scispace - formally typeset
Search or ask a question

Showing papers by "Yayuan Liu published in 2017"


Journal ArticleDOI
TL;DR: The current understanding on Li anodes is summarized, the recent key progress in materials design and advanced characterization techniques are highlighted, and the opportunities and possible directions for future development ofLi anodes in applications are discussed.
Abstract: Lithium-ion batteries have had a profound impact on our daily life, but inherent limitations make it difficult for Li-ion chemistries to meet the growing demands for portable electronics, electric vehicles and grid-scale energy storage. Therefore, chemistries beyond Li-ion are currently being investigated and need to be made viable for commercial applications. The use of metallic Li is one of the most favoured choices for next-generation Li batteries, especially Li-S and Li-air systems. After falling into oblivion for several decades because of safety concerns, metallic Li is now ready for a revival, thanks to the development of investigative tools and nanotechnology-based solutions. In this Review, we first summarize the current understanding on Li anodes, then highlight the recent key progress in materials design and advanced characterization techniques, and finally discuss the opportunities and possible directions for future development of Li anodes in applications.

4,302 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the Li2S decomposition energy barrier is associated with the binding between isolated Li ions and the sulfur in sulfides; this is the main reason that sulfide materials can induce lower overpotential compared with commonly used carbon materials.
Abstract: Polysulfide binding and trapping to prevent dissolution into the electrolyte by a variety of materials has been well studied in Li−S batteries. Here we discover that some of those materials can play an important role as an activation catalyst to facilitate oxidation of the discharge product, Li2S, back to the charge product, sulfur. Combining theoretical calculations and experimental design, we select a series of metal sulfides as a model system to identify the key parameters in determining the energy barrier for Li2S oxidation and polysulfide adsorption. We demonstrate that the Li2S decomposition energy barrier is associated with the binding between isolated Li ions and the sulfur in sulfides; this is the main reason that sulfide materials can induce lower overpotential compared with commonly used carbon materials. Fundamental understanding of this reaction process is a crucial step toward rational design and screening of materials to achieve high reversible capacity and long cycle life in Li−S batteries.

933 citations


Journal ArticleDOI
TL;DR: An artificial solid electrolyte interphase (SEI) is demonstrated, which not only mechanically suppresses lithium dendrite formation but also promotes homogeneous lithium-ion flux, significantly enhancing the efficiency and cycle life of the lithium metal anode.
Abstract: An artificial solid electrolyte interphase (SEI) is demonstrated for the efficient and safe operation of a lithium metal anode. Composed of lithium-ion-conducting inorganic nanoparticles within a flexible polymer binder matrix, the rationally designed artificial SEI not only mechanically suppresses lithium dendrite formation but also promotes homogeneous lithium-ion flux, significantly enhancing the efficiency and cycle life of the lithium metal anode.

790 citations


Journal ArticleDOI
TL;DR: It is shown that the "solid-liquid" hybrid behavior of a dynamically cross-linked polymer enables its use as an excellent adaptive interfacial layer for Li metal anodes, thereby enabling the stable operation of lithium metal electrodes.
Abstract: Lithium metal is an attractive anode for the next generation of high energy density lithium-ion batteries due to its high specific capacity (3,860 mAh g–1) and lowest overall anode potential. However, the key issue is that the static solid electrolyte interphase cannot match the dynamic volume changes of the Li anode, resulting in side reactions, dendrite growth, and poor electrodeposition behavior, which prevent its practical applications. Here, we show that the “solid-liquid” hybrid behavior of a dynamically cross-linked polymer enables its use as an excellent adaptive interfacial layer for Li metal anodes. The dynamic polymer can reversibly switch between its “liquid” and “solid” properties in response to the rate of lithium growth to provide uniform surface coverage and dendrite suppression, respectively, thereby enabling the stable operation of lithium metal electrodes. We believe that this example of engineering an adaptive Li/electrolyte interface brings about a new and promising way to address the...

422 citations


Journal ArticleDOI
TL;DR: The facile synthesis of Al3+/Nb5+ codoped cubic Li7La3Zr2O12 (LLZO) nanoparticles and LLZO nanoparticle-decorated porous carbon foam and solid-state Li-S batteries exhibit high Coulombic efficiency and show remarkably stable cycling performance.
Abstract: An all solid-state lithium-ion battery with high energy density and high safety is a promising solution for a next-generation energy storage system. High interface resistance of the electrodes and poor ion conductivity of solid-state electrolytes are two main challenges for solid-state batteries, which require operation at elevated temperatures of 60–90 °C. Herein, we report the facile synthesis of Al3+/Nb5+ codoped cubic Li7La3Zr2O12 (LLZO) nanoparticles and LLZO nanoparticle-decorated porous carbon foam (LLZO@C) by the one-step Pechini sol–gel method. The LLZO nanoparticle-filled poly(ethylene oxide) electrolyte shows improved conductivity compared with filler-free samples. The sulfur composite cathode based on LLZO@C can deliver an attractive specific capacity of >900 mAh g–1 at the human body temperature 37 °C and a high capacity of 1210 and 1556 mAh g–1 at 50 and 70 °C, respectively. In addition, the solid-state Li–S batteries exhibit high Coulombic efficiency and show remarkably stable cycling perfo...

353 citations


Journal ArticleDOI
TL;DR: By applying a conformal LiF coating technique on Li surface with commercial Freon R134a as the reagent, highly reduced side reactions and enhanced cycling stability without overpotential augment for over 200 cycles were proven in symmetric cells.
Abstract: Research on lithium (Li) metal chemistry has been rapidly gaining momentum nowadays not only because of the appealing high theoretical capacity, but also its indispensable role in the next-generation Li–S and Li–air batteries. However, two root problems of Li metal, namely high reactivity and infinite relative volume change during cycling, bring about numerous other challenges that impede its practical applications. In the past, extensive studies have targeted these two root causes by either improving interfacial stability or constructing a stable host. However, efficient surface passivation on three-dimensional (3D) Li is still absent. Here, we develop a conformal LiF coating technique on Li surface with commercial Freon R134a as the reagent. In contrast to solid/liquid reagents, gaseous Freon exhibits not only nontoxicity and well-controlled reactivity, but also much better permeability that enables a uniform LiF coating even on 3D Li. By applying a LiF coating onto 3D layered Li-reduced graphene oxide ...

350 citations


Journal ArticleDOI
TL;DR: A Li-ion conductive framework was developed as a stable “host” and efficient surface protection to address the multifaceted problems, which is a significant step forward compared with previous host concepts and sheds light on the effectiveness of the design principle for developing safe and stable Li metal anodes.
Abstract: Rechargeable batteries based on lithium (Li) metal chemistry are attractive for next-generation electrochemical energy storage. Nevertheless, excessive dendrite growth, infinite relative dimension change, severe side reactions, and limited power output severely impede their practical applications. Although exciting progress has been made to solve parts of the above issues, a versatile solution is still absent. Here, a Li-ion conductive framework was developed as a stable “host” and efficient surface protection to address the multifaceted problems, which is a significant step forward compared with previous host concepts. This was fulfilled by reacting overstoichiometry of Li with SiO. The as-formed LixSi–Li2O matrix would not only enable constant electrode-level volume, but also protect the embedded Li from direct exposure to electrolyte. Because uniform Li nucleation and deposition can be fulfilled owing to the high-density active Li domains, the as-obtained nanocomposite electrode exhibits low polarization, stable cycling, and high-power output (up to 10 mA/cm2) even in carbonate electrolytes. The Li–S prototype cells further exhibited highly improved capacity retention under high-power operation (∼600 mAh/g at 6.69 mA/cm2). The all-around improvement on electrochemical performance sheds light on the effectiveness of the design principle for developing safe and stable Li metal anodes.

263 citations


Journal ArticleDOI
TL;DR: A nanophotonic structure textile with tailored infrared property for passive personal heating using nanoporous metallized polyethylene that can save more than 35% of building heating energy in a cost-effective way, and ultimately contribute to the relief of global energy and climate issues.
Abstract: Space heating accounts for the largest energy end-use of buildings that imposes significant burden on the society. The energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, we demonstrate a nanophotonic structure textile with tailored infrared (IR) property for passive personal heating using nanoporous metallized polyethylene. By constructing an IR-reflective layer on an IR-transparent layer with embedded nanopores, the nanoporous metallized polyethylene textile achieves a minimal IR emissivity (10.1%) on the outer surface that effectively suppresses heat radiation loss without sacrificing wearing comfort. This enables 7.1 °C decrease of the set-point compared to normal textile, greatly outperforming other radiative heating textiles by more than 3 °C. This large set-point expansion can save more than 35% of building heating energy in a cost-effective way, and ultimately contribute to the relief of global energy and climate issues.Energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, the authors show a nanophotonic structure textile with tailored infrared property for passive personal heating using nanoporous metallized polyethylene.

240 citations


Journal ArticleDOI
TL;DR: The crucial role of nanotechnology in advanced battery systems is highlighted and efforts to construct nanostructured composite sulfur cathodes with improved electronic conductivity and effective soluble species encapsulation are summarized for maximizing the utilization of active material, cycle life, and system efficiency.
Abstract: ConspectusThe development of next-generation lithium-based rechargeable batteries with high energy density, low cost, and improved safety is a great challenge with profound technological significance for portable electronics, electric vehicles, and grid-scale energy storage. Specifically, advanced lithium battery chemistries call for a paradigm shift to electrodes with high Li to host ratio based on a conversion or alloying mechanism, where the increased capacity is often accompanied by drastic volumetric changes, significant bond breaking, limited electronic/ionic conductivity, and unstable electrode/electrolyte interphase.Fortunately, the rapid progress of nanotechnology over the past decade has been offering battery researchers effective means to tackle some of the most pressing issues for next-generation battery chemistries. The major applications of nanotechnology in batteries can be summarized as follows: First, by reduction of the dimensions of the electrode materials, the cracking threshold of the...

235 citations


Journal ArticleDOI
TL;DR: A one-step fabricated Li/Al4Li9-LiF nanocomposite (LAFN) is fabricated through an “overlithiation” process of a mesoporous AlF3 framework and manifests highly improved rate capability with increased Coulombic efficiency in full cells.
Abstract: Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al 4 Li 9 -LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF 3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al 4 Li 9 -LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zero volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm −2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. The simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.

184 citations


Journal ArticleDOI
TL;DR: The 3D interconnected graphene cage structure leads to high capacity, good rate capability and excellent cycling stability in a Li2S cathode.
Abstract: A 3D graphene cage with a thin layer of electrodeposited nickel phosphosulfide for Li2S impregnation, using ternary nickel phosphosulphide as a highly conductive coating layer for stabilized polysulfide chemistry, is accomplished by the combination of theoretical and experimental studies. The 3D interconnected graphene cage structure leads to high capacity, good rate capability and excellent cycling stability in a Li2S cathode.

Journal ArticleDOI
TL;DR: The theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content, while edge sites such as the nonpolar (112̅0) and polar (011̅2) surfaces are predicted to be highly active and dependent on (de)lithiation.
Abstract: Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces and their OER activities can be understood by the increase of Co4+ sites relative to Co3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (∼0.1 V i...

Journal ArticleDOI
TL;DR: Li metal chemistry is a promising alternative with a much higher energy density than that of state-of-the-art Li-ion counterparts as discussed by the authors, however, significant challenges including safety issues and poor cyclability have severely impeded Li metal technology from becoming viable.
Abstract: Li metal chemistry is a promising alternative with a much higher energy density than that of state-of-the-art Li-ion counterparts. However, significant challenges including safety issues and poor cyclability have severely impeded Li metal technology from becoming viable. In recent years, nanotechnologies have become increasingly important in materials design and fabrication for Li metal anodes, contributing to major progress in the field. In this review, we first introduce the main achievements in Li metal battery systems fulfilled by nanotechnologies, particularly regarding Li metal anode design and protection, ultrastrong separator engineering, safety monitoring, and smart functions. Next, we introduce recent studies on nanoscale Li nucleation/deposition. Finally, we discuss possible future research directions. We hope this review delivers an overall picture of the role of nanoscale approaches in the recent progress of Li metal battery technology and inspires more research in the future. Open image in new window

Journal ArticleDOI
TL;DR: The problems are addressed by incorporating a flowable interfacial layer and three-dimensional Li into the system, and both symmetric and full-cell configurations can achieve greatly improved electrochemical performances in comparison to the conventional Li foil, which are among the best reported values in the literature.
Abstract: Solid-state lithium (Li) metal batteries are prominent among next-generation energy storage technologies due to their significantly high energy density and reduced safety risks. Previously, solid electrolytes have been intensively studied and several materials with high ionic conductivity have been identified. However, there are still at least three obstacles before making the Li metal foil-based solid-state systems viable, namely, high interfacial resistance at the Li/electrolyte interface, low areal capacity, and poor power output. The problems are addressed by incorporating a flowable interfacial layer and three-dimensional Li into the system. The flowable interfacial layer can accommodate the interfacial fluctuation and guarantee excellent adhesion at all time, whereas the three-dimensional Li significantly reduces the interfacial fluctuation from the whole electrode level (tens of micrometers) to local scale (submicrometer) and also decreases the effective current density for high-capacity and high-power operations. As a consequence, both symmetric and full-cell configurations can achieve greatly improved electrochemical performances in comparison to the conventional Li foil, which are among the best reported values in the literature. Noticeably, solid-state full cells paired with high–mass loading LiFePO 4 exhibited, at 80°C, a satisfactory specific capacity even at a rate of 5 C (110 mA·hour g −1 ) and a capacity retention of 93.6% after 300 cycles at a current density of 3 mA cm −2 using a composite solid electrolyte middle layer. In addition, when a ceramic electrolyte middle layer was adopted, stable cycling with greatly improved capacity could even be realized at room temperature.

Journal ArticleDOI
TL;DR: In this article, the LiAlO2 interfacial layer was used to prevent interfacial reactions between the LiCoO2 electrode and electrolyte, as confirmed by electrochemical impedance spectroscopy and Raman characterizations.
Abstract: Developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important, owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles. Here, we deposited chemically inert and ionically conductive LiAlO2 interfacial layers on LiCoO2 electrodes using the atomic layer deposition technique. During prolonged cycling at high-voltage, the LiAlO2 coating not only prevented interfacial reactions between the LiCoO2 electrode and electrolyte, as confirmed by electrochemical impedance spectroscopy and Raman characterizations, but also allowed lithium ions to freely diffuse into LiCoO2 without sacrificing the power density. As a result, a capacity value close to 200 mA·h·g–1 was achieved for the LiCoO2 electrodes with commercial level loading densities, cycled at the cut-off potential of 4.6 V vs. Li+/Li for 50 stable cycles; this represents a 40% capacity gain, compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs. Li+/Li.

Journal ArticleDOI
TL;DR: In this paper, Prussian blue nanoparticles were used to anchor Fe/Fe3C species to nitrogen-doped reduced graphene oxide aerogels as ORR catalysts, and the strong interaction between nanosized Fe3C and the graphitic carbon shell led to synergistic effects in the ORR.
Abstract: Developing high-performance nonprecious-metal electrocatalysts for the oxygen reduction reaction (ORR) is crucial for a variety of renewable energy conversion and storage systems. Toward that end, rational catalyst design principles that lead to highly active catalytic centers and enhanced active site accessibility are undoubtedly of paramount importance. Here, we used Prussian blue nanoparticles to anchor Fe/Fe3C species to nitrogen-doped reduced graphene oxide aerogels as ORR catalysts. The strong interaction between nanosized Fe3C and the graphitic carbon shell led to synergistic effects in the ORR, and the protection of the carbon shell guaranteed stability of the catalyst. As a result, the aerogel electrocatalyst displayed outstanding activity in the ORR on par with the state-of-the-art Pt/C catalyst at the same mass loading in alkaline media, good performance in acidic media, and excellent stability and crossover tolerance that rivaled that of the best nonprecious-metal ORR electrocatalysts reported to date.

Journal ArticleDOI
TL;DR: A reactivation strategy by a reaction with cheap sulfur powder under stirring and heating to recover the cell capacity is proposed and the high volumetric energy density indicates its promising application for future grid energy storage.
Abstract: Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm–3, 2 g sulfur in a single cell), high volumetric energy density (135 Wh L–1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage. Lithium polysulfide batteries suffer from the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium. Here the authors show a reactivation strategy by a reaction with cheap sulfur powder under stirring and heating to recover the cell capacity.

Journal ArticleDOI
20 Dec 2017-Joule
TL;DR: In this paper, Nazar et al. demonstrated a rationally designed electrolyte additive that can form a robust, single-ion-conducting protective layer on lithium metal surface while the battery operates.