scispace - formally typeset
T

Timothy J. Booth

Researcher at Technical University of Denmark

Publications -  80
Citations -  31310

Timothy J. Booth is an academic researcher from Technical University of Denmark. The author has contributed to research in topics: Graphene & Raman spectroscopy. The author has an hindex of 29, co-authored 75 publications receiving 28228 citations. Previous affiliations of Timothy J. Booth include University of Minho & Daresbury Laboratory.

Papers
More filters
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

Fine Structure Constant Defines Visual Transparency of Graphene

TL;DR: It is shown that the opacity of suspended graphene is defined solely by the fine structure constant, a = e2/hc � 1/137 (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science.
Journal ArticleDOI

The structure of suspended graphene sheets

TL;DR: These studies by transmission electron microscopy reveal that individual graphene sheets freely suspended on a microfabricated scaffold in vacuum or air are not perfectly flat: they exhibit intrinsic microscopic roughening such that the surface normal varies by several degrees and out-of-plane deformations reach 1 nm.
Journal ArticleDOI

Making graphene visible

TL;DR: In this article, the authors study the visibility of graphene and show that it depends strongly on both thickness of SiO2 and light wavelength, and they find that ≈100nm is the most suitable wavelength for its visual detection.
Journal ArticleDOI

Making graphene visible

TL;DR: In this paper, the authors studied the visibility of graphene and showed that it depends strongly on both thickness of silicon dioxide and light wavelength, and they used a Fresnel-law-based model to quantitatively describe the experimental data without any fitting parameters.