scispace - formally typeset
Search or ask a question

Showing papers presented at "Symposium on Computational Geometry in 2019"


Book ChapterDOI
18 Jun 2019
TL;DR: A new family of filtrations is introduced, built on top of point clouds in the Euclidean space which are more robust to noise and outliers and relies on the notion of distance-to-measure functions.
Abstract: Despite strong stability properties, the persistent homology of filtrations classically used in Topological Data Analysis, such as, e.g. the Cech or Vietoris-Rips filtrations, are very sensitive to the presence of outliers in the data from which they are computed. In this paper, we introduce and study a new family of filtrations, the DTM-filtrations, built on top of point clouds in the Euclidean space which are more robust to noise and outliers. The approach adopted in this work relies on the notion of distance-to-measure functions and extends some previous work on the approximation of such functions.

29 citations


Proceedings ArticleDOI
18 Jun 2019
TL;DR: The matching distance is a pseudometric on multi-parameter persistence modules, defined in terms of the weighted bottleneck distance on the restriction of the modules to affine lines as discussed by the authors.
Abstract: The matching distance is a pseudometric on multi-parameter persistence modules, defined in terms of the weighted bottleneck distance on the restriction of the modules to affine lines. It is known that this distance is stable in a reasonable sense, and can be efficiently approximated, which makes it a promising tool for practical applications. In this work, we show that in the 2-parameter setting, the matching distance can be computed exactly in polynomial time. Our approach subdivides the space of affine lines into regions, via a line arrangement. In each region, the matching distance restricts to a simple analytic function, whose maximum is easily computed. As a byproduct, our analysis establishes that the matching distance is a rational number, if the bigrades of the input modules are rational.

24 citations


Proceedings ArticleDOI
01 Jun 2019
TL;DR: Chan et al. as discussed by the authors presented the first fully dynamic geometric data structures with sublinear amortized update time for maintaining (i) the number of vertices or the volume of the convex hull of a 3D point set, (ii) the largest empty circle for 2D point sets, (iii) the Hausdorff distance between two 2D points, and (iv) the discrete 1-center of a two-dimensional point set.
Abstract: We present new results on a number of fundamental problems about dynamic geometric data structures: (1) We describe the first fully dynamic data structures with sublinear amortized update time for maintaining (i) the number of vertices or the volume of the convex hull of a 3D point set, (ii) the largest empty circle for a 2D point set, (iii) the Hausdorff distance between two 2D point sets, (iv) the discrete 1-center of a 2D point set, (v) the number of maximal (i.e., skyline) points in a 3D point set. The update times are near $$n^{11/12}$$ for (i) and (ii), $$n^{5/6}$$ for (iii) and (iv), and $$n^{2/3}$$ for (v). Previously, sublinear bounds were known only for restricted “semi-online” settings (Chan in SIAM J. Comput. 32(3), 700–716 (2003)). (2) We slightly improve previous fully dynamic data structures for answering extreme point queries for the convex hull of a 3D point set and nearest neighbor search for a 2D point set. The query time is $$O(\log ^2\!n)$$ , and the amortized update time is $$O(\log ^4\!n)$$ instead of $$O(\log ^5\!n)$$ (Chan in J. ACM 57(3), # 16 (2010); Kaplan et al. in 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2495–2504. SIAM, Philadelphia (2017)). (3) We also improve previous fully dynamic data structures for maintaining the bichromatic closest pair between two 2D point sets and the diameter of a 2D point set. The amortized update time is $$O(\log ^4\!n)$$ instead of $$O(\log ^7\!n)$$ (Eppstein in Discrete Comput. Geom. 13(1), 111–122 (1995); Chan in J. ACM 57(3), # 16 (2010); Kaplan et al. in 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2495–2504. SIAM, Philadelphia (2017)).

21 citations


Proceedings Article
01 Jan 2019
TL;DR: In this article, the authors study the possibility of embedding persistence diagrams into separable Hilbert spaces, with bi-Lipschitz maps, and show that for several stable embeddings into infinite-dimensional Hilbert spaces defined in the literature, any lower bound must depend on the cardinalities of the persistence diagrams.
Abstract: Persistence diagrams are important descriptors in Topological Data Analysis. Due to the nonlinearity of the space of persistence diagrams equipped with their {\em diagram distances}, most of the recent attempts at using persistence diagrams in machine learning have been done through kernel methods, i.e., embeddings of persistence diagrams into Reproducing Kernel Hilbert Spaces, in which all computations can be performed easily. Since persistence diagrams enjoy theoretical stability guarantees for the diagram distances, the {\em metric properties} of the feature map, i.e., the relationship between the Hilbert distance and the diagram distances, are of central interest for understanding if the persistence diagram guarantees carry over to the embedding. In this article, we study the possibility of embedding persistence diagrams into separable Hilbert spaces, with bi-Lipschitz maps. In particular, we show that for several stable embeddings into infinite-dimensional Hilbert spaces defined in the literature, any lower bound must depend on the cardinalities of the persistence diagrams, and that when the Hilbert space is finite dimensional, finding a bi-Lipschitz embedding is impossible, even when restricting the persistence diagrams to have bounded cardinalities.

20 citations


Proceedings ArticleDOI
01 Jan 2019
TL;DR: In this article, the authors present a fast, certifying implementation for deciding the Frechet distance, in order to complement its pessimistic worst-case hardness by an empirical analysis on realistic input data and to improve the state of the art for the GIS Cup challenge.
Abstract: The Frechet distance provides a natural and intuitive measure for the popular task of computing the similarity of two (polygonal) curves. While a simple algorithm computes it in near-quadratic time, a strongly subquadratic algorithm cannot exist unless the Strong Exponential Time Hypothesis fails. Still, fast practical implementations of the Frechet distance, in particular for realistic input curves, are highly desirable. This has even lead to a designated competition, the ACM SIGSPATIAL GIS Cup 2017: Here, the challenge was to implement a near-neighbor data structure under the Frechet distance. The bottleneck of the top three implementations turned out to be precisely the decision procedure for the Frechet distance. In this work, we present a fast, certifying implementation for deciding the Frechet distance, in order to (1) complement its pessimistic worst-case hardness by an empirical analysis on realistic input data and to (2) improve the state of the art for the GIS Cup challenge. We experimentally evaluate our implementation on a large benchmark consisting of several data sets (including handwritten characters and GPS trajectories). Compared to the winning implementation of the GIS Cup, we obtain running time improvements of up to more than two orders of magnitude for the decision procedure and of up to a factor of 30 for queries to the near-neighbor data structure.

17 citations


Proceedings ArticleDOI
17 Jun 2019
TL;DR: In this paper, the authors give an approximation algorithm for the geometric transportation problem with running time asymptotically linear in the number of points and polynomial in the logarithm of the total positive supply.
Abstract: $ ewcommand{\eps}{\varepsilon}$In the geometric transportation problem, we are given a collection of points $P$ in $d$-dimensional Euclidean space, and each point is given a (positive or negative integer) supply. The goal is to find a transportation map that satisfies the supplies, while minimizing the total distance traveled. This problem has been widely studied in many fields of computer science: from computational geometry, to computer vision, graphics, and machine learning. In this work we study approximation algorithms for the geometric transportation problem. We give an algorithm which, for any fixed dimension $d$, finds a $(1+\eps)$-approximate transportation map in time nearly-linear in $n$, and polynomial in $\eps^{-1}$ and in the logarithm of the total positive supply. This is the first approximation scheme for the problem whose running time depends on $n$ as $n\cdot \mathrm{polylog}(n)$. Our techniques combine the generalized preconditioning framework of Sherman, which is grounded in continuous optimization, with simple geometric arguments to first reduce the problem to a minimum cost flow problem on a sparse graph, and then to design a good preconditioner for this latter problem.

13 citations


Proceedings ArticleDOI
18 Apr 2019
TL;DR: It is shown that strong collapses of flag complexes can be computed in time O(k^2 v^2) where v is the number of vertices of the complex and k is the maximal degree of its graph.
Abstract: In this article, we focus on the problem of computing Persistent Homology of a flag tower, i.e. a sequence of flag complexes connected by simplicial maps. We show that if we restrict the class of simplicial complexes to flag complexes, we can achieve decisive improvement in terms of time and space complexities with respect to previous work. We show that strong collapses of flag complexes can be computed in time O(k^2 v^2) where v is the number of vertices of the complex and k is the maximal degree of its graph. Moreover we can strong collapse a flag complex knowing only its 1-skeleton and the resulting complex is also a flag complex. When we strong collapse the complexes in a flag tower, we obtain a reduced sequence that is also a flag tower we call the core flag tower. We then convert the core flag tower to an equivalent filtration to compute its PH. Here again, we only use the 1-skeletons of the complexes. The resulting method is simple and extremely efficient.

12 citations


Proceedings ArticleDOI
19 Mar 2019
TL;DR: In this article, the authors showed that the worst-case query time for range sampling queries can be reduced to n 2/3 by allowing the sampling probability to be approximately proportional to the weight of the input points.
Abstract: We revisit the range sampling problem: the input is a set of points where each point is associated with a real-valued weight. The goal is to store them in a structure such that given a query range and an integer k, we can extract k independent random samples from the points inside the query range, where the probability of sampling a point is proportional to its weight. This line of work was initiated in 2014 by Hu, Qiao, and Tao and it was later followed up by Afshani and Wei. The first line of work mostly studied unweighted but dynamic version of the problem in one dimension whereas the second result considered the static weighted problem in one dimension as well as the unweighted problem in 3D for halfspace queries. We offer three main results and some interesting insights that were missed by the previous work: We show that it is possible to build efficient data structures for range sampling queries if we allow the query time to hold in expectation (the first result), or obtain efficient worst-case query bounds by allowing the sampling probability to be approximately proportional to the weight (the second result). The third result is a conditional lower bound that shows essentially one of the previous two concessions is needed. For instance, for the 3D range sampling queries, the first two results give efficient data structures with near-linear space and polylogarithmic query time whereas the lower bound shows with near-linear space the worst-case query time must be close to n^{2/3}, ignoring polylogarithmic factors. Up to our knowledge, this is the first such major gap between the expected and worst-case query time of a range searching problem.

10 citations


Proceedings Article
01 Jan 2019
TL;DR: The bounded maximum degree conjecture of c-crossing-critical graphs, which was generally disproved in 2010 by Dvořák and Mohar (without an explicit construction), holds true, surprisingly, exactly for the values c ≤ 12.
Abstract: We study c-crossing-critical graphs, which are the minimal graphs that require at least c edgecrossings when drawn in the plane. For every fixed pair of integers with c ≥ 13 and d ≥ 1, we give first explicit constructions of c-crossing-critical graphs containing arbitrarily many vertices of degree greater than d. We also show that such unbounded degree constructions do not exist for c ≤ 12, precisely, that there exists a constant D such that every c-crossing-critical graph with c ≤ 12 has maximum degree at most D. Hence, the bounded maximum degree conjecture of c-crossing-critical graphs, which was generally disproved in 2010 by Dvořák and Mohar (without an explicit construction), holds true, surprisingly, exactly for the values c ≤ 12. 2012 ACM Subject Classification Theory of computation→ Computational geometry; Mathematics of computing → Graphs and surfaces

10 citations


Proceedings Article
01 Jan 2019
TL;DR: In this paper, the authors derived upper and lower bounds on the Vapnik-Chervonenkis dimension that imply useful sampling bounds in the setting that the number of curves is large, but the complexity of the individual curves is small.
Abstract: The Vapnik-Chervonenkis dimension provides a notion of complexity for systems of sets. If the VC dimension is small, then knowing this can drastically simplify fundamental computational tasks such as classification, range counting, and density estimation through the use of sampling bounds. We analyze set systems where the ground set $X$ is a set of polygonal curves in $\mathbb{R}^d$ and the sets $\mathcal{R}$ are metric balls defined by curve similarity metrics, such as the Fr\'echet distance and the Hausdorff distance, as well as their discrete counterparts. We derive upper and lower bounds on the VC dimension that imply useful sampling bounds in the setting that the number of curves is large, but the complexity of the individual curves is small. Our upper bounds are either near-quadratic or near-linear in the complexity of the curves that define the ranges and they are logarithmic in the complexity of the curves that define the ground set.

9 citations


Proceedings ArticleDOI
01 Mar 2019
TL;DR: In this article, it was shown that testing whether a graph admits a k-page upward book embedding is NP-complete for k ≥ 3, where k is the number of pages in the book.
Abstract: We study k-page upward book embeddings (kUBEs) of st-graphs, that is, book embeddings of single-source single-sink directed acyclic graphs on k pages with the additional requirement that the vertices of the graph appear in a topological ordering along the spine of the book. We show that testing whether a graph admits a kUBE is NP-complete for k >= 3. A hardness result for this problem was previously known only for k = 6 [Heath and Pemmaraju, 1999]. Motivated by this negative result, we focus our attention on k=2. On the algorithmic side, we present polynomial-time algorithms for testing the existence of 2UBEs of planar st-graphs with branchwidth b and of plane st-graphs whose faces have a special structure. These algorithms run in O(f(b)* n+n^3) time and O(n) time, respectively, where f is a singly-exponential function on b. Moreover, on the combinatorial side, we present two notable families of plane st-graphs that always admit an embedding-preserving 2UBE.

Proceedings ArticleDOI
01 Jun 2019
TL;DR: In this article, the authors presented a randomized algorithm that computes a generalized partitioning polynomial in O(log n) time, with storage complexity and expected preprocessing time of O(n^{d+epsilon}).
Abstract: In 2015, Guth proved that if S is a collection of n g-dimensional semi-algebraic sets in R^d and if D >= 1 is an integer, then there is a d-variate polynomial P of degree at most D so that each connected component of R^d \ Z(P) intersects O(n/D^{d-g}) sets from S. Such a polynomial is called a generalized partitioning polynomial. We present a randomized algorithm that computes such polynomials efficiently - the expected running time of our algorithm is linear in |S|. Our approach exploits the technique of quantifier elimination combined with that of epsilon-samples. We present four applications of our result. The first is a data structure for answering point-enclosure queries among a family of semi-algebraic sets in R^d in O(log n) time, with storage complexity and expected preprocessing time of O(n^{d+epsilon}). The second is a data structure for answering range search queries with semi-algebraic ranges in O(log n) time, with O(n^{t+epsilon}) storage and expected preprocessing time, where t > 0 is an integer that depends on d and the description complexity of the ranges. The third is a data structure for answering vertical ray-shooting queries among semi-algebraic sets in R^{d} in O(log^2 n) time, with O(n^{d+epsilon}) storage and expected preprocessing time. The fourth is an efficient algorithm for cutting algebraic planar curves into pseudo-segments.

Proceedings Article
01 Jan 2019
TL;DR: In this article, an extension of the chunk algorithm for persistent homology to multi-parameter setups is presented, which produces the smallest multi-filtered chain complex among all the complexes quasi-isomorphic to the input.
Abstract: The extension of persistent homology to multi-parameter setups is an algorithmic challenge. Since most computation tasks scale badly with the size of the input complex, an important pre-processing step consists of simplifying the input while maintaining the homological information. We present an algorithm that drastically reduces the size of an input. Our approach is an extension of the chunk algorithm for persistent homology (Bauer et al., Topological Methods in Data Analysis and Visualization III, 2014). We show that our construction produces the smallest multi-filtered chain complex among all the complexes quasi-isomorphic to the input, improving on the guarantees of previous work in the context of discrete Morse theory. Our algorithm also offers an immediate parallelization scheme in shared memory. Already its sequential version compares favorably with existing simplification schemes, as we show by experimental evaluation.

Proceedings Article
01 Jan 2019
TL;DR: The construction showing the tightness of the last result settles a 25 years old problem: it yields that there exist K_k-free disjointness graphs of x-monotone curves such that any proper coloring of them uses at least $\Omega(k^{4})$ colors.
Abstract: Let ω ( G ) and χ ( G ) denote the clique number and chromatic number of a graph G, respectively. The disjointness graph of a family of curves (continuous arcs in the plane) is the graph whose vertices correspond to the curves and in which two vertices are joined by an edge if and only if the corresponding curves are disjoint. A curve is called x-monotone if every vertical line intersects it in at most one point. An x-monotone curve is grounded if its left endpoint lies on the y-axis. We prove that if G is the disjointness graph of a family of grounded x-monotone curves such that ω ( G ) = k , then χ ( G ) ≤ ( k + 1 2 ) . If we only require that every curve is x-monotone and intersects the y-axis, then we have χ ( G ) ≤ k + 1 2 ( k + 2 3 ) . Both of these bounds are best possible. The construction showing the tightness of the last result settles a 25 years old problem: it yields that there exist K k -free disjointness graphs of x-monotone curves such that any proper coloring of them uses at least Ω ( k 4 ) colors. This matches the upper bound up to a constant factor.

Proceedings ArticleDOI
17 Jun 2019
TL;DR: The critical density of packing disks in a disk is 0.5 as discussed by the authors, which implies that any set of disks of total area (not necessarily equal) can always be packed into a disk of area 1.
Abstract: We provide a tight result for a fundamental problem arising from packing disks into a circular container: The critical density of packing disks in a disk is 0.5. This implies that any set of (not necessarily equal) disks of total area $\delta\leq 1/2$ can always be packed into a disk of area 1; on the other hand, for any $\varepsilon>0$ there are sets of disks of area $1/2+\varepsilon$ that cannot be packed. The proof uses a careful manual analysis, complemented by a minor automatic part that is based on interval arithmetic. Beyond the basic mathematical importance, our result is also useful as a blackbox lemma for the analysis of recursive packing algorithms.

Proceedings ArticleDOI
01 Jun 2019
TL;DR: In this article, a (1+epsilon)-spanner over a set P of n points in R^d that is resilient to a catastrophic failure of nodes is presented.
Abstract: We show how to construct (1+epsilon)-spanner over a set P of n points in R^d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters theta, epsilon in (0,1), the computed spanner G has O(epsilon^{-7d} log^7 epsilon^{-1} * theta^{-6} n log n (log log n)^6) edges. Furthermore, for any k, and any deleted set B subseteq P of k points, the residual graph G \ B is (1+epsilon)-spanner for all the points of P except for (1+theta)k of them. No previous constructions, beyond the trivial clique with O(n^2) edges, were known such that only a tiny additional fraction (i.e., theta) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one dimensional construction in a black box fashion.

Proceedings ArticleDOI
01 Jun 2019
TL;DR: The first near quadratic time algorithm for this problem is presented, improving over the previous near-$O(n^{5/2})$-time algorithm by Kaplan etal [KRS17], and an almost matching conditional lower bound is provided.
Abstract: Given a set of n points in the plane, and a parameter k, we consider the problem of computing the minimum (perimeter or area) axis-aligned rectangle enclosing k points. We present the first near quadratic time algorithm for this problem, improving over the previous near-O(n^{5/2})-time algorithm by Kaplan et al. [Haim Kaplan et al., 2017]. We provide an almost matching conditional lower bound, under the assumption that (min,+)-convolution cannot be solved in truly subquadratic time. Furthermore, we present a new reduction (for either perimeter or area) that can make the time bound sensitive to k, giving near O(n k) time. We also present a near linear time (1+epsilon)-approximation algorithm to the minimum area of the optimal rectangle containing k points. In addition, we study related problems including the 3-sided, arbitrarily oriented, weighted, and subset sum versions of the problem.

Proceedings ArticleDOI
Patrick Schnider1
01 Jan 2019
TL;DR: In this paper, it was shown that for any continuous assignment of d mass distributions to the k-dimensional linear subspaces of R^d, there is always a subspace on which we can simultaneously bisect the images of all d assignments.
Abstract: The Ham-Sandwich theorem is a well-known result in geometry. It states that any d mass distributions in R^d can be simultaneously bisected by a hyperplane. The result is tight, that is, there are examples of d+1 mass distributions that cannot be simultaneously bisected by a single hyperplane. In this abstract we will study the following question: given a continuous assignment of mass distributions to certain subsets of R^d, is there a subset on which we can bisect more masses than what is guaranteed by the Ham-Sandwich theorem? We investigate two types of subsets. The first type are linear subspaces of R^d, i.e., k-dimensional flats containing the origin. We show that for any continuous assignment of d mass distributions to the k-dimensional linear subspaces of R^d, there is always a subspace on which we can simultaneously bisect the images of all d assignments. We extend this result to center transversals, a generalization of Ham-Sandwich cuts. As for Ham-Sandwich cuts, we further show that for d-k+2 masses, we can choose k-1 of the vectors defining the k-dimensional subspace in which the solution lies. The second type of subsets we consider are subsets that are determined by families of n hyperplanes in R^d. Also in this case, we find a Ham-Sandwich-type result. In an attempt to solve a conjecture by Langerman about bisections with several cuts, we show that our underlying topological result can be used to prove this conjecture in a relaxed setting.

Proceedings ArticleDOI
17 Jun 2019
TL;DR: In this article, a quadratic-time algorithm for bend minimization from an ortho-radial drawing is presented. But the algorithm does not provide an efficient algorithm for testing whether a given orthogonal representation is valid, let alone actually obtaining a drawing from such a representation.
Abstract: Orthogonal drawings, i.e., embeddings of graphs into grids, are a classic topic in Graph Drawing. Often the goal is to find a drawing that minimizes the number of bends on the edges. A key ingredient for bend minimization algorithms is the existence of an orthogonal representation that allows to describe such drawings purely combinatorially by only listing the angles between the edges around each vertex and the directions of bends on the edges, but neglecting any kind of geometric information such as vertex coordinates or edge lengths. Barth et al. [2] have established the existence of an analogous ortho-radial representation for ortho-radial drawings, which are embeddings into an ortho-radial grid, whose gridlines are concentric circles around the origin and straight-line spokes emanating from the origin but excluding the origin itself. While any orthogonal representation admits an orthogonal drawing, it is the circularity of the ortho-radial grid that makes the problem of characterizing valid ortho-radial representations all the more complex and interesting. Barth et al. prove such a characterization. However, the proof is existential and does not provide an efficient algorithm for testing whether a given ortho-radial representation is valid, let alone actually obtaining a drawing from an ortho-radial representation. In this paper we give quadratic-time algorithms for both of these tasks. They are based on a suitably constrained left-first DFS in planar graphs and several new insights on ortho-radial representations. Our validity check requires quadratic time, and a naive application of it would yield a quartic algorithm for constructing a drawing from a valid ortho-radial representation. Using further structural insights we speed up the drawing algorithm to quadratic running time.

Proceedings ArticleDOI
Luis Barba1
01 Jan 2019
TL;DR: In this article, the authors presented a randomized algorithm to compute the geodesic farthest point Voronoi diagram of S in P running in expected O(n + m) time.
Abstract: Let P be a simple polygon with n vertices. For any two points in P, the geodesic distance between them is the length of the shortest path that connects them among all paths contained in P. Given a set S of m sites being a subset of the vertices of P, we present the first randomized algorithm to compute the geodesic farthest-point Voronoi diagram of S in P running in expected O(n + m) time. That is, a partition of P into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic distance. This algorithm can be extended to run in expected O(n + m log m) time when S is an arbitrary set of m sites contained in P.

Proceedings ArticleDOI
01 Jun 2019
TL;DR: An improved algorithm that computes (roughly) a $1/d^2$-centerpoint with running time $\tldO(d^7)$ with the first progress on this well known problem in over twenty years is presented.
Abstract: We revisit an algorithm of Clarkson et al. [K. L. Clarkson et al., 1996], that computes (roughly) a 1/(4d^2)-centerpoint in O~(d^9) time, for a point set in R^d, where O~ hides polylogarithmic terms. We present an improved algorithm that computes (roughly) a 1/d^2-centerpoint with running time O~(d^7). While the improvements are (arguably) mild, it is the first progress on this well known problem in over twenty years. The new algorithm is simpler, and the running time bound follows by a simple random walk argument, which we believe to be of independent interest. We also present several new applications of the improved centerpoint algorithm.

Proceedings ArticleDOI
01 Jan 2019
TL;DR: In this article, the authors describe a fully dynamic data structure for the planar point location problem in the external memory model, which supports queries in O(log_B n(log log B n)^3 ) I/Os and updates in O (log B n( log log B N)^2 ) amortized I/O(n is the number of segments in the subdivision and B is the block size).
Abstract: In this paper we describe a fully-dynamic data structure for the planar point location problem in the external memory model. Our data structure supports queries in O(log_B n(log log_B n)^3)) I/Os and updates in O(log_B n(log log_B n)^2)) amortized I/Os, where n is the number of segments in the subdivision and B is the block size. This is the first dynamic data structure with almost-optimal query cost. For comparison all previously known results for this problem require O(log_B^2 n) I/Os to answer queries. Our result almost matches the best known upper bound in the internal-memory model.

Proceedings ArticleDOI
01 Jan 2019
TL;DR: It is shown that the Radon number characterizes the existence of weak nets in separable convexity spaces, and a boosting-type result is proved for weak $\epsilon$-nets.
Abstract: We show that the Radon number characterizes the existence of weak nets in separable convexity spaces (an abstraction of the Euclidean notion of convexity). The construction of weak nets when the Radon number is finite is based on Helly's property and on metric properties of VC classes. The lower bound on the size of weak nets when the Radon number is large relies on the chromatic number of the Kneser graph. As an application, we prove an amplification result for weak epsilon-nets.

Proceedings ArticleDOI
01 Jun 2019
TL;DR: In this article, it was shown that the number of comparisons necessary to find the linear order underlying a poset P is lower-bounded by the graph entropy of P. This lower bound was later improved to O(n log n).
Abstract: Let R = {R_1, R_2, ..., R_n} be a set of regions and let X = {x_1, x_2, ..., x_n} be an (unknown) point set with x_i in R_i. Region R_i represents the uncertainty region of x_i. We consider the following question: how fast can we establish order if we are allowed to preprocess the regions in R? The preprocessing model of uncertainty uses two consecutive phases: a preprocessing phase which has access only to R followed by a reconstruction phase during which a desired structure on X is computed. Recent results in this model parametrize the reconstruction time by the ply of R, which is the maximum overlap between the regions in R. We introduce the ambiguity A(R) as a more fine-grained measure of the degree of overlap in R. We show how to preprocess a set of d-dimensional disks in O(n log n) time such that we can sort X (if d=1) and reconstruct a quadtree on X (if d >= 1 but constant) in O(A(R)) time. If A(R) is sub-linear, then reporting the result dominates the running time of the reconstruction phase. However, we can still return a suitable data structure representing the result in O(A(R)) time. In one dimension, {R} is a set of intervals and the ambiguity is linked to interval entropy, which in turn relates to the well-studied problem of sorting under partial information. The number of comparisons necessary to find the linear order underlying a poset P is lower-bounded by the graph entropy of P. We show that if P is an interval order, then the ambiguity provides a constant-factor approximation of the graph entropy. This gives a lower bound of Omega(A(R)) in all dimensions for the reconstruction phase (sorting or any proximity structure), independent of any preprocessing; hence our result is tight. Finally, our results imply that one can approximate the entropy of interval graphs in O(n log n) time, improving the O(n^{2.5}) bound by Cardinal et al.

Proceedings ArticleDOI
01 Jan 2019
TL;DR: In this paper, a deterministic O(n log n+f(n) time algorithm for SSSP in weighted unit-disk graphs was proposed, where n is the number of vertices of the graph.
Abstract: We revisit a classical graph-theoretic problem, the single-source shortest-path (SSSP) problem, in weighted unit-disk graphs. We first propose an exact (and deterministic) algorithm which solves the problem in O(n log^2 n) time using linear space, where n is the number of the vertices of the graph. This significantly improves the previous deterministic algorithm by Cabello and Jejcic [CGTA'15] which uses O(n^{1+delta}) time and O(n^{1+delta}) space (for any small constant delta>0) and the previous randomized algorithm by Kaplan et al. [SODA'17] which uses O(n log^{12+o(1)} n) expected time and O(n log^3 n) space. More specifically, we show that if the 2D offline insertion-only (additively-)weighted nearest-neighbor problem with k operations (i.e., insertions and queries) can be solved in f(k) time, then the SSSP problem in weighted unit-disk graphs can be solved in O(n log n+f(n)) time. Using the same framework with some new ideas, we also obtain a (1+epsilon)-approximate algorithm for the problem, using O(n log n + n log^2(1/epsilon)) time and linear space. This improves the previous (1+epsilon)-approximate algorithm by Chan and Skrepetos [SoCG'18] which uses O((1/epsilon)^2 n log n) time and O((1/epsilon)^2 n) space. Because of the Omega(n log n)-time lower bound of the problem (even when approximation is allowed), both of our algorithms are almost optimal.

Proceedings ArticleDOI
01 Jun 2019
TL;DR: It is proved that every arrangement of disjoint line segments in the plane has a subset of size $\Omega(\sqrt{n})$ that admits a circumscribing polygon, which is the first improvement on this bound in 20 years.

Proceedings ArticleDOI
18 Jun 2019
TL;DR: In this paper, the authors considered the problem of deciding whether an unweighted graph embedded on a surface of genus g has a cut graph of length of length at most a given value.
Abstract: We prove essentially tight lower bounds, conditionally to the Exponential Time Hypothesis, for two fundamental but seemingly very different cutting problems on surface-embedded graphs: the Shortest Cut Graph problem and the Multiway Cut problem. A cut graph of a graph G embedded on a surface S is a subgraph of G whose removal from S leaves a disk. We consider the problem of deciding whether an unweighted graph embedded on a surface of genus g has a cut graph of length at most a given value. We prove a time lower bound for this problem of n^{Omega(g/log g)} conditionally to ETH. In other words, the first n^{O(g)}-time algorithm by Erickson and Har-Peled [SoCG 2002, Discr. Comput. Geom. 2004] is essentially optimal. We also prove that the problem is W[1]-hard when parameterized by the genus, answering a 17-year old question of these authors. A multiway cut of an undirected graph G with t distinguished vertices, called terminals, is a set of edges whose removal disconnects all pairs of terminals. We consider the problem of deciding whether an unweighted graph G has a multiway cut of weight at most a given value. We prove a time lower bound for this problem of n^{Omega(sqrt{gt + g^2}/log(gt))}, conditionally to ETH, for any choice of the genus g >=0 of the graph and the number of terminals t >=4. In other words, the algorithm by the second author [Algorithmica 2017] (for the more general multicut problem) is essentially optimal; this extends the lower bound by the third author [ICALP 2012] (for the planar case). Reductions to planar problems usually involve a grid-like structure. The main novel idea for our results is to understand what structures instead of grids are needed if we want to exploit optimally a certain value g of the genus.

Proceedings ArticleDOI
01 Jan 2019
TL;DR: In this paper, the complexity of polyline simplification with respect to Local-Hausdorff, Local-Frechet, and Global Frechet distance measures has been studied.
Abstract: In the classic polyline simplification problem we want to replace a given polygonal curve P, consisting of n vertices, by a subsequence P' of k vertices from P such that the polygonal curves P and P' are "close". Closeness is usually measured using the Hausdorff or Frechet distance. These distance measures can be applied globally, i.e., to the whole curves P and P', or locally, i.e., to each simplified subcurve and the line segment that it was replaced with separately (and then taking the maximum). We provide an O(n^3) time algorithm for simplification under Global-Frechet distance, improving the previous best algorithm by a factor of Omega(kn^2). We also provide evidence that in high dimensions cubic time is essentially optimal for all three problems (Local-Hausdorff, Local-Frechet, and Global-Frechet). Specifically, improving the cubic time to O(n^{3-epsilon} poly(d)) for polyline simplification over (R^d,L_p) for p = 1 would violate plausible conjectures. We obtain similar results for all p in [1,infty), p != 2. In total, in high dimensions and over general L_p-norms we resolve the complexity of polyline simplification with respect to Local-Hausdorff, Local-Frechet, and Global-Frechet, by providing new algorithms and conditional lower bounds.

Proceedings Article
01 Jan 2019
TL;DR: In this article, a lower bound of O(n/α) bits for the communication complexity of DTW distance was shown. But the lower bound was not satisfied for linear sketches, and it was later shown that such sketches must have size Θ(n) for the same problem.
Abstract: We resolve the randomized one-way communication complexity of Dynamic Time Warping (DTW) distance. We show that there is an efficient one-way communication protocol using $\widetilde{O}(n/\alpha)$ bits for the problem of computing an $\alpha$-approximation for DTW between strings $x$ and $y$ of length $n$, and we prove a lower bound of $\Omega(n / \alpha)$ bits for the same problem. Our communication protocol works for strings over an arbitrary metric of polynomial size and aspect ratio, and we optimize the logarithmic factors depending on properties of the underlying metric, such as when the points are low-dimensional integer vectors equipped with various metrics or have bounded doubling dimension. We also consider linear sketches of DTW, showing that such sketches must have size $\Omega(n)$.

Proceedings ArticleDOI
Peyman Afshani1
01 Jan 2019
TL;DR: The first improvement in the space-time trade-off of lower bounds for the orthogonal range searching problem in the semigroup model is reported, since Chazelle's result from 1990, and it is proved that m Q(n) = Omega(n (log n log log n)^{d-1}), which does not close the gap to the existing data structures, however, the analysis is tight.
Abstract: We report the first improvement in the space-time trade-off of lower bounds for the orthogonal range searching problem in the semigroup model, since Chazelle's result from 1990. This is one of the very fundamental problems in range searching with a long history. Previously, Andrew Yao's influential result had shown that the problem is already non-trivial in one dimension [Yao, 1982]: using m units of space, the query time Q(n) must be Omega(alpha(m,n) + n/(m-n+1)) where alpha(*,*) is the inverse Ackermann's function, a very slowly growing function. In d dimensions, Bernard Chazelle [Chazelle, 1990] proved that the query time must be Q(n) = Omega((log_beta n)^{d-1}) where beta = 2m/n. Chazelle's lower bound is known to be tight for when space consumption is "high" i.e., m = Omega(n log^{d+epsilon}n). We have two main results. The first is a lower bound that shows Chazelle's lower bound was not tight for "low space": we prove that we must have m Q(n) = Omega(n (log n log log n)^{d-1}). Our lower bound does not close the gap to the existing data structures, however, our second result is that our analysis is tight. Thus, we believe the gap is in fact natural since lower bounds are proven for idempotent semigroups while the data structures are built for general semigroups and thus they cannot assume (and use) the properties of an idempotent semigroup. As a result, we believe to close the gap one must study lower bounds for non-idempotent semigroups or building data structures for idempotent semigroups. We develope significantly new ideas for both of our results that could be useful in pursuing either of these directions.