scispace - formally typeset
Search or ask a question
Institution

Courant Institute of Mathematical Sciences

EducationNew York, New York, United States
About: Courant Institute of Mathematical Sciences is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Nonlinear system & Boundary value problem. The organization has 2414 authors who have published 7759 publications receiving 439773 citations. The organization is also known as: CIMS & New York University Department of Mathematics.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper defines a family of program test data selection criteria derived from data flow analysis techniques similar to those used in compiler optimization, arguing that currently used path selection criteria are inadequate.
Abstract: This paper defines a family of program test data selection criteria derived from data flow analysis techniques similar to those used in compiler optimization It is argued that currently used path selection criteria, which examine only the control flow of a program, are inadequate quate Our procedure associates with each point in a program at which a variable is defined, those points at which the value is used Several test data selection criteria, differing in the type and number of these associations, are defined and compared

1,084 citations

Journal ArticleDOI
12 Oct 2012-Cell
TL;DR: It is found that cooperatively bound BATF and IRF4 contribute to initial chromatin accessibility and, with STAT3, initiate a transcriptional program that is then globally tuned by the lineage-specifying TF RORγt, which plays a focal deterministic role at key loci.

1,021 citations

Journal ArticleDOI
TL;DR: SParse InversE Covariance Estimation for Ecological Association Inference is presented, a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that outperforms state-of-the-art methods to recover edges and network properties on synthetic data under a variety of scenarios.
Abstract: 16S ribosomal RNA (rRNA) gene and other environmental sequencing techniques provide snapshots of microbial communities, revealing phylogeny and the abundances of microbial populations across diverse ecosystems. While changes in microbial community structure are demonstrably associated with certain environmental conditions (from metabolic and immunological health in mammals to ecological stability in soils and oceans), identification of underlying mechanisms requires new statistical tools, as these datasets present several technical challenges. First, the abundances of microbial operational taxonomic units (OTUs) from amplicon-based datasets are compositional. Counts are normalized to the total number of counts in the sample. Thus, microbial abundances are not independent, and traditional statistical metrics (e.g., correlation) for the detection of OTU-OTU relationships can lead to spurious results. Secondly, microbial sequencing-based studies typically measure hundreds of OTUs on only tens to hundreds of samples; thus, inference of OTU-OTU association networks is severely under-powered, and additional information (or assumptions) are required for accurate inference. Here, we present SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues. SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. To reconstruct the network, SPIEC-EASI relies on algorithms for sparse neighborhood and inverse covariance selection. To provide a synthetic benchmark in the absence of an experimentally validated gold-standard network, SPIEC-EASI is accompanied by a set of computational tools to generate OTU count data from a set of diverse underlying network topologies. SPIEC-EASI outperforms state-of-the-art methods to recover edges and network properties on synthetic data under a variety of scenarios. SPIEC-EASI also reproducibly predicts previously unknown microbial associations using data from the American Gut project.

1,013 citations

Journal ArticleDOI
TL;DR: In this article, a sequence of radiating boundary conditions is constructed for wave-like equations, and it is proved that as the artificial boundary is moved to infinity the solution approaches the solution of the infinite domain as O(r exp -m-1/2) for the m-th boundary condition.
Abstract: In the numerical computation of hyperbolic equations it is not practical to use infinite domains; instead, the domain is truncated with an artificial boundary. In the present study, a sequence of radiating boundary conditions is constructed for wave-like equations. It is proved that as the artificial boundary is moved to infinity the solution approaches the solution of the infinite domain as O(r exp -m-1/2) for the m-th boundary condition. Numerical experiments with problems in jet acoustics verify the practical nature of the boundary conditions.

999 citations


Authors

Showing all 2441 results

NameH-indexPapersCitations
Xiang Zhang1541733117576
Yann LeCun121369171211
Benoît Roux12049362215
Alan S. Perelson11863266767
Thomas J. Spencer11653152743
Salvatore Torquato10455240208
Joel L. Lebowitz10175439713
Bo Huang9772840135
Amir Pnueli9433143351
Rolf D. Reitz9361136618
Michael Q. Zhang9337842008
Samuel Karlin8939641432
David J. Heeger8826838154
Luis A. Caffarelli8735332440
Weinan E8432322887
Network Information
Related Institutions (5)
Princeton University
146.7K papers, 9.1M citations

87% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

87% related

Carnegie Mellon University
104.3K papers, 5.9M citations

85% related

ETH Zurich
122.4K papers, 5.1M citations

85% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
202244
2021299
2020291
2019355
2018301