract: At the end of 2005, an outbreak of fever associated with joint pain occurred in La Reunion. The causal agent, chikungunya virus (CHIKV), has been known for 50 years and could thus be readily identified. This arbovirus is present worldwide, particularly in India, but also in Europe, with new variants returning to Africa. In humans, it causes a disease characterized by a typical acute infection, sometimes followed by persistent arthralgia and myalgia lasting months or years. Investigations in the La Reunion cohort and studies in a macaque model of chikungunya implicated monocytes-macrophages in viral persistence. In this Review, we consider the relationship between CHIKV and the immune response and discuss predictive factors for chronic arthralgia and myalgia by providing an overview of current knowledge on chikungunya pathogenesis. Comparisons of data from animal models of the acute and chronic phases of infection, and data from clinical series, provide information about the mechanisms of CHIKV infection–associated inflammation, viral persistence in monocytes-macrophages, and their link to chronic signs.

Journal ArticleDOI
TL;DR: The author highlights the essential technologies that require development before the LAMP platform can be progressed into a realistic point of care format for resource-poor endemic areas.
Abstract: The invention of the loop-mediated isothermal amplification (LAMP) method a decade ago has given new impetus towards development of point of care diagnostic tests based on amplification of pathogen DNA, a technology that has been the precinct of well-developed laboratories. The LAMP technology amplifies DNA with high sensitivity relying on an enzyme with strand displacement activity under isothermal conditions. Additionally, the technology uses four to six specially designed primers recognising six to eight regions of the target DNA sequence, hence a high specificity. The auto-cycling reactions lead to accumulation of a large amount of the target DNA and other reaction by-products, such as magnesium pyrophosphate, that allow rapid detection using varied formats [1], [2]. Over the last 10 years, LAMP has been used widely in the laboratory setting to detect pathogens of medical and veterinary importance, plant parasitic diseases, genetically modified products, and tumour and embryo sex identification, among other uses [3]. However, its application under field conditions has been limited, partly due to the infancy of the technologies associated with LAMP, such as field-based template preparation methods and product detection formats. In this Viewpoint, the author highlights the essential technologies that require development before the LAMP platform can be progressed into a realistic point of care format for resource-poor endemic areas.

Journal ArticleDOI
TL;DR: The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last forty years, and specific conditions based on maximal temperature and relative humidity thresholds were determinant in outbreaks occurrence.
Abstract: BACKGROUND: Dengue dynamics are driven by complex interactions between human-hosts, mosquito-vectors and viruses that are influenced by environmental and climatic factors. The objectives of this study were to analyze and model the relationships between climate, Aedes aegypti vectors and dengue outbreaks in Noumea (New Caledonia), and to provide an early warning system. METHODOLOGY/PRINCIPAL FINDINGS: Epidemiological and meteorological data were analyzed from 1971 to 2010 in Noumea. Entomological surveillance indices were available from March 2000 to December 2009. During epidemic years, the distribution of dengue cases was highly seasonal. The epidemic peak (March-April) lagged the warmest temperature by 1-2 months and was in phase with maximum precipitations, relative humidity and entomological indices. Significant inter-annual correlations were observed between the risk of outbreak and summertime temperature, precipitations or relative humidity but not ENSO. Climate-based multivariate non-linear models were developed to estimate the yearly risk of dengue outbreak in Noumea. The best explicative meteorological variables were the number of days with maximal temperature exceeding 32°C during January-February-March and the number of days with maximal relative humidity exceeding 95% during January. The best predictive variables were the maximal temperature in December and maximal relative humidity during October-November-December of the previous year. For a probability of dengue outbreak above 65% in leave-one-out cross validation, the explicative model predicted 94% of the epidemic years and 79% of the non epidemic years, and the predictive model 79% and 65%, respectively. CONCLUSIONS/SIGNIFICANCE: The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last forty years. Specific conditions based on maximal temperature and relative humidity thresholds were determinant in outbreaks occurrence. Their persistence was also crucial. An operational model that will enable health authorities to anticipate the outbreak risk was successfully developed. Similar models may be developed to improve dengue management in other countries.

Journal ArticleDOI
TL;DR: Singapore's urban Ae.
Abstract: Background Zika virus (ZIKV) is a little known flavivirus that caused a major outbreak in 2007, in the South-western Pacific Island of Yap. It causes dengue-like syndromes but with milder symptoms. In Africa, where it was first isolated, ZIKV is mainly transmitted by sylvatic Aedes mosquitoes. The virus has also been isolated from Ae. aegypti and it is considered to be the vector involved in the urban transmission of the virus. Transmission of the virus by an African strain of Ae. aegypti has also been demonstrated under laboratory conditions. The aim of the present study is to describe the oral susceptibility of a Singapore strain of Ae. aegypti to ZIKV, under conditions that simulate local climate.

Journal ArticleDOI
TL;DR: The results demonstrate that Wolbachia-transfected Aedes polynesiensis males are competitive under field conditions during a thirty-week open release period, as indicated by mark, release, recapture and brood-hatch failure among females at the release site.
Abstract: Background: Lymphatic filariasis (LF) is a globally significant disease, with 1.3 billion persons in 83 countries at risk. A coordinated effort of administering annual macrofilaricidal prophylactics to the entire at-risk population has succeeded in impacting and eliminating LF transmission in multiple regions. However, some areas in the South Pacific are predicted to persist as transmission sites, due in part to the biology of the mosquito vector, which has led to a call for additional tools to augment drug treatments. Autocidal strategies against mosquitoes are resurging in the effort against invasive mosquitoes and vector borne disease, with examples that include field trials of genetically modified mosquitoes and Wolbachia population replacement. However, critical questions must be addressed in anticipation of full field trials, including assessments of field competitiveness of transfected males and the risk of unintended population replacement. Methodology/Principal Findings: We report the outcome of field experiments testing a strategy that employs Wolbachia as a biopesticide. The strategy is based upon Wolbachia-induced conditional sterility, known as cytoplasmic incompatibility, and the repeated release of incompatible males to suppress a population. A criticism of the Wolbachia biopesticide approach is that unintended female release or horizontal Wolbachia transmission can result in population replacement instead of suppression. We present the outcome of laboratory and field experiments assessing the competitiveness of transfected males and their ability to transmit Wolbachia via horizontal transmission. Conclusions/Significance: The results demonstrate that Wolbachia-transfected Aedes polynesiensis males are competitive under field conditions during a thirty-week open release period, as indicated by mark, release, recapture and brood-hatch failure among females at the release site. Experiments demonstrate the males to be ‘dead end hosts’ for Wolbachia and that methods were adequate to prevent population replacement at the field site. The findings encourage the continued development and extension of a Wolbachia autocidal approach to additional medically important mosquito species.

Journal ArticleDOI
TL;DR: The world faces a situation in both Latin America and the US that bears a resemblance to the early years of the HIV/AIDS pandemic, according to the World Health Organization.
Abstract: Endemic Chagas disease has emerged as an important health disparity in the Americas. As a result, we face a situation in both Latin America and the US that bears a resemblance to the early years of the HIV/AIDS pandemic.

Journal ArticleDOI
TL;DR: To achieve the goals of morbidity reduction or elimination of infection, novel tools need to be developed, including more efficacious drugs, vaccines, and/or antivectorial agents, new diagnostics for infection and assessment of drug efficacy, and markers for possible anthelmintic resistance.
Abstract: Recognising the burden helminth infections impose on human populations, and particularly the poor, major intervention programmes have been launched to control onchocerciasis, lymphatic filariasis, soil-transmitted helminthiases, schistosomiasis, and cysticercosis. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. A summary of current helminth control initiatives is presented and available tools are described. Most of these programmes are highly dependent on mass drug administration (MDA) of anthelmintic drugs (donated or available at low cost) and require annual or biannual treatment of large numbers of at-risk populations, over prolonged periods of time. The continuation of prolonged MDA with a limited number of anthelmintics greatly increases the probability that drug resistance will develop, which would raise serious problems for continuation of control and the achievement of elimination. Most initiatives have focussed on a single type of helminth infection, but recognition of co-endemicity and polyparasitism is leading to more integration of control. An understanding of the implications of control integration for implementation, treatment coverage, combination of pharmaceuticals, and monitoring is needed. To achieve the goals of morbidity reduction or elimination of infection, novel tools need to be developed, including more efficacious drugs, vaccines, and/or antivectorial agents, new diagnostics for infection and assessment of drug efficacy, and markers for possible anthelmintic resistance. In addition, there is a need for the development of new formulations of some existing anthelmintics (e.g., paediatric formulations). To achieve ultimate elimination of helminth parasites, treatments for the above mentioned helminthiases, and for taeniasis and food-borne trematodiases, will need to be integrated with monitoring, education, sanitation, access to health services, and where appropriate, vector control or reduction of the parasite reservoir in alternative hosts. Based on an analysis of current knowledge gaps and identification of priorities, a research and development agenda for intervention tools considered necessary for control and elimination of human helminthiases is presented, and the challenges to be confronted are discussed.

Journal ArticleDOI
TL;DR: The study has established the proof of principle that onchocerciasis elimination with ivermectin treatment is feasible in at least some endemic foci in Africa.
Abstract: Background Mass treatment with ivermectin controls onchocerciasis as a public health problem, but it was not known if it could also interrupt transmission and eliminate the parasite in endemic foci in Africa where vectors are highly efficient. A longitudinal study was undertaken in three hyperendemic foci in Mali and Senegal with 15 to 17 years of annual or six-monthly ivermectin treatment in order to assess residual levels of infection and transmission, and test whether treatment could be safely stopped. This article reports the results of the final evaluations up to 5 years after the last treatment.

Journal ArticleDOI
TL;DR: The distribution of Cryptosporidium species, G. duodenalis genotypes and subtypes, and E. bieneusi genotypes in urban wastewater indicates that anthroponotic transmission appeared to be important in epidemiology of cryptosporidiosis, giardiasis, and microsporidia in the study areas.
Abstract: Background Despite their wide occurrence, cryptosporidiosis and giardiasis are considered neglected diseases by the World Health Organization. The epidemiology of these diseases and microsporidiosis in humans in developing countries is poorly understood. The high concentration of pathogens in raw sewage makes the characterization of the transmission of these pathogens simple through the genotype and subtype analysis of a small number of samples.

Journal ArticleDOI
TL;DR: Wolbachia does not affect viral replication, but is able to reduce viral infection of salivary glands and limit transmission, suggesting a role of Wolbachia in naturally restricting the transmission of DENV in Ae.
Abstract: Background The chikungunya (CHIK) outbreak that struck La Reunion Island in 2005 was preceded by few human cases of Dengue (DEN), but which surprisingly did not lead to an epidemic as might have been expected in a non-immune population. Both arboviral diseases are transmitted to humans by two main mosquito species, Aedes aegypti and Aedes albopictus. In the absence of the former, Ae. albopictus was the only species responsible for viral transmission on La Reunion Island. This mosquito is naturally super-infected with two Wolbachia strains, wAlbA and wAlbB. While Wolbachia does not affect replication of CHIK virus (CHIKV) in Ae. albopictus, a similar effect was not observed with DEN virus (DENV). Methods/Principal Findings To understand the weak vectorial status of Ae. albopictus towards DENV, we used experimental oral infections of mosquitoes from La Reunion Island to characterize the impact of Wolbachia on DENV infection. Viral loads and Wolbachia densities were measured by quantitative PCR in different organs of Ae. albopictus where DENV replication takes place after ingestion. We found that: (i) Wolbachia does not affect viral replication, (ii) Wolbachia restricts viral density in salivary glands, and (iii) Wolbachia limits transmission of DENV, as infectious viral particles were only detected in the saliva of Wolbachia-uninfected Ae. albopictus, 14 days after the infectious blood-meal. Conclusions We show that Wolbachia does not affect the replication of DENV in Ae. albopictus. However, Wolbachia is able to reduce viral infection of salivary glands and limit transmission, suggesting a role of Wolbachia in naturally restricting the transmission of DENV in Ae. albopictus from La Reunion Island. The extension of this conclusion to other Ae. albopictus populations should be investigated.

Journal ArticleDOI
TL;DR: Establishment of a CE surveillance system and implementation of a control program are necessary to reduce the economic burden of CE on the country, with the cost approximated at 0.03% of the country's gross domestic product.
Abstract: Cystic echinococcosis (CE) is a globally distributed parasitic infection of humans and livestock The disease is of significant medical and economic importance in many developing countries, including Iran However, the socioeconomic impact of the disease, in most endemic countries, is not fully understood The purpose of the present study was to determine the monetary burden of CE in Iran Epidemiological data, including prevalence and incidence of CE in humans and animals, were obtained from regional hospitals, the scientific literature, and official government reports Economic data relating to human and animal disease, including cost of treatment, productivity losses, and livestock production losses were obtained from official national and international datasets Monte Carlo simulation methods were used to represent uncertainty in input parameters Mean number of surgical CE cases per year for 2000–2009 was estimated at 1,295 The number of asymptomatic individuals living in the country was estimated at 635,232 (95% Credible Interval, CI 149,466–1,120,998) The overall annual cost of CE in Iran was estimated at US$2323 million (95% CI US$1031–3978 million), including both direct and indirect costs The cost associated with human CE was estimated at US$9339 million (95% CI US$61–2227 million) and the annual cost associated with CE in livestock was estimated at US$132 million (95% CI US$618–2465 million) The cost per surgical human case was estimated at US$1,539 CE has a considerable economic impact on Iran, with the cost of the disease approximated at 003% of the country's gross domestic product Establishment of a CE surveillance system and implementation of a control program are necessary to reduce the economic burden of CE on the country Cost-benefit analysis of different control programs is recommended, incorporating present knowledge of the economic losses due to CE in Iran

Journal ArticleDOI
TL;DR: It is found that many previous studies have not sufficiently accounted for the spatio-temporal features of the disease in the modeling process, and the ability to incorporate such information as well as the socio-environmental aspect allowed for its use as an early warning system, albeit limited geographically to a local scale.
Abstract: Dengue fever affects over a 100 million people annually hence is one of the world's most important vector-borne diseases. The transmission area of this disease continues to expand due to many direct and indirect factors linked to urban sprawl, increased travel and global warming. Current preventative measures include mosquito control programs, yet due to the complex nature of the disease and the increased importation risk along with the lack of efficient prophylactic measures, successful disease control and elimination is not realistic in the foreseeable future. Epidemiological models attempt to predict future outbreaks using information on the risk factors of the disease. Through a systematic literature review, this paper aims at analyzing the different modeling methods and their outputs in terms of acting as an early warning system. We found that many previous studies have not sufficiently accounted for the spatio-temporal features of the disease in the modeling process. Yet with advances in technology, the ability to incorporate such information as well as the socio-environmental aspect allowed for its use as an early warning system, albeit limited geographically to a local scale.

Journal ArticleDOI
TL;DR: These results, and those from other studies, strongly suggest that increases in the amount of the CYP9J cytochrome P450s are an important mechanism of pyrethroid resistance in Ae.
Abstract: Background Pyrethroid insecticides are widely utilized in dengue control. However, the major vector, Aedes aegypti, is becoming increasingly resistant to these insecticides and this is impacting on the efficacy of control measures. The near complete transcriptome of two pyrethroid resistant populations from the Caribbean was examined to explore the molecular basis of this resistance. Principal Findings Two previously described target site mutations, 1016I and 1534C were detected in pyrethroid resistant populations from Grand Cayman and Cuba. In addition between two and five per cent of the Ae. aegypti transcriptome was differentially expressed in the resistant populations compared to a laboratory susceptible population. Approximately 20 per cent of the genes over-expressed in resistant mosquitoes were up-regulated in both Caribbean populations (107 genes). Genes with putative monooxygenase activity were significantly over represented in the up-regulated subset, including five CYP9 P450 genes. Quantitative PCR was used to confirm the higher transcript levels of multiple cytochrome P450 genes from the CYP9J family and an ATP binding cassette transporter. Over expression of two genes, CYP9J26 and ABCB4, is due, at least in part, to gene amplification. Significance These results, and those from other studies, strongly suggest that increases in the amount of the CYP9J cytochrome P450s are an important mechanism of pyrethroid resistance in Ae. aegypti. The genetic redundancy resulting from the expansion of this gene family makes it unlikely that a single gene or mutation responsible for pyrethroid resistance will be identified in this mosquito species. However, the results from this study do pave the way for the development of new pyrethroid synergists and improved resistance diagnostics. The role of copy number polymorphisms in detoxification and transporter genes in providing protection against insecticide exposure requires further investigation.

Journal ArticleDOI
TL;DR: It is demonstrated that a number of human African trypanosomiasis patients from the Ivory Coast display such infection courses, recognising that trypanotolerance exists in humans, as is now widely accepted for animals, is a major step forward for future research in the field of HAT.
Abstract: The final outcome of infection by Trypanosoma brucei gambiense, the main agent of sleeping sickness, has always been considered as invariably fatal. While scarce and old reports have mentioned cases of self-cure in untreated patients, these studies suffered from the lack of accurate diagnostic tools available at that time. Here, using the most specific and sensitive tools available to date, we report on a long-term follow-up (15 years) of a cohort of 50 human African trypanosomiasis (HAT) patients from the Ivory Coast among whom 11 refused treatment after their initial diagnosis. In 10 out of 11 subjects who continued to refuse treatment despite repeated visits, parasite clearance was observed using both microscopy and polymerase chain reaction (PCR). Most of these subjects (7/10) also displayed decreasing serological responses, becoming progressively negative to trypanosome variable antigens (LiTat 1.3, 1.5 and 1.6). Hence, in addition to the “classic” lethal outcome of HAT, we show that alternative natural progressions of HAT may occur: progression to an apparently aparasitaemic and asymptomatic infection associated with strong long-lasting serological responses and progression to an apparently spontaneous resolution of infection (with negative results in parasitological tests and PCR) associated with a progressive drop in antibody titres as observed in treated cases. While this study does not precisely estimate the frequency of the alternative courses for this infection, it is noteworthy that in the field national control programs encounter a significant proportion of subjects displaying positive serologic test results but negative results in parasitological testing. These findings demonstrate that a number of these subjects display such infection courses. From our point of view, recognising that trypanotolerance exists in humans, as is now widely accepted for animals, is a major step forward for future research in the field of HAT.

Journal ArticleDOI
TL;DR: The Disease Reference Group on Helminths Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR) was given the mandate to review helminthiases research and identify research priorities and gaps is reviewed.
Abstract: Diagnostic tools appropriate for undertaking interventions to control helminth infections are key to their success. Many diagnostic tests for helminth infection have unsatisfactory performance characteristics and are not well suited for use in the parasite control programmes that are being increasingly implemented. Although the application of modern laboratory research techniques to improve diagnostics for helminth infection has resulted in some technical advances, uptake has not been uniform. Frequently, pilot or proof of concept studies of promising diagnostic technologies have not been followed by much needed product development, and in many settings diagnosis continues to rely on insensitive and unsatisfactory parasitological or serodiagnostic techniques. In contrast, PCR-based xenomonitoring of arthropod vectors, and use of parasite recombinant proteins as reagents for serodiagnostic tests, have resulted in critical advances in the control of specific helminth parasites. The Disease Reference Group on Helminths Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR) was given the mandate to review helminthiases research and identify research priorities and gaps. In this review, the diagnostic technologies relevant to control of helminth infections, either available or in development, are reviewed. Critical gaps are identified and opportunities to improve needed technologies are discussed.

Journal ArticleDOI
TL;DR: The utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness is demonstrated.
Abstract: Dengue virus is an emerging infectious agent that infects an estimated 50-100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.