scispace - formally typeset
Search or ask a question

Showing papers by "Robert Gentleman published in 2011"


Journal ArticleDOI
TL;DR: In this article, the authors used a combination of ChIP sequencing and gene expression profiling to compare the function of TAL1 in normal erythroid and leukaemic T cells.
Abstract: TAL1/SCL is a master regulator of haematopoiesis whose expression promotes opposite outcomes depending on the cell type: differentiation in the erythroid lineage or oncogenesis in the T-cell lineage. Here, we used a combination of ChIP sequencing and gene expression profiling to compare the function of TAL1 in normal erythroid and leukaemic T cells. Analysis of the genome-wide binding properties of TAL1 in these two haematopoietic lineages revealed new insight into the mechanism by which transcription factors select their binding sites in alternate lineages. Our study shows limited overlap in the TAL1-binding profile between the two cell types with an unexpected preference for ETS and RUNX motifs adjacent to E-boxes in the T-cell lineage. Furthermore, we show that TAL1 interacts with RUNX1 and ETS1, and that these transcription factors are critically required for TAL1 binding to genes that modulate T-cell differentiation. Thus, our findings highlight a critical role of the cellular environment in modulating transcription factor binding, and provide insight into the mechanism by which TAL1 inhibits differentiation leading to oncogenesis in the T-cell lineage.

141 citations


Journal ArticleDOI
01 Jan 2011-Database
TL;DR: A community-defined, uniform, generic description of the core attributes of biological databases, BioDBCore is proposed to provide a general overview of the database landscape, to encourage consistency and interoperability between resources; and to promote the use of semantic and syntactic standards.
Abstract: The present article proposes the adoption of a community-defined, uniform, generic description of the core attributes of biological databases, BioDBCore. The goals of these attributes are to provide a general overview of the database landscape, to encourage consistency and interoperability between resources; and to promote the use of semantic and syntactic standards. BioDBCore will make it easier for users to evaluate the scope and relevance of available resources. This new resource will increase the collective impact of the information present in biological databases.

84 citations


01 Jan 2011
TL;DR: A critical role of the cellular environment in modulating transcription factor binding is highlighted, and insight is provided into the mechanism by which TAL1 inhibits differentiation leading to oncogenesis in the T‐cell lineage.
Abstract: TAL1/SCL is a master regulator of haematopoiesis whose expression promotes opposite outcomes depending on the cell type: differentiation in the erythroid lineage or oncogenesis in the T‐cell lineage. Here, we used a combination of ChIP sequencing and gene expression profiling to compare the function of TAL1 in normal erythroid and leukaemic T cells. Analysis of the genome‐wide binding properties of TAL1 in these two haematopoietic lineages revealed new insight into the mechanism by which transcription factors select their binding sites in alternate lineages. Our study shows limited overlap in the TAL1‐binding profile between the two cell types with an unexpected preference for ETS and RUNX motifs adjacent to E‐boxes in the T‐cell lineage. Furthermore, we show that TAL1 interacts with RUNX1 and ETS1, and that these transcription factors are critically required for TAL1 binding to genes that modulate T‐cell differentiation. Thus, our findings highlight a critical role of the cellular environment in modulating transcription factor binding, and provide insight into the mechanism by which TAL1 inhibits differentiation leading to oncogenesis in the T‐cell lineage.

12 citations


Proceedings Article
01 Jan 2011
TL;DR: In this paper, the authors focused on approaches to deduce changes in biological activity in cellular pathways and networks that drive phenotype from high-throughput data, and demonstrated conclusively that cancer etiology is driven not by single gene mutation or expression change, but by coordinated changes in multiple signaling pathways.
Abstract: The workshop focused on approaches to deduce changes in biological activity in cellular pathways and networks that drive phenotype from high-throughput data. Work in cancer has demonstrated conclusively that cancer etiology is driven not by single gene mutation or expression change, but by coordinated changes in multiple signaling pathways. These pathway changes involve different genes in different individuals, leading to the failure of gene-focused analysis to identify the full range of mutations or expression changes driving cancer development. There is also evidence that metabolic pathways rather than individual genes play the critical role in a number of metabolic diseases. Tools to look at pathways and networks are needed to improve our understanding of disease and to improve our ability to target therapeutics at appropriate points in these pathways.

4 citations