scispace - formally typeset

Author

Nuno M. R. Peres

Other affiliations: Max Planck Society, Boston University, University of Évora  ...read more
Bio: Nuno M. R. Peres is an academic researcher from University of Minho. The author has contributed to research in topic(s): Graphene & Bilayer graphene. The author has an hindex of 64, co-authored 304 publication(s) receiving 48430 citation(s). Previous affiliations of Nuno M. R. Peres include Max Planck Society & Boston University.
Papers
More filters

Journal ArticleDOI
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

18,972 citations


Journal ArticleDOI
06 Jun 2008-Science
TL;DR: It is shown that the opacity of suspended graphene is defined solely by the fine structure constant, a = e2/hc � 1/137 (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science.
Abstract: There are few phenomena in condensed matter physics that are defined only by the fundamental constants and do not depend on material parameters. Examples are the resistivity quantum, h/e2 (h is Planck's constant and e the electron charge), that appears in a variety of transport experiments and the magnetic flux quantum, h/e, playing an important role in the physics of superconductivity. By and large, sophisticated facilities and special measurement conditions are required to observe any of these phenomena. We show that the opacity of suspended graphene is defined solely by the fine structure constant, a = e2/hc feminine 1/137 (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science. Despite being only one atom thick, graphene is found to absorb a significant (pa = 2.3%) fraction of incident white light, a consequence of graphene's unique electronic structure.

7,102 citations


Journal ArticleDOI
L. Britnell1, Roman V. Gorbachev1, Rashid Jalil1, Branson D. Belle1  +12 moreInstitutions (6)
24 Feb 2012-Science
TL;DR: A bipolar field-effect transistor that exploits the low density of states in graphene and its one-atomic-layer thickness is reported, which has potential for high-frequency operation and large-scale integration.
Abstract: An obstacle to the use of graphene as an alternative to silicon electronics has been the absence of an energy gap between its conduction and valence bands, which makes it difficult to achieve low power dissipation in the OFF state We report a bipolar field-effect transistor that exploits the low density of states in graphene and its one-atomic-layer thickness Our prototype devices are graphene heterostructures with atomically thin boron nitride or molybdenum disulfide acting as a vertical transport barrier They exhibit room-temperature switching ratios of ≈50 and ≈10,000, respectively Such devices have potential for high-frequency operation and large-scale integration

2,188 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the electronic gap of a graphene bilayer can be controlled externally by applying a gate bias and can be changed from zero to midinfrared energies by using fields of less, approximately < 1 V/nm, below the electric breakdown of SiO2.
Abstract: We demonstrate that the electronic gap of a graphene bilayer can be controlled externally by applying a gate bias. From the magnetotransport data (Shubnikov-de Haas measurements of the cyclotron mass), and using a tight-binding model, we extract the value of the gap as a function of the electronic density. We show that the gap can be changed from zero to midinfrared energies by using fields of less, approximately < 1 V/nm, below the electric breakdown of SiO2. The opening of a gap is clearly seen in the quantum Hall regime.

1,448 citations


Journal Article
Abstract: We demonstrate that the electronic gap of a graphene bilayer can be controlled externally by applying a gate bias. From the magnetotransport data (Shubnikov-de Haas measurements of the cyclotron mass), and using a tight-binding model, we extract the value of the gap as a function of the electronic density. We show that the gap can be changed from zero to midinfrared energies by using fields of less, approximately < 1 V/nm, below the electric breakdown of SiO2. The opening of a gap is clearly seen in the quantum Hall regime.

1,315 citations


Cited by
More filters

Journal ArticleDOI
Andre K. Geim1, Kostya S. Novoselov1Institutions (1)
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

32,822 citations



Journal ArticleDOI
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

18,972 citations


Journal ArticleDOI
Kostya S. Novoselov1, A. K. Geim1, Sergey V. Morozov, Da Jiang1  +4 moreInstitutions (2)
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

17,308 citations


Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

11,301 citations


Network Information
Related Authors (5)
A. H. Castro Neto

372 papers, 69.6K citations

92% related
Francisco Guinea

573 papers, 69.4K citations

87% related
Kenji Watanabe

2.3K papers, 129.3K citations

83% related
Takashi Taniguchi

2.1K papers, 110.6K citations

82% related
Frank H. L. Koppens

239 papers, 32.7K citations

81% related
Performance
Metrics

Author's H-index: 64

No. of papers from the Author in previous years
YearPapers
202122
202031
201918
20188
201713
201615