scispace - formally typeset
Search or ask a question

Showing papers by "Simon G. Gregory published in 2019"


Journal ArticleDOI
TL;DR: In this article, the Androgen receptor splice variant 7 (AR-V7) results in a truncated receptor, which leads to ligand-independent constitutive activation that is not inhibited by anti-androgen therapies.
Abstract: PURPOSEAndrogen receptor splice variant 7 (AR-V7) results in a truncated receptor, which leads to ligand-independent constitutive activation that is not inhibited by anti-androgen therapies, includ...

240 citations


Journal ArticleDOI
TL;DR: It is reported that low levels of early care in voles leads to de novo DNA methylation at specific regulatory sites in the oxytocin receptor gene (Oxtr), impacting gene expression and protein distribution in the nucleus accumbens.

80 citations


Journal ArticleDOI
TL;DR: Atypical metabolic processes that differed between MS patients and controls were identified, which may enable the development of biological targets for diagnosis and treatment and the inclusion of genomic and genetic information.
Abstract: Background Diagnostic delays are common for multiple sclerosis (MS) since diagnosis typically depends on the presentation of nonspecific clinical symptoms together with radiologically-determined central nervous system (CNS) lesions. It is important to reduce diagnostic delays as earlier initiation of disease modifying therapies mitigates long-term disability. Developing a metabolomic blood-based MS biomarker is attractive, but prior efforts have largely focused on specific subsets of metabolite classes or analytical platforms. Thus, there are opportunities to interrogate metabolite profiles using more expansive and comprehensive approaches for developing MS biomarkers and for advancing our understanding of MS pathogenesis. Methods To identify putative blood-based MS biomarkers, we comprehensively interrogated the metabolite profiles in 12 non-Hispanic white, non-smoking, male MS cases who were drug naive for 3 months prior to biospecimen collection and 13 non-Hispanic white, non-smoking male controls who were frequency matched to cases by age and body mass index. We performed untargeted two-dimensional gas chromatography and time-of-flight mass spectrometry (GCxGC-TOFMS) and targeted lipidomic and amino acid analysis on serum. 325 metabolites met quality control and supervised machine learning was used to identify metabolites most informative for MS status. The discrimination potential of these select metabolites were assessed using receiver operator characteristic curves based on logistic models; top candidate metabolites were defined as having area under the curves (AUC) >80%. The associations between whole-genome expression data and the top candidate metabolites were examined, followed by pathway enrichment analyses. Similar associations were examined for 175 putative MS risk variants and the top candidate metabolites. Results 12 metabolites were determined to be informative for MS status, of which 6 had AUCs >80%: pyroglutamate, laurate, acylcarnitine C14:1, N-methylmaleimide, and 2 phosphatidylcholines (PC ae 40:5, PC ae 42:5). These metabolites participate in glutathione metabolism, fatty acid metabolism/oxidation, cellular membrane composition, and transient receptor potential channel signaling. Pathway analyses based on the gene expression association for each metabolite suggested enrichment for pathways associated with apoptosis and mitochondrial dysfunction. Interestingly, the predominant MS genetic risk allele HLA-DRB1×15:01 was associated with one of the 6 top metabolites. Conclusion Our analysis represents the most comprehensive description of metabolic changes associated with MS in serum, to date, with the inclusion of genomic and genetic information. We identified atypical metabolic processes that differed between MS patients and controls, which may enable the development of biological targets for diagnosis and treatment.

34 citations


Journal ArticleDOI
19 Apr 2019-PLOS ONE
TL;DR: Though correlations and associations based on Horvath’s DNAm age may be unaffected, researchers should exercise caution when interpreting results based on absolute differences inDNAm age or when mixing samples assayed on different arrays.
Abstract: DNA methylation age (DNAm age) has become a widely utilized epigenetic biomarker for the aging process. The Horvath method for determining DNAm age is perhaps the most widely utilized and validated DNA methylation age assessment measure. Horvath DNAm age is calculated based on methylation measurements at 353 loci, present on Illumina’s 450k and 27k DNA methylation microarrays. With increasing use of the more recently developed Illumina MethylationEPIC (850k) microarray, it is worth revisiting this aging measure to evaluate estimation differences due to array design. Of the requisite 353 loci, 17 are missing from the 850k microarray. Similarly, an alternate, 71 loci DNA methylation age assessment measure created by Hannum et al. is missing 6 requisite loci. Using 17 datasets with 27k, 450k, and/or 850k methylation data, we compared each sample’s epigenetic age estimated from all 353 loci required by the Horvath DNAm age calculator, and using only the 336 loci available on the 850k array. In 450k/27k data, removing loci not on the 850k array resulted in underestimation of Horvath’s DNAm age. Underestimation of Horvath DNAm age increased from ages 0 to ~20, remaining stable thereafter (mean deviation = -3.46 y, SD = 1.13 for individuals ≥20 years). Underestimation of Horvath’s DNAm age by the reduced 450k/27k data was similar to the underestimation observed in the 850k data indicating it is driven by missing probes. In analogous examination of Hannum’s DNAm age, the magnitude and direction of epigenetic age misestimation varied with chronological age. In conclusion, inter-array deviations in DNAm age estimations may be largely driven by missing probes between arrays, despite default probe imputation procedures. Though correlations and associations based on Horvath’s DNAm age may be unaffected, researchers should exercise caution when interpreting results based on absolute differences in DNAm age or when mixing samples assayed on different arrays.

33 citations


Journal ArticleDOI
TL;DR: The data suggest that the Tfap2a-Irf6-Grhl3 genetic pathway is shared by two embryologically distinct morphogenetic events that previously were considered independent during mammalian development and suggest new candidates to delineate the genetic architecture of neural tube defects and new therapeutic targets to prevent this common birth defect.
Abstract: Mutations in IRF6, TFAP2A and GRHL3 cause orofacial clefting syndromes in humans. However, Tfap2a and Grhl3 are also required for neurulation in mice. Here, we found that homeostasis of Irf6 is also required for development of the neural tube and associated structures. Over-expression of Irf6 caused exencephaly, a rostral neural tube defect, through suppression of Tfap2a and Grhl3 expression. Conversely, loss of Irf6 function caused a curly tail and coincided with a reduction of Tfap2a and Grhl3 expression in tail tissues. To test whether Irf6 function in neurulation was conserved, we sequenced samples obtained from human cases of spina bifida and anencephaly. We found two likely disease-causing variants in two samples from patients with spina bifida. Overall, these data suggest that the Tfap2a-Irf6-Grhl3 genetic pathway is shared by two embryologically distinct morphogenetic events that previously were considered independent during mammalian development. In addition, these data suggest new candidates to delineate the genetic architecture of neural tube defects and new therapeutic targets to prevent this common birth defect.

30 citations


Journal ArticleDOI
TL;DR: A potential role for cfDNA for the early identification of lung cancer in patients with CT-detected pulmonary lesions is suggested, and a substantial number of somatic variants in healthy patients with benign pulmonary nodules were also found.
Abstract: Introduction: Indeterminate pulmonary lesions (IPL) detected by CT pose a significant clinical challenge, frequently necessitating long-term surveillance or biopsy for diagnosis. In this pilot investigation, we performed whole exome sequencing (WES) of plasma cell free (cfDNA) and matched germline DNA in patients with CT-detected pulmonary lesions to determine the feasibility of somatic cfDNA mutations to differentiate benign from malignant pulmonary nodules. Methods: 33 patients with a CT-detected pulmonary lesions were retrospectively enrolled (n = 16 with a benign nodule, n = 17 with a malignant nodule). Following isolation and amplification of plasma cfDNA and matched peripheral blood mononuclear cells (PBMC) from patient blood samples, WES of cfDNA and PBMC DNA was performed. After genomic alignment and filtering, we looked for lung-cancer associated driver mutations and next identified high-confidence somatic variants in both groups. Results: Somatic cfDNA mutations were observed in both groups, with the cancer group demonstrating more variants than the benign group (1083 ± 476 versus 553 ± 519, p 2 cancer patients and not the benign group, we accurately identified 82% (14/17) of cancer patients. Conclusions: This study suggests a potential role for cfDNA for the early identification of lung cancer in patients with CT-detected pulmonary lesions. Importantly, a substantial number of somatic variants in healthy patients with benign pulmonary nodules were also found. Such "benign" variants, while largely unexplored to date, have widespread relevance to all liquid biopsies if cfDNA is to be used accurately for cancer detection.

21 citations


Journal ArticleDOI
TL;DR: Methylation in CASZ1 may serve as a regulatory element associated with mortality in cardiovascular patients, and 6 novel methylation sites associated with all‐cause mortality are identified.
Abstract: Background DNA methylation is implicated in many chronic diseases and may contribute to mortality. Therefore, we conducted an epigenome‐wide association study (EWAS) for all‐cause mortality with wh...

15 citations


Journal ArticleDOI
28 May 2019-PLOS ONE
TL;DR: Osteomimicry may contribute in part to the uptake of radium-223 within bone metastases and may thereby enhance the therapeutic benefit of this bone targeting radiotherapy.
Abstract: Background Radium-223 is a targeted alpha-particle therapy that improves survival in men with metastatic castration resistant prostate cancer (mCRPC), particularly in men with elevated serum levels of bone alkaline phosphatase (B-ALP). We hypothesized that osteomimicry, a form of epithelial plasticity leading to an osteoblastic phenotype, may contribute to intralesional deposition of radium-223 and subsequent irradiation of the tumor microenvironment. Methods We conducted a pharmacodynamic study (NCT02204943) of radium-223 in men with bone mCRPC. Prior to and three and six months after radium-223 treatment initiation, we collected CTCs and metastatic biopsies for phenotypic characterization and CTC genomic analysis. The primary objective was to describe the impact of radium-223 on the prevalence of CTC B-ALP over time. We measured radium-223 decay products in tumor and surrounding normal bone during treatment. We validated genomic findings in a separate independent study of men with bone metastatic mCRPC (n = 45) and publicly accessible data of metastatic CRPC tissues. Results We enrolled 20 men with symptomatic bone predominant mCRPC and treated with radium-223. We observed greater radium-223 radioactivity levels in metastatic bone tumor containing biopsies compared with adjacent normal bone. We found evidence of persistent Cellsearch CTCs and B-ALP (+) CTCs in the majority of men over time during radium-223 therapy despite serum B-ALP normalization. We identified genomic gains in osteoblast mimicry genes including gains of ALPL, osteopontin, SPARC, OB-cadherin and loss of RUNX2, and validated genomic alterations or increased expression at the DNA and RNA level in an independent cohort of 45 men with bone-metastatic CRPC and in 150 metastatic biopsies from men with mCRPC. Conclusions Osteomimicry may contribute in part to the uptake of radium-223 within bone metastases and may thereby enhance the therapeutic benefit of this bone targeting radiotherapy.

11 citations


Journal ArticleDOI
TL;DR: By integrating large-scale miRNA profiling with circulating biomarkers as intermediate traits, this work identified associations of known cardiac-related and novel miRNAs with two prognostic biomarkers and identified potential genomic networks regulating these biomarkers.
Abstract: The genomic regulatory networks underlying the pathogenesis of non-ST-segment elevation acute coronary syndrome (NSTE-ACS) are incompletely understood. As intermediate traits, protein biomarkers re...

5 citations