scispace - formally typeset
Search or ask a question

Showing papers by "Rong Zhang published in 2020"


Journal ArticleDOI
TL;DR: This multi-omics based study provides a general view of the complex relationships and an alternative classification for various metabolic diseases where the cross-talk or compensatory mechanism between the immune and metabolism systems plays a critical role.
Abstract: Metabolic syndrome (MTS) is a cluster of concurrent metabolic abnormal conditions. MTS and its component metabolic diseases are heterogeneous and closely related, making their relationships complicated, thus hindering precision treatment. Methods: We collected seven groups of samples (group a: healthy individuals; group b: obesity; group c: MTS; group d: hyperglycemia, group e: hypertension, group f: hyperlipidemia; group g: type II diabetes, n=7 for each group). We examined the molecular characteristics of each sample by metabolomic, proteomic and peptidomic profiling analysis. The differential molecules (including metabolites, proteins and peptides) between each disease group and the healthy group were recognized by statistical analyses. Furthermore, a two-step clustering workflow which combines multi-omics and clinical information was used to redefine molecularly and clinically differential groups. Meanwhile, molecular, clinical, network and pathway based analyses were used to identify the group-specific biological features. Results: Both shared and disease-specific molecular profiles among the six types of diseases were identified. Meanwhile, the patients were stratified into three distinct groups which were different from original disease definitions but presented significant differences in glucose and lipid metabolism (Group 1: relatively favorable metabolic conditions; Group 2: severe dyslipidemia; Group 3: dysregulated insulin and glucose). Group specific biological signatures were also systematically described. The dyslipidemia group showed higher levels in multiple lipid metabolites like phosphatidylserine and phosphatidylcholine, and showed significant up-regulations in lipid and amino acid metabolism pathways. The glucose dysregulated group showed higher levels in many polypeptides from proteins contributing to immune response. The another group, with better glucose/lipid metabolism ability, showed higher levels in lipid regulating enzymes like the lecithin cholesterol acyltransferase and proteins involved in complement and coagulation cascades. Conclusions: This multi-omics based study provides a general view of the complex relationships and an alternative classification for various metabolic diseases where the cross-talk or compensatory mechanism between the immune and metabolism systems plays a critical role.

26 citations


Journal ArticleDOI
TL;DR: It is shown that 17-hydroxyprogesterone (17-OHP), an intermediate steroid in the biosynthetic pathway that converts cholesterol to cortisol, binds to and stimulates the transcriptional activity of GR, suggesting that selectively targeting hepatic Cyp17A1 may provide a therapeutic avenue for treating T2DM.
Abstract: Type 2 diabetes mellitus (T2DM) has become an expanding global public health problem. Although the glucocorticoid receptor (GR) is an important regulator of glucose metabolism, the relationship between circulating glucocorticoids (GCs) and the features of T2DM remains controversial. Here, we show that 17-hydroxyprogesterone (17-OHP), an intermediate steroid in the biosynthetic pathway that converts cholesterol to cortisol, binds to and stimulates the transcriptional activity of GR. Hepatic 17-OHP concentrations are increased in diabetic mice and patients due to aberrantly increased expression of Cyp17A1. Systemic administration of 17-OHP or overexpression of Cyp17A1 in the livers of lean mice promoted the pathogenesis of hyperglycemia and insulin resistance, whereas knockdown of Cyp17A1 abrogated metabolic disorders in obese mice. Therefore, our results identify a Cyp17A1/17-OHP/GR-dependent pathway in the liver that mediates obesity-induced hyperglycemia, suggesting that selectively targeting hepatic Cyp17A1 may provide a therapeutic avenue for treating T2DM.

24 citations


Journal ArticleDOI
TL;DR: The results suggest SLC20A1 is involved in urinary tract and urorectal development and implicate SLC21A1 as a disease-gene for BEEC and two additional monoallelic de novo variants are identified.
Abstract: Previous studies in developing Xenopus and zebrafish reported that the phosphate transporter slc20a1a is expressed in pronephric kidneys. The recent identification of SLC20A1 as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role of SLC20A1 in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish ortholog slc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exstrophy. Furthermore, we performed immunohistochemistry of an unaffected 6-week-old human embryo and detected SLC20A1 in the urinary tract and the abdominal midline, structures implicated in the pathogenesis of cloacal exstrophy. Additionally, we resequenced SLC20A1 in 690 individuals with bladder exstrophy-epispadias complex (BEEC) including 84 individuals with cloacal exstrophy. We identified two additional monoallelic de novo variants. One was identified in a case-parent trio with classic bladder exstrophy, and one additional novel de novo variant was detected in an affected mother who transmitted this variant to her affected son. To study the potential cellular impact of SLC20A1 variants, we expressed them in HEK293 cells. Here, phosphate transport was not compromised, suggesting that it is not a disease mechanism. However, there was a tendency for lower levels of cleaved caspase-3, perhaps implicating apoptosis pathways in the disease. Our results suggest SLC20A1 is involved in urinary tract and urorectal development and implicate SLC20A1 as a disease-gene for BEEC.

15 citations


Journal ArticleDOI
TL;DR: The results suggest potential association between SNPs in PRKCA-HIF1A-GLUT1 and diabetic kidney disease in Chinese Han people and a meta-analysis of case-control analysis data from the Hong Kong samples showed association with DKD.
Abstract: OBJECTIVE To explore the relationship between SNPs in PRKCA-HIF1A-GLUT1 and diabetic kidney disease in Chinese Han people. MATERIALS AND METHODS A total of 2552 participants from Shanghai Diabetes Institute Inpatient Database of Shanghai Jiao Tong University Affiliated Sixth People's Hospital were involved in the stage 1 cross-sectional population. A total of 6015 subjects from the Hong Kong Diabetes Register were included for validation. Genotyping of participants was conducted by the MassARRAY Compact Analyzer (Agena Bioscience). The data were analysed by plink, SAS, Haploview. RESULTS We identified variants associated with diabetic kidney disease in stage 1. Rs1681851 (P = .0105, OR = 1.331) in GLUT1 as well as rs2301108 (P = .0085, OR = 1.289) and rs79865957 (P = .0204, OR = 1.263) in HIF1A were significantly associated with diabetic kidney disease. Regarding DKD-related traits, rs1681851 was associated with plasma creatinine levels (P = .0169, β = 4.822) and eGFR (P = .0457, β = -6.956). Moreover, the results showed the interactions between PRKCA-GLUT1 in the occurrence of DKD. We further sought validation of the 17 SNPs in a prospective cohort and found that rs900836 and rs844501 were associated with the percentage change in eGFR slope. We performed a meta-analysis of case-control analysis data from the Hong Kong samples together with the stage 1 data from Shanghai. Rs9894851 showed significant correlation with the serum creatinine level as well as eGFR and no SNP showed association with DKD after meta-analysis. CONCLUSIONS Our results suggest potential association between SNPs in PRKCA-HIF1A-GLUT1 and diabetic kidney disease in Chinese Han people.

10 citations


Journal ArticleDOI
Yicen Zong1, Jing Yan1, Li Jin1, Bo Xu1, Zhen He1, Rong Zhang1, Cheng Hu1, Weiping Jia1 
TL;DR: Serum miR-132 was found to be associated with NAFLD risk in a Chinese cross-section study, and this finding provides a prospective research direction for early screening and diagnosingNAFLD.
Abstract: Non-invasive diagnostic markers are of great importance for early screening nonalcoholic fatty liver disease (NAFLD). MicroRNAs (miRNAs) play significant roles in many metabolic disease, including NAFLD. Therefore, this study focusd on a Chinese population to explore the possible correlation between circulating miR-132 and NAFLD. Serum miR-132 was positively associated with NAFLD in non-type 2 diabetes mellitus (T2DM) groups by logistic regression (OR = 3.082 [1.057, 8.988], P = 0.039) after adjusting age, sex, and body mass index (BMI). Additionally, in non-T2DM subgroup, after adjusting age, sex, bmi, serum miR-132 was significantly associated with ALT (β ± SE = 0.005 ± 0.002, P = 0.018), TG (β ± SE = 0.072 ± 0.029, P = 0.015), FPG (β ± SE = 0.123 ± 0.058, P = 0.036), γ-GT (β ± SE = 0.002 ± 0.001, P = 0.047), apoE (β ± SE = 0.038 ± 0.002, P = 0.017) . Serum miR-132 was found to be associated with NAFLD risk in a Chinese cross-section study. This finding provides a prospective research direction for early screening and diagnosing NAFLD.

8 citations


Journal ArticleDOI
05 Jun 2020-PLOS ONE
TL;DR: This study suggests that rare mutational de novo events in genes involved in foregut development contribute to the development of EA/TEF.
Abstract: Introduction Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) occurs approximately 1 in 3.500 live births representing the most common malformation of the upper digestive tract. Only half a century ago, EA/TEF was fatal among affected newborns suggesting that the steady birth prevalence might in parts be due to mutational de novo events in genes involved in foregut development. Methods To identify mutational de novo events in EA/TEF patients, we surveyed the exome of 30 case-parent trios. Identified and confirmed de novo variants were prioritized using in silico prediction tools. To investigate the embryonic role of genes harboring prioritized de novo variants we performed targeted analysis of mouse transcriptome data of esophageal tissue obtained at the embryonic day (E) E8.5, E12.5, and postnatal. Results In total we prioritized 14 novel de novo variants in 14 different genes (APOL2, EEF1D, CHD7, FANCB, GGT6, KIAA0556, NFX1, NPR2, PIGC, SLC5A2, TANC2, TRPS1, UBA3, and ZFHX3) and eight rare de novo variants in eight additional genes (CELSR1, CLP1, GPR133, HPS3, MTA3, PLEC, STAB1, and PPIP5K2). Through personal communication during the project, we identified an additional EA/TEF case-parent trio with a rare de novo variant in ZFHX3. In silico prediction analysis of the identified variants and comparative analysis of mouse transcriptome data of esophageal tissue obtained at E8.5, E12.5, and postnatal prioritized CHD7, TRPS1, and ZFHX3 as EA/TEF candidate genes. Re-sequencing of ZFHX3 in additional 192 EA/TEF patients did not identify further putative EA/TEF-associated variants. Conclusion Our study suggests that rare mutational de novo events in genes involved in foregut development contribute to the development of EA/TEF.

7 citations


Journal ArticleDOI
TL;DR: NGF was higher in the GDM patients and strongly linked to glucose metabolism, insulin resistance and pancreatic β cell function in Chinese pregnant women in the second trimester, and was positively associated with fasting, 1-h and 2-h glucose levels and the area under curve of glucose.
Abstract: Inflammation-related factors have been shown to play a significant role throughout pregnancy. In this study, we aimed to explore the relationships between selected inflammatory cytokines and gestational diabetes (GDM) in Chinese pregnant women. This was a 1:1 matched case–control study that included 200 pairs of subjects in the second trimester and 130 pairs of subjects in the third trimester. Serum levels of nerve growth factor (NGF), Interleukin-6 (IL-6), leptin, Interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α) and Interleukin-1beta (IL-1β) were measured by enzyme immunoassay. The associations of these inflammatory factors with metabolic parameters were analysed. In the second trimester, GDM patients had higher NGF levels and lower IL-8 levels than did normal controls (P < 0.001 and P = 0.015, respectively). However, in the third trimester, only lower leptin levels were observed in the GDM group (P = 0.031). Additionally, in the second trimester, NGF levels were not only positively associated with fasting, 1-h and 2-h glucose levels and the area under curve of glucose, but also positively related to insulin sensitivity and secretion, as suggested by fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment index of β-cell secretion (HOMA-β) (all P < 0.05). Moreover, IL-6 and leptin levels were positively correlated with HOMA-IR and HOMA-β, and TNF-α levels were positively related to HOMA-IR (all P < 0.05). Except for the relationships between NGF and HOMA-β and TNF-α and HOMA-IR, the other correlations still existed even after adjusting for confounding factors (all P < 0.05). In addition to the positive associations of IL-6 and leptin with insulin resistance and secretion, NGF was higher in the GDM patients and strongly linked to glucose metabolism, insulin resistance and pancreatic β cell function in Chinese pregnant women in the second trimester.

6 citations


Journal ArticleDOI
TL;DR: An INS-A2T mutation cosegregating with diabetes in a Chinese MODY pedigree was identified, which severely impaired SP cleavage and thus blocked the formation of proinsulin, resulting in enhanced ER stress, which may be responsible for decreased insulin secretion and subsequently, the onset of MODY10.
Abstract: More than 80% of maturity-onset diabetes of the young (MODY) in Chinese is genetically unexplained. To investigate whether the insulin gene (INS) mutation is responsible for some Chinese MODY, we screened INS mutations causing MODY10 in MODY pedigrees and explored the potential pathogenic mechanisms. INS mutations were screened in 56 MODY familial probands. Structure-function characterization and clinical profiling of identified INS mutations were conducted. An INS mutation, at the position 2 alanine-to-threonine substitution (A2T), was identified and co-segregated with hyperglycemia in a MODY pedigree. The A2T mutation converted an α-helix into a β-sheet at the N-terminal of the signal peptide (SP) of preproinsulin. The A2T mutation did not affect preproinsulin translocation across endoplasmic reticulum (ER) membrane, but impaired its SP cleavage within the ER. In INS-1 cells transfected with an A2T mutant, glucose-stimulated insulin secretion (GSIS) was significantly decreased, while BiP luciferase activities were significantly increased compared to that of wild type (WT). We identified an INS-A2T mutation cosegregating with diabetes in a Chinese MODY pedigree. This mutation severely impaired SP cleavage and thus blocked the formation of proinsulin, resulting in enhanced ER stress, which may be responsible for decreased insulin secretion and subsequently, the onset of MODY10.

6 citations