scispace - formally typeset
Search or ask a question

Showing papers by "Trevor Darrell published in 2019"


Proceedings ArticleDOI
01 Oct 2019
TL;DR: In this article, a few-shot object detector is proposed that can learn to detect novel objects from only a few annotated examples, using a meta feature learner and a reweighting module within a one-stage detection architecture.
Abstract: Conventional training of a deep CNN based object detector demands a large number of bounding box annotations, which may be unavailable for rare categories. In this work we develop a few-shot object detector that can learn to detect novel objects from only a few annotated examples. Our proposed model leverages fully labeled base classes and quickly adapts to novel classes, using a meta feature learner and a reweighting module within a one-stage detection architecture. The feature learner extracts meta features that are generalizable to detect novel object classes, using training data from base classes with sufficient samples. The reweighting module transforms a few support examples from the novel classes to a global vector that indicates the importance or relevance of meta features for detecting the corresponding objects. These two modules, together with a detection prediction module, are trained end-to-end based on an episodic few-shot learning scheme and a carefully designed loss function. Through extensive experiments we demonstrate that our model outperforms well-established baselines by a large margin for few-shot object detection, on multiple datasets and settings. We also present analysis on various aspects of our proposed model, aiming to provide some inspiration for future few-shot detection works.

517 citations


Proceedings ArticleDOI
15 Jun 2019
TL;DR: In this paper, a shared latent space of image features and class embeddings is learned by modality-specific aligned variational autoencoders, on which they train a softmax classifier.
Abstract: Many approaches in generalized zero-shot learning rely on cross-modal mapping between the image feature space and the class embedding space. As labeled images are expensive, one direction is to augment the dataset by generating either images or image features. However, the former misses fine-grained details and the latter requires learning a mapping associated with class embeddings. In this work, we take feature generation one step further and propose a model where a shared latent space of image features and class embeddings is learned by modality-specific aligned variational autoencoders. This leaves us with the required discriminative information about the image and classes in the latent features, on which we train a softmax classifier. The key to our approach is that we align the distributions learned from images and from side-information to construct latent features that contain the essential multi-modal information associated with unseen classes. We evaluate our learned latent features on several benchmark datasets, i.e. CUB, SUN, AWA1 and AWA2, and establish a new state of the art on generalized zero-shot as well as on few-shot learning. Moreover, our results on ImageNet with various zero-shot splits show that our latent features generalize well in large-scale settings.

421 citations


Posted Content
TL;DR: A novel Minimax Entropy (MME) approach that adversarially optimizes an adaptive few-shot model for semi-supervised domain adaptation (SSDA) setting, setting a new state of the art for SSDA.
Abstract: Contemporary domain adaptation methods are very effective at aligning feature distributions of source and target domains without any target supervision. However, we show that these techniques perform poorly when even a few labeled examples are available in the target. To address this semi-supervised domain adaptation (SSDA) setting, we propose a novel Minimax Entropy (MME) approach that adversarially optimizes an adaptive few-shot model. Our base model consists of a feature encoding network, followed by a classification layer that computes the features' similarity to estimated prototypes (representatives of each class). Adaptation is achieved by alternately maximizing the conditional entropy of unlabeled target data with respect to the classifier and minimizing it with respect to the feature encoder. We empirically demonstrate the superiority of our method over many baselines, including conventional feature alignment and few-shot methods, setting a new state of the art for SSDA.

263 citations


Proceedings ArticleDOI
01 Oct 2019
TL;DR: In this paper, a novel Minimax Entropy (MME) approach that adversarially optimizes an adaptive few-shot model is proposed to align feature distributions of source and target domains without any target supervision.
Abstract: Contemporary domain adaptation methods are very effective at aligning feature distributions of source and target domains without any target supervision. However, we show that these techniques perform poorly when even a few labeled examples are available in the target domain. To address this semi-supervised domain adaptation (SSDA) setting, we propose a novel Minimax Entropy (MME) approach that adversarially optimizes an adaptive few-shot model. Our base model consists of a feature encoding network, followed by a classification layer that computes the features' similarity to estimated prototypes (representatives of each class). Adaptation is achieved by alternately maximizing the conditional entropy of unlabeled target data with respect to the classifier and minimizing it with respect to the feature encoder. We empirically demonstrate the superiority of our method over many baselines, including conventional feature alignment and few-shot methods, setting a new state of the art for SSDA. Our code is available at \url{http://cs-people.bu.edu/keisaito/research/MME.html}.

262 citations


Proceedings ArticleDOI
31 Mar 2019
TL;DR: In this article, a pool-based semi-supervised active learning algorithm that implicitly learns this sampling mechanism in an adversarial manner is proposed, where the VAE tries to trick the adversarial network into predicting that all data points are from the labeled pool.
Abstract: Active learning aims to develop label-efficient algorithms by sampling the most representative queries to be labeled by an oracle. We describe a pool-based semi-supervised active learning algorithm that implicitly learns this sampling mechanism in an adversarial manner. Our method learns a latent space using a variational autoencoder (VAE) and an adversarial network trained to discriminate between unlabeled and labeled data. The mini-max game between the VAE and the adversarial network is played such that while the VAE tries to trick the adversarial network into predicting that all data points are from the labeled pool, the adversarial network learns how to discriminate between dissimilarities in the latent space. We extensively evaluate our method on various image classification and semantic segmentation benchmark datasets and establish a new state of the art on CIFAR10/100, Caltech-256, ImageNet, Cityscapes, and BDD100K. Our results demonstrate that our adversarial approach learns an effective low dimensional latent space in large-scale settings and provides for a computationally efficient sampling method. Our code is available at \url{https://github.com/sinhasam/vaal}.

254 citations


Proceedings ArticleDOI
15 Jun 2019
TL;DR: Hierarchical Discrete Distribution Decomposition (HD^3), a framework suitable for learning probabilistic pixel correspondences in both optical flow and stereo matching, is proposed and achieves state-of-the-art results.
Abstract: Explicit representations of the global match distributions of pixel-wise correspondences between pairs of images are desirable for uncertainty estimation and downstream applications. However, the computation of the match density for each pixel may be prohibitively expensive due to the large number of candidates. In this paper, we propose Hierarchical Discrete Distribution Decomposition (HD^3), a framework suitable for learning probabilistic pixel correspondences in both optical flow and stereo matching. We decompose the full match density into multiple scales hierarchically, and estimate the local matching distributions at each scale conditioned on the matching and warping at coarser scales. The local distributions can then be composed together to form the global match density. Despite its simplicity, our probabilistic method achieves state-of-the-art results for both optical flow and stereo matching on established benchmarks. We also find the estimated uncertainty is a good indication of the reliability of the predicted correspondences.

243 citations


Posted Content
TL;DR: A pool-based semi-supervised active learning algorithm that implicitly learns this sampling mechanism in an adversarial manner that learns an effective low dimensional latent space in large-scale settings and provides for a computationally efficient sampling method.
Abstract: Active learning aims to develop label-efficient algorithms by sampling the most representative queries to be labeled by an oracle. We describe a pool-based semi-supervised active learning algorithm that implicitly learns this sampling mechanism in an adversarial manner. Unlike conventional active learning algorithms, our approach is task agnostic, i.e., it does not depend on the performance of the task for which we are trying to acquire labeled data. Our method learns a latent space using a variational autoencoder (VAE) and an adversarial network trained to discriminate between unlabeled and labeled data. The mini-max game between the VAE and the adversarial network is played such that while the VAE tries to trick the adversarial network into predicting that all data points are from the labeled pool, the adversarial network learns how to discriminate between dissimilarities in the latent space. We extensively evaluate our method on various image classification and semantic segmentation benchmark datasets and establish a new state of the art on $\text{CIFAR10/100}$, $\text{Caltech-256}$, $\text{ImageNet}$, $\text{Cityscapes}$, and $\text{BDD100K}$. Our results demonstrate that our adversarial approach learns an effective low dimensional latent space in large-scale settings and provides for a computationally efficient sampling method. Our code is available at this https URL.

194 citations


Posted Content
TL;DR: This paper addresses unsupervised domain adaptation, the setting where labeled training data is available on a source domain, but the goal is to have good performance on a target domain with only unlabeled data, by learning to perform auxiliary self-supervised task on both domains simultaneously.
Abstract: This paper addresses unsupervised domain adaptation, the setting where labeled training data is available on a source domain, but the goal is to have good performance on a target domain with only unlabeled data. Like much of previous work, we seek to align the learned representations of the source and target domains while preserving discriminability. The way we accomplish alignment is by learning to perform auxiliary self-supervised task(s) on both domains simultaneously. Each self-supervised task brings the two domains closer together along the direction relevant to that task. Training this jointly with the main task classifier on the source domain is shown to successfully generalize to the unlabeled target domain. The presented objective is straightforward to implement and easy to optimize. We achieve state-of-the-art results on four out of seven standard benchmarks, and competitive results on segmentation adaptation. We also demonstrate that our method composes well with another popular pixel-level adaptation method.

184 citations


Proceedings ArticleDOI
01 Oct 2019
TL;DR: In this paper, the authors propose an online framework for 3D vehicle detection and tracking from monocular videos, which can not only associate detections of vehicles in motion over time, but also estimate their complete 3D bounding box information from a sequence of 2D images captured on a moving platform.
Abstract: Vehicle 3D extents and trajectories are critical cues for predicting the future location of vehicles and planning future agent ego-motion based on those predictions. In this paper, we propose a novel online framework for 3D vehicle detection and tracking from monocular videos. The framework can not only associate detections of vehicles in motion over time, but also estimate their complete 3D bounding box information from a sequence of 2D images captured on a moving platform. Our method leverages 3D box depth-ordering matching for robust instance association and utilizes 3D trajectory prediction for re-identification of occluded vehicles. We also design a motion learning module based on an LSTM for more accurate long-term motion extrapolation. Our experiments on simulation, KITTI, and Argoverse datasets show that our 3D tracking pipeline offers robust data association and tracking. On Argoverse, our image-based method is significantly better for tracking 3D vehicles within 30 meters than the LiDAR-centric baseline methods.

138 citations


Proceedings ArticleDOI
01 Oct 2019
TL;DR: The authors propose a general framework of Language-Conditioned Graph Networks (LCGN), where each node represents an object, and is described by a context-aware representation from related objects through iterative message passing conditioned on the textual input.
Abstract: Solving grounded language tasks often requires reasoning about relationships between objects in the context of a given task. For example, to answer the question "What color is the mug on the plate?" we must check the color of the specific mug that satisfies the "on" relationship with respect to the plate. Recent work has proposed various methods capable of complex relational reasoning. However, most of their power is in the inference structure, while the scene is represented with simple local appearance features. In this paper, we take an alternate approach and build contextualized representations for objects in a visual scene to support relational reasoning. We propose a general framework of Language-Conditioned Graph Networks (LCGN), where each node represents an object, and is described by a context-aware representation from related objects through iterative message passing conditioned on the textual input. E.g., conditioning on the "on" relationship to the plate, the object "mug" gathers messages from the object "plate" to update its representation to "mug on the plate", which can be easily consumed by a simple classifier for answer prediction. We experimentally show that our LCGN approach effectively supports relational reasoning and improves performance across several tasks and datasets. Our code is available at http://ronghanghu.com/lcgn.

110 citations


Proceedings ArticleDOI
01 Jun 2019
TL;DR: This work proposes Task Aware Feature Embedding Networks (TAFE-Nets) to learn how to adapt the image representation to a new task in a meta learning fashion and shows that TAFE-Net is highly effective in generalizing to new tasks or concepts.
Abstract: Learning good feature embeddings for images often requires substantial training data. As a consequence, in settings where training data is limited (e.g., few-shot and zero-shot learning), we are typically forced to use a general feature embedding across prediction tasks. Ideally, we would like to construct feature embeddings that are tuned for the given task and even input image. In this work, we propose Task Aware Feature Embedding Networks (TAFE-Nets) to learn how to adapt the image representation to a new task in a meta learning fashion. Our network is composed of a meta learner and a prediction network, where the meta learner generates parameters for the feature layers in the prediction network based on a task input so that the feature embedding can be accurately adjusted for that task. We show that TAFE-Net is highly effective in generalizing to new tasks or concepts and evaluate the TAFE-Net on a range of benchmarks in zero-shot and few-shot learning. Our model matches or exceeds the state-of-the-art on all tasks. In particular, our approach improves the prediction accuracy of unseen attribute-object pairs by 4 to 15 points on the challenging visual attribute-object composition task.

Posted Content
TL;DR: A novel model is proposed based on a multimodal transformer architecture accompanied by a rich representation for text in images that enables iterative answer decoding with a dynamic pointer network, allowing the model to form an answer through multi-step prediction instead of one-step classification.
Abstract: Many visual scenes contain text that carries crucial information, and it is thus essential to understand text in images for downstream reasoning tasks. For example, a deep water label on a warning sign warns people about the danger in the scene. Recent work has explored the TextVQA task that requires reading and understanding text in images to answer a question. However, existing approaches for TextVQA are mostly based on custom pairwise fusion mechanisms between a pair of two modalities and are restricted to a single prediction step by casting TextVQA as a classification task. In this work, we propose a novel model for the TextVQA task based on a multimodal transformer architecture accompanied by a rich representation for text in images. Our model naturally fuses different modalities homogeneously by embedding them into a common semantic space where self-attention is applied to model inter- and intra- modality context. Furthermore, it enables iterative answer decoding with a dynamic pointer network, allowing the model to form an answer through multi-step prediction instead of one-step classification. Our model outperforms existing approaches on three benchmark datasets for the TextVQA task by a large margin.

Proceedings ArticleDOI
01 May 2019
TL;DR: A taxonomy of “object-centric” models which leverage both object instances and end-to-end learning are described, showing that object-centric models outperform object-agnostic methods in scenes with other vehicles and pedestrians, even with an imperfect detector.
Abstract: While learning visuomotor skills in an end-to-end manner is appealing, deep neural networks are often uninterpretable and fail in surprising ways. For robotics tasks, such as autonomous driving, models that explicitly represent objects may be more robust to new scenes and provide intuitive visualizations. We describe a taxonomy of “object-centric” models which leverage both object instances and end-to-end learning. In the Grand Theft Auto V simulator, we show that object-centric models outperform object-agnostic methods in scenes with other vehicles and pedestrians, even with an imperfect detector. We also demonstrate that our architectures perform well on real-world environments by evaluating on the Berkeley DeepDrive Video dataset, where an object-centric model outperforms object-agnostic models in the low-data regimes.

Proceedings ArticleDOI
01 Jul 2019
TL;DR: It is proposed to decompose the grounding procedure into a set of expert models with access to different modalities (including object detections) and ensemble them at prediction time, improving the performance of state-of-the-art models on the VLN task.
Abstract: Vision-and-Language Navigation (VLN) requires grounding instructions, such as “turn right and stop at the door”, to routes in a visual environment. The actual grounding can connect language to the environment through multiple modalities, e.g. “stop at the door” might ground into visual objects, while “turn right” might rely only on the geometric structure of a route. We investigate where the natural language empirically grounds under two recent state-of-the-art VLN models. Surprisingly, we discover that visual features may actually hurt these models: models which only use route structure, ablating visual features, outperform their visual counterparts in unseen new environments on the benchmark Room-to-Room dataset. To better use all the available modalities, we propose to decompose the grounding procedure into a set of expert models with access to different modalities (including object detections) and ensemble them at prediction time, improving the performance of state-of-the-art models on the VLN task.

Posted Content
TL;DR: A novel model which can explicitly reason about the geometric relations between constituent objects and an agent performing an action is proposed, which is applicable to activities with prominent object interaction dynamics and to objects which can be tracked using state-of-the-art approaches.
Abstract: Human action is naturally compositional: humans can easily recognize and perform actions with objects that are different from those used in training demonstrations. In this paper, we study the compositionality of action by looking into the dynamics of subject-object interactions. We propose a novel model which can explicitly reason about the geometric relations between constituent objects and an agent performing an action. To train our model, we collect dense object box annotations on the Something-Something dataset. We propose a novel compositional action recognition task where the training combinations of verbs and nouns do not overlap with the test set. The novel aspects of our model are applicable to activities with prominent object interaction dynamics and to objects which can be tracked using state-of-the-art approaches; for activities without clearly defined spatial object-agent interactions, we rely on baseline scene-level spatio-temporal representations. We show the effectiveness of our approach not only on the proposed compositional action recognition task, but also in a few-shot compositional setting which requires the model to generalize across both object appearance and action category.

Posted Content
TL;DR: It is shown that graph-based relational architectures overcome this limitation and enable learning of complex tasks when provided with a simple curriculum of tasks with increasing numbers of objects, and exhibits zero-shot generalization.
Abstract: Learning robotic manipulation tasks using reinforcement learning with sparse rewards is currently impractical due to the outrageous data requirements. Many practical tasks require manipulation of multiple objects, and the complexity of such tasks increases with the number of objects. Learning from a curriculum of increasingly complex tasks appears to be a natural solution, but unfortunately, does not work for many scenarios. We hypothesize that the inability of the state-of-the-art algorithms to effectively utilize a task curriculum stems from the absence of inductive biases for transferring knowledge from simpler to complex tasks. We show that graph-based relational architectures overcome this limitation and enable learning of complex tasks when provided with a simple curriculum of tasks with increasing numbers of objects. We demonstrate the utility of our framework on a simulated block stacking task. Starting from scratch, our agent learns to stack six blocks into a tower. Despite using step-wise sparse rewards, our method is orders of magnitude more data-efficient and outperforms the existing state-of-the-art method that utilizes human demonstrations. Furthermore, the learned policy exhibits zero-shot generalization, successfully stacking blocks into taller towers and previously unseen configurations such as pyramids, without any further training.

Proceedings ArticleDOI
01 Oct 2019
TL;DR: In this paper, a confidence-aware warping operator is proposed to disentangle motion-specific propagation from motion-agnostic generation, and a separate network is employed to inpaint exposed regions.
Abstract: A dynamic scene has two types of elements: those that move fluidly and can be predicted from previous frames, and those which are disoccluded (exposed) and cannot be extrapolated. Prior approaches to video prediction typically learn either to warp or to hallucinate future pixels, but not both. In this paper, we describe a computational model for high-fidelity video prediction which disentangles motion-specific propagation from motion-agnostic generation. We introduce a confidence-aware warping operator which gates the output of pixel predictions from a flow predictor for non-occluded regions and from a context encoder for occluded regions. Moreover, in contrast to prior works where confidence is jointly learned with flow and appearance using a single network, we compute confidence after a warping step, and employ a separate network to inpaint exposed regions. Empirical results on both synthetic and real datasets show that our disentangling approach provides better occlusion maps and produces both sharper and more realistic predictions compared to strong baselines.

Posted Content
TL;DR: This paper proposes a general framework of Language-Conditioned Graph Networks (LCGN), where each node represents an object and is described by a context-aware representation from related objects through iterative message passing conditioned on the textual input.
Abstract: Solving grounded language tasks often requires reasoning about relationships between objects in the context of a given task. For example, to answer the question "What color is the mug on the plate?" we must check the color of the specific mug that satisfies the "on" relationship with respect to the plate. Recent work has proposed various methods capable of complex relational reasoning. However, most of their power is in the inference structure, while the scene is represented with simple local appearance features. In this paper, we take an alternate approach and build contextualized representations for objects in a visual scene to support relational reasoning. We propose a general framework of Language-Conditioned Graph Networks (LCGN), where each node represents an object, and is described by a context-aware representation from related objects through iterative message passing conditioned on the textual input. E.g., conditioning on the "on" relationship to the plate, the object "mug" gathers messages from the object "plate" to update its representation to "mug on the plate", which can be easily consumed by a simple classifier for answer prediction. We experimentally show that our LCGN approach effectively supports relational reasoning and improves performance across several tasks and datasets. Our code is available at this http URL.

Proceedings ArticleDOI
01 Nov 2019
TL;DR: This work proposes a simple transformation of observations into a bird’s eye view, also known as plan view, for end-to-end control, which provides an abstraction of the environment from which a deep network can easily deduce the positions and directions of entities.
Abstract: Convolutions on monocular dash cam videos capture spatial invariances in the image plane but do not explicitly reason about distances and depth. We propose a simple transformation of observations into a bird’s eye view, also known as plan view, for end-to-end control. We detect vehicles and pedestrians in the first person view and project them into an overhead plan view. This representation provides an abstraction of the environment from which a deep network can easily deduce the positions and directions of entities. Additionally, the plan view enables us to leverage advances in 3D object detection in conjunction with deep policy learning. We evaluate our monocular plan view network on the photo-realistic Grand Theft Auto V simulator. A network using both a plan view and front view causes less than half as many collisions as previous detection-based methods and an order of magnitude fewer collisions than pure pixel-based policies.

Proceedings ArticleDOI
01 Oct 2019
TL;DR: In this article, an inter-object graph representation for activity recognition based on a disentangled graph embedding with direct observation of edge appearance is proposed, which uses explicit appearance for high order relations derived from object-object interaction, formed over regions that are the union of the spatial extent of constituent objects.
Abstract: Events defined by the interaction of objects in a scene are often of critical importance; yet important events may have insufficient labeled examples to train a conventional deep model to generalize to future object appearance. Activity recognition models that represent object interactions explicitly have the potential to learn in a more efficient manner than those that represent scenes with global descriptors. We propose a novel inter-object graph representation for activity recognition based on a disentangled graph embedding with direct observation of edge appearance. In contrast to prior efforts, our approach uses explicit appearance for high order relations derived from object-object interaction, formed over regions that are the union of the spatial extent of the constituent objects. We employ a novel factored embedding of the graph structure, disentangling a representation hierarchy formed over spatial dimensions from that found over temporal variation. We demonstrate the effectiveness of our model on the Charades activity recognition benchmark, as well as a new dataset of driving activities focusing on multi-object interactions with near-collision events. Our model offers significantly improved performance compared to baseline approaches without object-graph representations, or with previous graph-based models.

Posted Content
TL;DR: This paper investigates a modular co-evolution strategy: a collection of primitive agents learns to dynamically self-assemble into composite bodies while also learning to coordinate their behavior to control these bodies.
Abstract: Contemporary sensorimotor learning approaches typically start with an existing complex agent (e.g., a robotic arm), which they learn to control. In contrast, this paper investigates a modular co-evolution strategy: a collection of primitive agents learns to dynamically self-assemble into composite bodies while also learning to coordinate their behavior to control these bodies. Each primitive agent consists of a limb with a motor attached at one end. Limbs may choose to link up to form collectives. When a limb initiates a link-up action, and there is another limb nearby, the latter is magnetically connected to the 'parent' limb's motor. This forms a new single agent, which may further link with other agents. In this way, complex morphologies can emerge, controlled by a policy whose architecture is in explicit correspondence with the morphology. We evaluate the performance of these dynamic and modular agents in simulated environments. We demonstrate better generalization to test-time changes both in the environment, as well as in the structure of the agent, compared to static and monolithic baselines. Project video and code are available at this https URL

Proceedings ArticleDOI
01 Oct 2019
TL;DR: In this paper, a Dual Dynamic Attention Model (DUDA) is proposed to distinguish distractors from semantic changes, localize the changes via Dual Attention over before and after images, and accurately describe them in natural language via Dynamic Speaker, by adaptively focusing on the necessary visual inputs.
Abstract: Describing what has changed in a scene can be useful to a user, but only if generated text focuses on what is semantically relevant. It is thus important to distinguish distractors (e.g. a viewpoint change) from relevant changes (e.g. an object has moved). We present a novel Dual Dynamic Attention Model (DUDA) to perform robust Change Captioning. Our model learns to distinguish distractors from semantic changes, localize the changes via Dual Attention over “before” and “after” images, and accurately describe them in natural language via Dynamic Speaker, by adaptively focusing on the necessary visual inputs (e.g. “before” or “after” image). To study the problem in depth, we collect a CLEVR-Change dataset, built off the CLEVR engine, with 5 types of scene changes. We benchmark a number of baselines on our dataset, and systematically study different change types and robustness to distractors. We show the superiority of our DUDA model in terms of both change captioning and localization. We also show that our approach is general, obtaining state-of-the-art results on the recent realistic Spot-the-Diff dataset which has no distractors.

Proceedings ArticleDOI
01 Jun 2019
TL;DR: This work proposes to apply adversarial techniques during inference, designing a discriminator which encourages better multi-sentence video description, and finds that a multi-discriminator "hybrid" design, where each discriminator targets one aspect of a description, leads to the best results.
Abstract: While significant progress has been made in the image captioning task, video description is still in its infancy due to the complex nature of video data. Generating multi-sentence descriptions for long videos is even more challenging. Among the main issues are the fluency and coherence of the generated descriptions, and their relevance to the video. Recently, reinforcement and adversarial learning based methods have been explored to improve the image captioning models; however, both types of methods suffer from a number of issues, e.g. poor readability and high redundancy for RL and stability issues for GANs. In this work, we instead propose to apply adversarial techniques during inference, designing a discriminator which encourages better multi-sentence video description. In addition, we find that a multi-discriminator "hybrid" design, where each discriminator targets one aspect of a description, leads to the best results. Specifically, we decouple the discriminator to evaluate on three criteria: 1) visual relevance to the video, 2) language diversity and fluency, and 3) coherence across sentences. Our approach results in more accurate, diverse, and coherent multi-sentence video descriptions, as shown by automatic as well as human evaluation on the popular ActivityNet Captions dataset.

Posted Content
TL;DR: A novel Dual Dynamic Attention Model (DUDA) to perform robust Change Captioning, which learns to distinguish distractors from semantic changes, localize the changes via Dual Attention over “before” and “after” images, and accurately describe them in natural language via Dynamic Speaker.
Abstract: Describing what has changed in a scene can be useful to a user, but only if generated text focuses on what is semantically relevant. It is thus important to distinguish distractors (e.g. a viewpoint change) from relevant changes (e.g. an object has moved). We present a novel Dual Dynamic Attention Model (DUDA) to perform robust Change Captioning. Our model learns to distinguish distractors from semantic changes, localize the changes via Dual Attention over "before" and "after" images, and accurately describe them in natural language via Dynamic Speaker, by adaptively focusing on the necessary visual inputs (e.g. "before" or "after" image). To study the problem in depth, we collect a CLEVR-Change dataset, built off the CLEVR engine, with 5 types of scene changes. We benchmark a number of baselines on our dataset, and systematically study different change types and robustness to distractors. We show the superiority of our DUDA model in terms of both change captioning and localization. We also show that our approach is general, obtaining state-of-the-art results on the recent realistic Spot-the-Diff dataset which has no distractors.

Posted Content
TL;DR: This work presents a novel model that addresses semantic equivalence issues in graphs by learning canonical graph representations from the data, resulting in improved image generation for complex visual scenes.
Abstract: Generating realistic images of complex visual scenes becomes challenging when one wishes to control the structure of the generated images. Previous approaches showed that scenes with few entities can be controlled using scene graphs, but this approach struggles as the complexity of the graph (the number of objects and edges) increases. In this work, we show that one limitation of current methods is their inability to capture semantic equivalence in graphs. We present a novel model that addresses these issues by learning canonical graph representations from the data, resulting in improved image generation for complex visual scenes. Our model demonstrates improved empirical performance on large scene graphs, robustness to noise in the input scene graph, and generalization on semantically equivalent graphs. Finally, we show improved performance of the model on three different benchmarks: Visual Genome, COCO, and CLEVR.

Posted Content
TL;DR: Task-Aware Feature Embedding Networks (TAFE-Nets) as mentioned in this paper learn how to adapt the image representation to a new task in a meta learning fashion, which is composed of a meta learner and a prediction network.
Abstract: Learning good feature embeddings for images often requires substantial training data. As a consequence, in settings where training data is limited (e.g., few-shot and zero-shot learning), we are typically forced to use a generic feature embedding across various tasks. Ideally, we want to construct feature embeddings that are tuned for the given task. In this work, we propose Task-Aware Feature Embedding Networks (TAFE-Nets) to learn how to adapt the image representation to a new task in a meta learning fashion. Our network is composed of a meta learner and a prediction network. Based on a task input, the meta learner generates parameters for the feature layers in the prediction network so that the feature embedding can be accurately adjusted for that task. We show that TAFE-Net is highly effective in generalizing to new tasks or concepts and evaluate the TAFE-Net on a range of benchmarks in zero-shot and few-shot learning. Our model matches or exceeds the state-of-the-art on all tasks. In particular, our approach improves the prediction accuracy of unseen attribute-object pairs by 4 to 15 points on the challenging visual attribute-object composition task.

Posted Content
TL;DR: This semi-structured composition is strictly more expressive than free-form filtering, and changes in its structured parameters would require changes in free- form architecture, so in effect this optimizes over receptive field size and shape, tuning locality to the data and task.
Abstract: The visual world is vast and varied, but its variations divide into structured and unstructured factors. We compose free-form filters and structured Gaussian filters, optimized end-to-end, to factorize deep representations and learn both local features and their degree of locality. Our semi-structured composition is strictly more expressive than free-form filtering, and changes in its structured parameters would require changes in free-form architecture. In effect this optimizes over receptive field size and shape, tuning locality to the data and task. Dynamic inference, in which the Gaussian structure varies with the input, adapts receptive field size to compensate for local scale variation. Optimizing receptive field size improves semantic segmentation accuracy on Cityscapes by 1-2 points for strong dilated and skip architectures and by up to 10 points for suboptimal designs. Adapting receptive fields by dynamic Gaussian structure further improves results, equaling the accuracy of free-form deformation while improving efficiency.

Proceedings Article
14 Feb 2019
TL;DR: In this article, a collection of primitive agents learn to dynamically self-assemble into composite bodies while also learning to coordinate their behavior to control these bodies, which is called modular co-evolution.
Abstract: Contemporary sensorimotor learning approaches typically start with an existing complex agent (e.g., a robotic arm), which they learn to control. In contrast, this paper investigates a modular co-evolution strategy: a collection of primitive agents learns to dynamically self-assemble into composite bodies while also learning to coordinate their behavior to control these bodies. Each primitive agent consists of a limb with a motor attached at one end. Limbs may choose to link up to form collectives. When a limb initiates a link-up action and there is another limb nearby, the latter is magnetically connected to the 'parent' limb's motor. This forms a new single agent, which may further link with other agents. In this way, complex morphologies can emerge, controlled by a policy whose architecture is in explicit correspondence with the morphology. We evaluate the performance of these dynamic and modular agents in simulated environments. We demonstrate better generalization to test-time changes both in the environment, as well as in the structure of the agent, compared to static and monolithic baselines. Project videos and source code are provided in the supplementary material.

Posted Content
TL;DR: In this paper, the authors propose a simple transformation of observations into a bird's eye view, also known as plan view, for end-to-end control of vehicles and pedestrians in the first person view and project them into an overhead plan view.
Abstract: Convolutions on monocular dash cam videos capture spatial invariances in the image plane but do not explicitly reason about distances and depth. We propose a simple transformation of observations into a bird's eye view, also known as plan view, for end-to-end control. We detect vehicles and pedestrians in the first person view and project them into an overhead plan view. This representation provides an abstraction of the environment from which a deep network can easily deduce the positions and directions of entities. Additionally, the plan view enables us to leverage advances in 3D object detection in conjunction with deep policy learning. We evaluate our monocular plan view network on the photo-realistic Grand Theft Auto V simulator. A network using both a plan view and front view causes less than half as many collisions as previous detection-based methods and an order of magnitude fewer collisions than pure pixel-based policies.

Posted Content
TL;DR: It is found conventional regularization techniques on the policy networks can often bring large improvement on the task performance, and the improvement is typically more significant when the task is more difficult.
Abstract: Deep Reinforcement Learning (Deep RL) has been receiving increasingly more attention thanks to its encouraging performance on a variety of control tasks. Yet, conventional regularization techniques in training neural networks (e.g., $L_2$ regularization, dropout) have been largely ignored in RL methods, possibly because agents are typically trained and evaluated in the same environment, and because the deep RL community focuses more on high-level algorithm designs. In this work, we present the first comprehensive study of regularization techniques with multiple policy optimization algorithms on continuous control tasks. Interestingly, we find conventional regularization techniques on the policy networks can often bring large improvement, especially on harder tasks. Our findings are shown to be robust against training hyperparameter variations. We also compare these techniques with the more widely used entropy regularization. In addition, we study regularizing different components and find that only regularizing the policy network is typically the best. We further analyze why regularization may help generalization in RL from four perspectives - sample complexity, reward distribution, weight norm, and noise robustness. We hope our study provides guidance for future practices in regularizing policy optimization algorithms. Our code is available at https://github.com/xuanlinli17/iclr2021_rlreg .