scispace - formally typeset
Search or ask a question

Showing papers by "Valina L. Dawson published in 1998"


Journal ArticleDOI
TL;DR: The pharmacological inhibition of poly(ADP-ribose) synthetase is a novel approach for the experimental therapy of various forms of inflammation and shock, stroke, myocardial and intestinal ischaemia-reperfusion, and diabetes mellitus.

701 citations


Journal ArticleDOI
TL;DR: A cell culture model demonstrating that N-terminal truncated fragments of huntingtin with expanded glutamine repeats can aggregate in cells in culture and that this aggregation can be toxic to cells is developed.
Abstract: Huntington's disease (HD) is a progressive neurodegenerative disorder caused by an expanding CAG repeat coding for polyglutamine in the huntingtin protein. Recent data have suggested the possibility that an N-terminal fragment of huntingtin may aggregate in neurons of patients with HD, both in the cytoplasm, forming dystrophic neurites, and in the nucleus, forming intranuclear neuronal inclusion bodies. An animal model of HD using the short N-terminal fragment of huntingtin has also been found to have intranuclear inclusions and this same fragment can aggregate in vitro . We have now developed a cell culture model demonstrating that N-terminal fragments of huntingtin with expanded glutamine repeats aggregate both in the cytoplasm and in the nucleus. Neuroblastoma cells transiently transfected with full-length huntingtin constructs with either a normal or expanded repeat had diffuse cytoplasmic localization of the protein. In contrast, cells transfected with truncated N-terminal fragments showed aggregation only if the glutamine repeat was expanded. The aggregates were often ubiquitinated. The shorter truncated product appeared to form more aggregates in the nucleus. Cells transfected with the expanded repeat construct but not the normal repeat construct showed enhanced toxicity to the apoptosis-inducing agent staurosporine. These data indicate that N-terminal truncated fragments of huntingtin with expanded glutamine repeats can aggregate in cells in culture and that this aggregation can be toxic to cells. This model will be useful for future experiments to test mechanisms of aggregation and toxicity and potentially for testing experimental therapeutic interventions.

390 citations


Book ChapterDOI
TL;DR: Nitric oxide plays a role in mediating neurotoxicity associated with a variety of neurologic disorders, including stroke, Parkinson's Disease, and HIV dementia.
Abstract: Nitric oxide (NO) is a unique biological messenger molecule which mediates diverse physiologic roles. NO mediates blood vessel relaxation by endothelium, immune activity of macrophages and neurotransmission of central and peripheral neurons. NO is produced from three NO Synthase (NOS) isoforms: Neuronal NOS (nNOS), endothelial NOS, and inducible NOS (iNOS). In the central nervous system, NO may play important roles in neurotransmitter release, neurotransmitter reuptake, neurodevelopment, synaptic plasticity, and regulation of gene expression. However, excessive production of NO following a pathologic insult can lead to neurotoxicity. NO plays a role in mediating neurotoxicity associated with a variety of neurologic disorders, including stroke, Parkinson's Disease, and HIV dementia.

381 citations


Journal ArticleDOI
TL;DR: Therapeutic approaches which limit oxidative stress may be potentially beneficial in several neurological diseases, including amyotrophic lateral sclerosis and Parkinson's disease.
Abstract: 1. Free radicals may play an important role in several pathological conditions of the central nervous system (CNS) where they directly injure tissue and where their formation may also be a consequence of tissue injury. 2. Free radicals produce tissue damage through multiple mechanisms, including excito-toxicity, metabolic dysfunction, and disturbance of intracellular homeostasis of calcium. 3. Oxidative stress can significantly worsen acute insults, such as ischemia, as well as chronic neurodegenerative disorders including amyotrophic lateral sclerosis (ALS) and Parkinson's disease. 4. For instance, recent findings suggest a causal role for chronic oxidative stress in familial ALS, as this disease is linked to missence mutations of the copper/zinc superoxide dismutase (SOD). 5. Thus, therapeutic approaches which limit oxidative stress may be potentially beneficial in several neurological diseases.

290 citations


Journal ArticleDOI
TL;DR: MnSOD is a major protective protein that appears to be essential for the resistance of nNOS neurons in cortical cultures to NMDA mediated neurotoxicity.
Abstract: Neuronal nitric oxide synthase (nNOS) neurons kill adjacent neurons through the action of NMDA-glutamate receptor activation, although they remain relatively resistant to the toxic effects of NMDA and NO. The molecular basis of the resistance of nNOS neurons to toxic insults is unknown. To begin to understand the molecular mechanisms of the resistance of nNOS neurons, we developed a pheochromacytoma-derived cell line (PC12) that is resistant to the toxic effects of NO. We found through serial analysis of gene expression (SAGE) that manganese superoxide dismutase (MnSOD) is enriched in the NO-resistant PC12 cell-derived line (PC12-R). Antisense MnSOD renders PC12-R cells sensitive to NO toxicity and increases the sensitivity to NO in the parental, NO-sensitive PC12 line (PC12-S). Adenoviral transfer of MnSOD protects PC12-S cells against NO toxicity. We extended these studies to cortical cultures and showed that MnSOD is enriched in nNOS neurons and that antisense MnSOD renders nNOS neurons susceptible to NMDA neurotoxicity, although it has little effect on the overall susceptibility of cortical neurons to NMDA toxicity. Overexpression of MnSOD provides dramatic protection against NMDA and NO toxicity in cortical cultures, but not against kainate or AMPA neurotoxicity. Furthermore, nNOS neurons from MnSOD −/− mice are markedly sensitive to NMDA toxicity. Adenoviral transfer of MnSOD to MnSOD−/− cultures restores resistance of nNOS neurons to NMDA toxicity. Thus, MnSOD is a major protective protein that appears to be essential for the resistance of nNOS neurons in cortical cultures to NMDA mediated neurotoxicity.

271 citations


Journal ArticleDOI
TL;DR: It is shown that NMDA receptor stimulation leads to activation of p21(ras) (Ras) through generation of nitric oxide (NO) via neuronal NO synthase, supporting the physiologic relevance of endogenous NO regulation of Ras.
Abstract: N-methyl-d-aspartate (NMDA) glutamate receptor-mediated increases in intracellular calcium are thought to play a critical role in synaptic plasticity. The mechanisms by which changes in cytoplasmic calcium transmit the glutamate signal to the nucleus, which is ultimately important for long-lasting neuronal responses, are poorly understood. We show that NMDA receptor stimulation leads to activation of p21ras (Ras) through generation of nitric oxide (NO) via neuronal NO synthase. The competitive NO synthase inhibitor, l-nitroarginine methyl ester, prevents Ras activation elicited by NMDA and this effect is competitively reversed by the NO synthase substrate, l-arginine. NMDA receptor stimulation fails to activate Ras in neuronal cultures from mice lacking neuronal NO synthase. NMDA-induced Ras activation occurs through a cGMP-independent pathway as 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), a potent and selective inhibitor of guanylyl cyclase, has no effect on NMDA receptor-induced activation of Ras, and the cell-permeable cGMP analog, 8Br-cGMP, does not activate Ras. Furthermore, NO directly activates immunoprecipitated Ras from neurons. NMDA also elicits tyrosine phosphorylation of extracellular signal-regulated kinases, a downstream effector pathway of Ras, through a NO/non-cGMP dependent mechanism, thus supporting the physiologic relevance of endogenous NO regulation of Ras. These results suggest that Ras is a physiologic target of endogenously produced NO and indicates a signaling pathway for NMDA receptor activation that may be important for long-lasting neuronal responses.

195 citations


Journal ArticleDOI
TL;DR: It is demonstrated that relocalization of nNOS to the cytosol does not contribute significantly to mdx pathogenesis and muscle from nN OS-dystrophin null mice maintain the histological features of mdx pathology.
Abstract: In skeletal muscle, neuronal nitric oxide synthase (nNOS) is anchored to the sarcolemma via the dystrophin-glycoprotein complex. When dystrophin is absent, as in Duchenne muscular dystrophy patients and in mdx mice, nNOS is mislocalized to the interior of the muscle fiber where it continues to produce nitric oxide. This has led to the hypothesis that free radical toxicity from mislocalized nNOS may contribute to mdx muscle pathology. To test this hypothesis directly, we generated mice devoid of both nNOS and dystrophin. Overall, the nNOS-dystrophin null mice maintained the dystrophic characteristics of mdx mice. We evaluated the mice for several features of the dystrophic phenotype, including membrane damage and muscle morphology. Removal of nNOS did not alter the extent of sarcolemma damage, which is a hallmark of the dystrophic phenotype. Furthermore, muscle from nNOS-dystrophin null mice maintain the histological features of mdx pathology. Our results demonstrate that relocalization of nNOS to the cytosol does not contribute significantly to mdx pathogenesis.

122 citations


Book ChapterDOI
TL;DR: Neuronal nitric oxide synthase was originally felt to be a constitutively expressed enzyme, but recent observations suggest that its levels are dynamically controlled in response to neuronal development, plasticity and injury.
Abstract: Neuronal nitric oxide synthase (nNOS) participate in a variety of physiologic and pathologic processes in the nervous system. nNOS was originally felt-to be a constitutively expressed enzyme, but recent observations suggest that its levels are dynamically controlled in response to neuronal development, plasticity and injury. nNOS expression is regulated through alternative promoter usage through alternative mRNA splicing and it is likely that this plays an important role in the induciblity of gene expression in response to extracellular stimuli. Emerging data also suggests that NO may be the key mediator linking activity to gene expression and long-lasting neuronal responses through NO activating p21 Ras through redox-sensitive modulation.

122 citations


Journal ArticleDOI
TL;DR: It is suggested that the absence of nNOS activity leads to reduced baseline parasympathetic tone, but does not prevent baroreflex-mediated cardioinhibition unless inhibitory G proteins are also inactivated, serving as parallel pathways to mediate autonomic slowing of heart rate in the mouse.
Abstract: Nitric oxide (NO) synthesized within mammalian sinoatrial cells has been shown to participate in cholinergic control of heart rate (HR). However, it is not known whether NO synthesized within neurons plays a role in HR regulation. HR dynamics were measured in 24 wild-type (WT) mice and 24 mice in which the gene for neuronal NO synthase (nNOS) was absent (nNOS-/- mice). Mean HR and HR variability were compared in subsets of these animals at baseline, after parasympathetic blockade with atropine (0.5 mg/kg i.p.), after beta-adrenergic blockade with propranolol (1 mg/kg i.p.), and after combined autonomic blockade. Other animals underwent pressor challenge with phenylephrine (3 mg/kg i.p.) after beta-adrenergic blockade to test for a baroreflex-mediated cardioinhibitory response. The latter experiments were then repeated after inactivation of inhibitory G proteins with pertussis toxin (PTX) (30 microgram/kg i.p.). At baseline, nNOS-/- mice had higher mean HR (711+/-8 vs. 650+/-8 bpm, P = 0.0004) and lower HR variance (424+/-70 vs. 1,112+/-174 bpm2, P = 0.001) compared with WT mice. In nNOS-/- mice, atropine administration led to a much smaller change in mean HR (-2+/-9 vs. 49+/-5 bpm, P = 0.0008) and in HR variance (64+/-24 vs. -903+/-295 bpm2, P = 0.02) than in WT mice. In contrast, propranolol administration and combined autonomic blockade led to similar changes in mean HR between the two groups. After beta-adrenergic blockade, phenylephrine injection elicited a fall in mean HR and rise in HR variance in WT mice that was partially attenuated after treatment with PTX. The response to pressor challenge in nNOS-/- mice before PTX administration was similar to that in WT mice. However, PTX-treated nNOS-/- mice had a dramatically attenuated response to phenylephrine. These findings suggest that the absence of nNOS activity leads to reduced baseline parasympathetic tone, but does not prevent baroreflex-mediated cardioinhibition unless inhibitory G proteins are also inactivated. Thus, neuronally derived NO and cardiac inhibitory G protein activity serve as parallel pathways to mediate autonomic slowing of heart rate in the mouse.

121 citations


Journal ArticleDOI
TL;DR: It is demonstrated directly that neurons with abundant nNOS-ir contain NMDAR1 receptor subunit proteins and that the N MDAR1 isoforms present in these cells differ from those of most other neurons in these regions.
Abstract: Nitric oxide (NO), an unconventional and diffusible neurotransmitter, is synthesized by nitric oxide synthase (NOS). NMDA glutamate receptors are potent regulators of NO synthesis. We have used dual-label immunofluorescence and confocal microscopy to examine forebrain neurons in the rat that contain high levels of neuronal NOS (nNOS) for the presence of the NMDAR1 receptor subunit protein and regions of this protein encoded by three alternative spliced segments of the NMDAR1 mRNA: N1, C1, and C2. In the neostriatum, neocortex, and hippocampus, nNOS-labeled neurons exhibit strong NMDAR1 immunoreactivity (-ir). In all three of these regions, nNOS-positive neurons are characterized by the absence of immunoreactivity for the C1 segment of NMDAR1, whereas C1-ir is abundant in most nNOS-negative neurons. In addition, nNOS-ir neurons exhibit selective staining for the alternative C2′ terminus of NMDAR1 that is produced when the C2 segment is absent. These results demonstrate directly that neurons with abundant nNOS-ir contain NMDAR1 receptor subunit proteins and that the NMDAR1 isoforms present in these cells differ from those of most other neurons in these regions. The distinct NMDA receptor phenotype of these nNOS-positive neurons is likely to contribute to both the physiological regulation of NO release by glutamate as well as to NO-mediated excitotoxic injury.

79 citations



Journal ArticleDOI
TL;DR: The reproductive deficits in nNOS−/− females are most likely due to alterations in the transfer of oocytes from the ovaries to the oviducts during ovulation, and results suggest that defects in neuronally derived NO production may contribute to female infertility.
Abstract: Nitric oxide (NO) plays an important role in numerous reproductive processes. To date, most studies have assessed the role of NO by using nonspecific pharmacological inhibitors of the precursor to NO, nitric oxide synthase (NOS). These pharmacological NOS inhibitors suppress all isoforms of NOS; thus, the precise contribution of each isoform to female reproductive physiology is unknown. The purpose of this study was to determine the specific role of neuronal NOS (nNOS) in the regulation of ovulation in female mice lacking the gene that encodes for nNOS (nNOS−/−). Ovulation was assessed in wild-type (WT) and nNOS−/− female mice by examining the number of ovarian rupture sites and number of oocytes recovered from the oviducts following mating or exposure to exogenous gonadotropins (i.e., 5 IU pregnant mares serum gonadotropin [PMSG] and 5 IU human chorionic gonadotropin [hCG]). Ovulatory efficiency was determined as the number of ovulated oocytes per number of ovarian rupture sites. To examine whether ovulatory deficits in nNOS−/− mice were due to alterations in central mechanisms, plasma luteinizing hormone (LH) concentrations were assessed in WT and nNOS−/− mice that were challenged with 25 ng of gonadotropin-releasing hormone (GnRH). To determine whether ovulatory deficits in nNOS−/− mice were due to local ovulation processes, nerves innervating the reproductive tract of WT and nNOS−/− females were examined for the presence of nNOS protein. There were substantial fertility deficits in nNOS−/− female mice; the nNOS−/− mice had fewer oocytes in their oviducts following spontaneous and gonadotropin-stimulated ovulation. Pituitary responsiveness to exogenous GnRH challenge was intact in nNOS−/− mice. Dense nNOS protein staining was observed in nerves innervating the reproductive tracts of WT mice. The reproductive deficits in nNOS−/− females are most likely due to alterations in the transfer of oocytes from the ovaries to the oviducts during ovulation. These results suggest that defects in neuronally derived NO production may contribute to female infertility.

Journal ArticleDOI
TL;DR: Nitric oxide has emerged as an important endogenous neurotoxin and strategies aimed at reducing NO formation may have therapeutic benefit under conditions of excessive formation.
Abstract: Nitric oxide (NO) has revolutionized our conceptions about neurotransmission. NO is not stored in synaptic vesicles, is not released by exocytosis, and does not mediate its action by binding to cell surface receptors. Instead, NO simply diffuses to its targets, and its actions are mediated through molecules that accept or share its unpaired electron. NO has diverse biological roles, including functions as the nitrergic transmitter of the peripheral nervous system, the major regulator of blood vessel tone, and actions as the cytotoxic agent of activated macrophages. In the CNS, NO function is just beginning to be explored, but it seems to play prominent roles in plasticity and the regulation of complex behaviors. Under conditions of excessive formation. NO has emerged as an important endogenous neurotoxin. Strategies aimed at reducing NO formation may therefore have therapeutic benefit. NEUROSCIENTIST 4:96–112, 1998