scispace - formally typeset
Search or ask a question

Showing papers by "Richard D. Bardgett published in 2009"


Journal ArticleDOI
TL;DR: In this article, the effects of changes in species distributions and dominances on key ecosystem processes and properties are considered, based upon best estimates of the trajectories of key transformations, their magnitude and rates of change.
Abstract: Global environmental change, related to climate change and the deposition of airborne N-containing contaminants, has already resulted in shifts in plant community composition among plant functional types in Arctic and temperate alpine regions. In this paper, we review how key ecosystem processes will be altered by these transformations, the complex biological cascades and feedbacks that might result, and some of the potential broader consequences for the earth system. Firstly, we consider how patterns of growth and allocation, and nutrient uptake, will be altered by the shifts in plant dominance. The ways in which these changes may disproportionately affect the consumer communities, and rates of decomposition, are then discussed. We show that the occurrence of a broad spectrum of plant growth forms in these regions (from cryptogams to deciduous and evergreen dwarf shrubs, graminoids and forbs), together with hypothesized low functional redundancy, will mean that shifts in plant dominance result in a complex series of biotic cascades, couplings and feedbacks which are supplemental to the direct responses of ecosystem components to the primary global change drivers. The nature of these complex interactions is highlighted using the example of the climate-driven increase in shrub cover in low-Arctic tundra, and the contrasting transformations in plant functional composition in mid-latitude alpine systems. Finally, the potential effects of the transformations on ecosystem properties and processes that link with the earth system are reviewed. We conclude that the effects of global change on these ecosystems, and potential climate-change feedbacks, cannot be predicted from simple empirical relationships between processes and driving variables. Rather, the effects of changes in species distributions and dominances on key ecosystem processes and properties must also be considered, based upon best estimates of the trajectories of key transformations, their magnitude and rates of change.

368 citations


Journal ArticleDOI
TL;DR: This work discusses how understanding succession may help to enhance managing arable crops, grasslands and invasive plants, as well as provide insights into the effects of global change on community re-organisation and ecosystem processes.
Abstract: A growing body of evidence shows that aboveground and belowground communities and processes are intrinsically linked, and that feedbacks between these subsystems have important implications for community structure and ecosystem functioning. Almost all studies on this topic have been carried out from an empirical perspective and in specific ecological settings or contexts. Belowground interactions operate at different spatial and temporal scales. Due to the relatively low mobility and high survival of organisms in the soil, plants have longer lasting legacy effects belowground than aboveground. Our current challenge is to understand how aboveground–belowground biotic interactions operate across spatial and temporal scales, and how they depend on, as well as influence, the abiotic environment. Because empirical capacities are too limited to explore all possible combinations of interactions and environmental settings, we explore where and how they can be supported by theoretical approaches to develop testable predictions and to generalise empirical results. We review four key areas where a combined aboveground–belowground approach offers perspectives for enhancing ecological understanding, namely succession, agro-ecosystems, biological invasions and global change impacts on ecosystems. In plant succession, differences in scales between aboveground and belowground biota, as well as between species interactions and ecosystem processes, have important implications for the rate and direction of community change. Aboveground as well as belowground interactions either enhance or reduce rates of plant species replacement. Moreover, the outcomes of the interactions depend on abiotic conditions and plant life history characteristics, which may vary with successional position. We exemplify where translation of the current conceptual succession models into more predictive models can help targeting empirical studies and generalising their results. Then, we discuss how understanding succession may help to enhance managing arable crops, grasslands and invasive plants, as well as provide insights into the effects of global change on community re-organisation and ecosystem processes.

254 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the general structure of dynamic global vegetation models that use plant functional types (PFTs) classifications as a means to integrate plant-soil interactions and illustrate how models have been developed to improve the simulation of: (a) soil carbon dynamics, (b) nitrogen cycling, (c) drought impacts and (d) vegetation dynamics.
Abstract: 1. Plant–soil interactions play a central role in the biogeochemical carbon (C), nitrogen (N) and hydrological cycles. In the context of global environmental change, they are important both in modulating the impact of climate change and in regulating the feedback of greenhouse gas emissions (CO2, CH4 and N2O) to the climate system. 2. Dynamic global vegetation models (DGVMs) represent the most advanced tools available to predict the impacts of global change on terrestrial ecosystem functions and to examine their feedbacks to climate change. The accurate representation of plant–soil interactions in these models is crucial to improving predictions of the effects of climate change on a global scale. 3. In this paper, we describe the general structure of DGVMs that use plant functional types (PFTs) classifications as a means to integrate plant–soil interactions and illustrate how models have been developed to improve the simulation of: (a) soil carbon dynamics, (b) nitrogen cycling, (c) drought impacts and (d) vegetation dynamics. For each of these, we discuss some recent advances and identify knowledge gaps. 4. We identify three ongoing challenges, requiring collaboration between the global modelling community and process ecologists. First, the need for a critical evaluation of the representation of plant–soil processes in global models; second, the need to supply and integrate knowledge into global models; third, the testing of global model simulations against large-scale multifactor experiments and data from observatory gradients. 5. Synthesis. This paper reviews how plant–soil interactions are represented in DGVMs that use PFTs and illustrates some model developments. We also identify areas of ecological understanding and experimentation needed to reduce uncertainty in future carbon coupled climate change predictions.

216 citations


01 Jan 2009
TL;DR: In this article, the authors describe the general structure of dynamic global vegetation models that use plant functional types (PFTs) classifications as a means to integrate plant-soil interactions and illustrate how models have been developed to improve the simulation of: (a) soil carbon dynamics, (b) nitrogen cycling, (c) drought impacts and (d) vegetation dynamics.
Abstract: Summary 1. Plant–soil interactions play a central role in the biogeochemical carbon (C), nitrogen (N) and hydrological cycles. In the context of global environmental change, they are important both in modulating the impact of climate change and in regulating the feedback of greenhouse gas emissions (CO2 ,C H4 and N2O) to the climate system. 2. Dynamic global vegetation models (DGVMs) represent the most advanced tools available to predict the impacts of global change on terrestrial ecosystem functions and to examine their feedbacks to climate change. The accurate representation of plant–soil interactions in these models is crucial to improving predictions of the effects of climate change on a global scale. 3. In this paper, we describe the general structure of DGVMs that use plant functional types (PFTs) classifications as a means to integrate plant–soil interactions and illustrate how models have been developed to improve the simulation of: (a) soil carbon dynamics, (b) nitrogen cycling, (c) drought impacts and (d) vegetation dynamics. For each of these, we discuss some recent advances and identify knowledge gaps. 4. We identify three ongoing challenges, requiring collaboration between the global modelling community and process ecologists. First, the need for a critical evaluation of the representation of plant–soil processes in global models; second, the need to supply and integrate knowledge into global models; third, the testing of global model simulations against large-scale multifactor experiments and data from observatory gradients. 5. Synthesis. This paperreviews how plant–soil interactions are represented in DGVMs that use PFTs and illustrates some model developments. We also identify areas of ecological understanding and experimentation needed to reduce uncertainty in future carbon coupled climate change predictions.

210 citations


Journal ArticleDOI
TL;DR: The findings indicate that changes in plant species and functional group richness influence the storage and loss of both C and N in model grassland communities but that these responses are related to the presence and biomass of certain plant species, notably N fixers and forbs.
Abstract: 1. The benefits of plant functional group and plant species diversity for sustaining primary productivity have been extensively studied. However, few studies have simultaneously explored potential benefits of plant species and functional group richness and composition for the delivery of other ecosystem services and their dependency on resource availability. 2. Here, we investigated in soils of different fertility the effects of plant species and functional group richness and composition on carbon (C) and nitrogen (N) stocks in vegetation, soil and soil microbes and on CO2 exchange and the loss of C and N from soil through leaching. We established plant communities from a pool of six mesotrophic grassland species belonging to one of three functional groups (C3 grasses, forbs and legumes) in two soils of contrasting fertility. We varied species richness using one, two, three or six species and one, two or three functional groups. 3. After 2 years, vegetation C and N and soil microbial biomass were greater in the more fertile soil and increased significantly with greater numbers of plant species and functional group richness. The positive effect of plant diversity on vegetation C and N coincided with reduced loss of water and N through leaching, which was especially governed by forbs, and increased rates of net ecosystem CO2 exchange. 4. Soil C and N pools were not affected by the number of plant species or functional group richness per se after 2 years, but were enhanced by the presence and biomass of the legumes Lotus corniculatus and Trifolium repens. 5. Synthesis. Collectively, our findings indicate that changes in plant species and functional group richness influence the storage and loss of both C and N in model grassland communities but that these responses are related to the presence and biomass of certain plant species, notably N fixers and forbs. Our results therefore suggest that the co-occurrence of species from specific functional groups is crucial for the maintenance of multifunctionality with respect to C and N storage in grasslands

166 citations


Journal ArticleDOI
TL;DR: It is concluded that plant functional groups differentially influence the uptake and short-term flux of carbon in peatlands, suggesting that changes in the functional composition of vegetation resulting from global change have the potential to alter short- term patterns of carbon exchange in peats.
Abstract: 1. Northern hemisphere peatlands are globally important stores of organic soil carbon. We examined effects of plant functional group identity on short-term carbon (C) flux in an ombrotrophic peatland in northern England, UK, by selectively removing one of each of the three dominant plant functional groups (ericoid dwarf-shrubs, graminoids and bryophytes). Carbon dynamics were quantified by a combination of CO(2) flux measurements and (13)CO(2) stable isotope pulse labelling approaches. 2. Significant effects of plant functional group removals on CO(2) fluxes and tracer (13)C uptake and turnover were detected. Removal of ericoid dwarf- shrubs had the greatest influence on gross CO(2) flux, increasing rates of respiration and photosynthesis by > 200% relative to the undisturbed control. After pulse labelling with (13)CO(2), we found that turnover of recent photosynthate, measured as respired (13)CO(2) was also greatest in the absence of dwarf- shrubs. 3. Analysis of (13)C tracer enrichment in leaf tissues from all plant removal treatments showed that the rate of fixation of (13)CO(2) and turnover of (13)C labelled photosynthate in leaf tissue was greatest in graminoids and lowest in bryophytes. Furthermore, graminoid leaf (13)C enrichment was greatest when growing in the absence of dwarf-shrubs, suggesting that the presence of dwarf- shrubs reduced the photosynthetic activity of graminoids. 4. We conclude that plant functional groups differentially influence the uptake and short-term flux of carbon in peatlands, suggesting that changes in the functional composition of vegetation resulting from global change have the potential to alter short-term patterns of carbon exchange in peatland.

149 citations


Journal ArticleDOI
TL;DR: The results point to among-species variation as a consistently important ecological driver, and highlight that decomposition processes are most likely to be highly responsive to gradients of soil fertility when significant species turnover occurs across the gradient.
Abstract: 1. Following major disturbances ecosystem development occurs but in the prolonged absence of disturbance a decline (retrogressive) phase follows in which productivity and nutrient availability diminishes. Although it is recognized that litter quality and decomposition rates decrease as retrogression proceeds, little is known about the extent to which this is driven among- vs. within-species variation across these sequences. 2. We selected six long-term chronosequences that each included retrogressive stages, in New Zealand, Hawaii, Sweden, Alaska and Australia. Two involve significant species turnover across the sequence so that different species dominate at different stages, two involve low species turnover so that the same dominant species occur at all stages, and two involve some turnover of species but with certain species persisting throughout most of the sequence. 3. For each chronosequence, we collected litter from each dominant plant species at each stage of that sequence. For each litter collection we measured concentrations of N and P, and performed laboratory decomposition bioassays to measure mass loss, N and P loss, and the response of mass loss to mixture with litters of coexisting species. 4. We found that litter N and P concentrations often declined with increasing ecosystem age, both among- and within-species. However, the relative importance of among- and within-species effects varied across the six chronosequences. Rates of litter mass, N, and P loss during decomposition sometimes decreased with increasing ecosystem age, but most often at the among-species rather than the within-species level. 5. Litter mixing effects often varied across chronosequence stages, but the magnitude and direction of these effects was inconsistent among sequences. Variation in litter mixing effects across chronosequence stages was driven mainly by among- rather than within-species variation. 6. Although several recent studies have emphasized the role of within-species variation on ecosystem properties, our results point to among-species variation as a consistently important ecological driver, with within-species variation being important only for some variables and in some instances. As such they highlight that decomposition processes are most likely to be highly responsive to gradients of soil fertility (such as across chronosequences) when significant species turnover occurs across the gradient.

86 citations


Journal ArticleDOI
TL;DR: This is the most comprehensive molecular analysis of soil fauna to date, and provides a tool to rapidly assess a missing component of soil biodiversity.
Abstract: A major problem facing ecologists is obtaining a complete picture of the highly complex soil community. While DNA-based methods are routinely used to assess prokaryote community structure and diversity in soil, approaches for measuring the total faunal community are not yet available. This is due to difficulties such as designing primers specific to a range of soil animals while excluding other eukaryotes. Instead, scientists use laborious and specialized taxonomic methods for extracting and identifying soil fauna. We examined this problem using DNA sequencing to profile soil animal diversity across two Alaskan ecosystems and compare the results with morphological analyses. Of 5267 sequences, representing 549 operational taxonomic units (OTU), only 18 OTUs were common to both sites. Representatives included 8 phyla, dominated by arthropods and nematodes. This is the most comprehensive molecular analysis of soil fauna to date, and provides a tool to rapidly assess a missing component of soil biodiversity.

61 citations


Journal ArticleDOI
TL;DR: It is concluded that none of these biological approaches are 'magic bullets' capable of reversing environmental changes brought about by increasing emissions of greenhouse gases, however, it is possible that increasing crop albedo and soil carbon sequestration might contribute towards mitigation on a regional scale.

49 citations


Journal ArticleDOI
TL;DR: It is concluded that D. antarctica and C. quitensis exert a significant influence over C and N cycling in the maritime Antarctic, and that their recent population expansion will have led to significant changes in the amount, type and rate of organic C andN cycling in soil.
Abstract: Populations of the two native Antarctic vascular plant species (Deschampsia antarctica and Colobanthus quitensis) have expanded rapidly in recent decades, yet little is known about the effects of these expansions on soil nutrient cycling We measured the concentrations of dissolved organic carbon (DOC) and nitrogen (DON), amino acids and inorganic N in soils under these two vascular plant species, and under mosses and lichens, over a growing season at Signy Island in the maritime Antarctic We recorded higher concentrations of nitrate, total dissolved nitrogen, DOC, DON and free amino acids in soil under D antarctica and C quitensis than in lichen or moss dominated soils Each vegetation cover gave a unique profile of individual free amino acids in soil solution Significant interactions between soil type and time were found for free amino acid concentrations and C/N ratios, indicating that vascular plants significantly change the temporal dynamics of N mineralization and immobilization We conclude that D antarctica and C quitensis exert a significant influence over C and N cycling in the maritime Antarctic, and that their recent population expansion will have led to significant changes in the amount, type and rate of organic C and N cycling in soil

46 citations