scispace - formally typeset
Search or ask a question

Showing papers by "Todd R. Klaenhammer published in 2015"


Journal ArticleDOI
TL;DR: The genome sequences of 213 Lactobacilli strains and associated genera are reported, and their encoded genetic catalogue for modifying carbohydrates and proteins are described, and a robust phylogenomic framework of existing species and for classifying new species is presented.
Abstract: Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species.

404 citations


Journal ArticleDOI
TL;DR: This review highlights recent findings on the genetic mechanisms involved in the utilization of prebiotic fructooligosaccharides, β-galactooligOSaccharide, human milk oligosac charides, and other prebiotics candidates by these probiotic microbes.
Abstract: Recent insights into the relationship between the human gut and its resident microbiota have revolutionized our appreciation of this symbiosis and its impact on health and disease development. Accumulating evidence on probiotic and prebiotic interventions has demonstrated promising effects on promoting gastrointestinal health by modulating the microbiota toward the enrichment of beneficial microorganisms. However, the precise mechanisms of how prebiotic nondigestible oligosaccharides are metabolized by these beneficial microbes in vivo remain largely unknown. Genome sequencing of probiotic lactobacilli and bifidobacteria has revealed versatile carbohydrate metabolic gene repertoires dedicated to the catabolism of various oligosaccharides. In this review, we highlight recent findings on the genetic mechanisms involved in the utilization of prebiotic fructooligosaccharides, β-galactooligosaccharides, human milk oligosaccharides, and other prebiotic candidates by these probiotic microbes.

133 citations


Journal ArticleDOI
TL;DR: This work presents critical insights into SlpA/SIGNR3‐induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD.
Abstract: Intestinal immune regulatory signals govern gut homeostasis. Breakdown of such regulatory mechanisms may result in inflammatory bowel disease (IBD). Lactobacillus acidophilus contains unique surface layer proteins (Slps), including SlpA, SlpB, SlpX, and lipoteichoic acid (LTA), which interact with pattern recognition receptors to mobilize immune responses. Here, to elucidate the role of SlpA in protective immune regulation, the NCK2187 strain, which solely expresses SlpA, was generated. NCK2187 and its purified SlpA bind to the C-type lectin SIGNR3 to exert regulatory signals that result in mitigation of colitis, maintenance of healthy gastrointestinal microbiota, and protected gut mucosal barrier function. However, such protection was not observed in Signr3−/− mice, suggesting that the SlpA/SIGNR3 interaction plays a key regulatory role in colitis. Our work presents critical insights into SlpA/SIGNR3-induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD.

101 citations


Journal ArticleDOI
TL;DR: This study shows that CRISPR-Cas systems can be directed to target and delete genomic islands that are flanked by insertion-sequence elements and devoid of essential genes, and established that self-targeting CRISpr-cas systems may direct significant evolution of bacterial genomes on a population level, influencing genome homeostasis and remodeling.
Abstract: Genomic analysis of Streptococcus thermophilus revealed that mobile genetic elements (MGEs) likely contributed to gene acquisition and loss during evolutionary adaptation to milk. Clustered regularly interspaced short palindromic repeats-CRISPR-associated genes (CRISPR-Cas), the adaptive immune system in bacteria, limits genetic diversity by targeting MGEs including bacteriophages, transposons, and plasmids. CRISPR-Cas systems are widespread in streptococci, suggesting that the interplay between CRISPR-Cas systems and MGEs is one of the driving forces governing genome homeostasis in this genus. To investigate the genetic outcomes resulting from CRISPR-Cas targeting of integrated MGEs, in silico prediction revealed four genomic islands without essential genes in lengths from 8 to 102 kbp, totaling 7% of the genome. In this study, the endogenous CRISPR3 type II system was programmed to target the four islands independently through plasmid-based expression of engineered CRISPR arrays. Targeting lacZ within the largest 102-kbp genomic island was lethal to wild-type cells and resulted in a reduction of up to 2.5-log in the surviving population. Genotyping of Lac(-) survivors revealed variable deletion events between the flanking insertion-sequence elements, all resulting in elimination of the Lac-encoding island. Chimeric insertion sequence footprints were observed at the deletion junctions after targeting all of the four genomic islands, suggesting a common mechanism of deletion via recombination between flanking insertion sequences. These results established that self-targeting CRISPR-Cas systems may direct significant evolution of bacterial genomes on a population level, influencing genome homeostasis and remodeling.

100 citations


Journal ArticleDOI
TL;DR: In this study, gram positive bacteria isolated from mothers' breast milk as well as their infants exhibited diversity in GI transit survival and acid inhibition of pathogens, but demonstrated limited ability to produce bacteriocins.
Abstract: This investigation assessed the potential of isolating novel probiotics from mothers and their infants. A subset of 21 isolates among 126 unique bacteria from breast milk and infant stools from 15 mother-infant pairs were examined for simulated GI transit survival, adherence to Caco-2 cells, bacteriocin production, and lack of antibiotic resistance. Of the 21 selected isolates a Lactobacillus crispatus isolate and 3 Lactobacillus gasseri isolates demonstrated good profiles of in vitro GI transit tolerance and Caco-2 cell adherence. Bacteriocin production was observed only by L. gasseri and Enterococcus faecalis isolates. Antibiotic resistance was widespread, although not universal, among isolates from infants. Highly similar isolates (≥ 97% similarity by barcode match) of Bifidobacterium longum subsp. infantis (1 match), Lactobacillus fermentum (2 matches), Lactobacillus gasseri (6 matches), and Enterococcus faecalis (1 match) were isolated from 5 infant-mother pairs. Antibiotic resistance profiles between these isolate matches were similar, except in one case where the L. gasseri isolate from the infant exhibited resistance to erythromycin and tetracycline, not observed in matching mother isolate. In a second case, L. gasseri isolates differed in resistance to ampicillin, chloramphenicol and vancomycin between the mother and infant. In this study, gram positive bacteria isolated from mothers' breast milk as well as their infants exhibited diversity in GI transit survival and acid inhibition of pathogens, but demonstrated limited ability to produce bacteriocins. Mothers and their infants offer the potential for identification of probiotics; however, even in the early stages of development, healthy infants contain isolates with antibiotic resistance.

68 citations


Journal ArticleDOI
TL;DR: The distribution and function of a native type II-A CRISPR-Cas system in the commensal species L. gasseri is reported, which open avenues for applications for bacteriophage protection and genome modification in L.gasseri, and contribute to the fundamental understanding of CRISpr-Cas systems in bacteria.
Abstract: Bacteria encode clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated genes (cas), which collectively form an RNA-guided adaptive immune system against invasive genetic elements. In silico surveys have revealed that lactic acid bacteria harbour a prolific and diverse set of CRISPR-Cas systems. Thus, the natural evolutionary role of CRISPR-Cas systems may be investigated in these ecologically, industrially, scientifically and medically important microbes. In this study, 17 Lactobacillus gasseri strains were investigated and 6 harboured a type II-A CRISPR-Cas system, with considerable diversity in array size and spacer content. Several of the spacers showed similarity to phage and plasmid sequences, which are typical targets of CRISPR-Cas immune systems. Aligning the protospacers facilitated inference of the protospacer adjacent motif sequence, determined to be 5'-NTAA-3' flanking the 3' end of the protospacer. The system in L. gasseri JV-V03 and NCK 1342 interfered with transforming plasmids containing sequences matching the most recently acquired CRISPR spacers in each strain. We report the distribution and function of a native type II-A CRISPR-Cas system in the commensal species L. gasseri. Collectively, these results open avenues for applications for bacteriophage protection and genome modification in L. gasseri, and contribute to the fundamental understanding of CRISPR-Cas systems in bacteria.

43 citations


Journal ArticleDOI
TL;DR: It is shown for the first time that sortase-dependent proteins contribute to gut retention of probiotic microbes in the gastrointestinal tract.
Abstract: Surface proteins of probiotic microbes, including Lactobacillus acidophilus and Lactobacillus gasseri, are believed to promote retention in the gut and mediate host–bacterial communications. Sortase, an enzyme that covalently couples a subset of extracellular proteins containing an LPXTG motif to the cell surface, is of particular interest in characterizing bacterial adherence and communication with the mucosal immune system. A sortase gene, srtA, was identified in L. acidophilus NCFM (LBA1244) and L. gasseri ATCC 33323 (LGAS_0825). Additionally, eight and six intact sortase-dependent proteins were predicted in L. acidophilus and L. gasseri, respectively. Due to the role of sortase in coupling these proteins to the cell wall, ΔsrtA deletion mutants of L. acidophilus and L. gasseri were created using the upp-based counterselective gene replacement system. Inactivation of sortase did not cause significant alteration in growth or survival in simulated gastrointestinal juices. Meanwhile, both ΔsrtA mutants showed decreased adhesion to porcine mucin in vitro. Murine dendritic cells exposed to the ΔsrtA mutant of L. acidophilus or L. gasseri induced lower levels of pro-inflammatory cytokines TNF-α and IL-12, respectively, compared with the parent strains. In vivo co-colonization of the L. acidophilus ΔsrtA mutant and its parent strain in germ-free 129S6/SvEv mice resulted in a significant one-log reduction of the ΔsrtA mutant population. Additionally, a similar reduction of the ΔsrtA mutant was observed in the caecum. This study shows for the first time that sortase-dependent proteins contribute to gut retention of probiotic microbes in the gastrointestinal tract.

37 citations


Journal ArticleDOI
28 Oct 2015-PLOS ONE
TL;DR: The constructed genetically modified Lactobacillus acidophilus strains expressing the membrane proximal external region (MPER) from human immunodeficiency virus type 1 (HIV-1) within the context of the major S-layer protein, SlpA, demonstrated the potential use of the LactOBacillus S- layer protein for development of oral vaccines targeting specific peptides.
Abstract: Surface layer proteins of probiotic lactobacilli are theoretically efficient epitope-displaying scaffolds for oral vaccine delivery due to their high expression levels and surface localization. In this study, we constructed genetically modified Lactobacillus acidophilus strains expressing the membrane proximal external region (MPER) from human immunodeficiency virus type 1 (HIV-1) within the context of the major S-layer protein, SlpA. Intragastric immunization of mice with the recombinants induced MPER-specific and S-layer protein-specific antibodies in serum and mucosal secretions. Moreover, analysis of systemic SlpA-specific cytokines revealed that the responses appeared to be Th1 and Th17 dominant. These findings demonstrated the potential use of the Lactobacillus S-layer protein for development of oral vaccines targeting specific peptides.

30 citations


Patent
02 Apr 2015
TL;DR: In this paper, a method to improve gastrointestinal health by colonic microbiome alteration was proposed, which consisted of administering to a subject in need thereof an effective amount of a composition comprising one or more indigestible oligosaccharides and less than about 20% digestible saccharides by weight, wherein an abundance of beneficial bacteria in the subject's colonic microbiome was increased after administration of the composition.
Abstract: A method to improve gastrointestinal health by colonic microbiome alteration, the method comprising administering to a subject in need thereof an effective amount of a composition comprising one or more indigestible oligosaccharides and less than about 20% digestible saccharides by weight, wherein an abundance of one or more beneficial bacteria in the subject's colonic micro-biome is increased after administration of the composition.

7 citations


01 Jan 2015
TL;DR: In this paper, a sortase gene, srtA, was identified in L. acidophilus NCFM (LBA1244) and L. gasseri ATCC 33323 (LGAS_0825).
Abstract: Surface proteins of probiotic microbes, including Lactobacillus acidophilus and Lactobacillus gasseri, are believed to promote retention in the gut and mediate host–bacterial communications. Sortase, an enzyme that covalently couples a subset of extracellular proteins containing an LPXTG motif to the cell surface, is of particular interest in characterizing bacterial adherence and communication with the mucosal immune system. A sortase gene, srtA, was identified in L. acidophilus NCFM (LBA1244) and L. gasseri ATCC 33323 (LGAS_0825). Additionally, eight and six intact sortase-dependent proteins were predicted in L. acidophilus and L. gasseri, respectively. Due to the role of sortase in coupling these proteins to the cell wall, DsrtA deletion mutants of L. acidophilus and L. gasseri were created using the upp-based counterselective gene replacement system. Inactivation of sortase did not cause significant alteration in growth or survival in simulated gastrointestinal juices. Meanwhile, both DsrtA mutants showed decreased adhesion to porcine mucin in vitro. Murine dendritic cells exposed to the DsrtA mutant of L. acidophilus or L. gasseri induced lower levels of pro-inflammatory cytokines TNF-a and IL-12, respectively, compared with the parent strains. In vivo co-colonization of the L. acidophilus DsrtA mutant and its parent strain in germ-free 129S6/SvEv mice resulted in a significant one-log reduction of the DsrtA mutant population. Additionally, a similar reduction of the DsrtA mutant was observed in the caecum. This study shows for the first time that sortase-dependent proteins contribute to gut retention of probiotic microbes in the gastrointestinal tract.

7 citations