scispace - formally typeset
Search or ask a question
Institution

Indian Institutes of Science Education and Research

About: Indian Institutes of Science Education and Research is a based out in . It is known for research contribution in the topics: Gravitational wave & LIGO. The organization has 584 authors who have published 731 publications receiving 40599 citations. The organization is also known as: IISERs.


Papers
More filters
Journal Article
Adrian T. Lee1, P. A. R. Ade2, Y. Akiba, David Alonso2  +216 moreInstitutions (49)
TL;DR: The Litebird mission as discussed by the authors uses polarized fluctuations in the cosmic microwave background (CMB) to search for the signature of gravitational waves from inflation, potentially opening a window on the Universe a fraction of a second after the Big Bang.
Abstract: The Litebird mission will map polarized fluctuations in the cosmic microwave background (CMB) to search for the signature of gravitational waves from inflation, potentially opening a window on the Universe a fraction of a second after the Big Bang.

15 citations

Journal ArticleDOI
TL;DR: In this paper, the equality between macroscopic and microscopic (statistical) black hole entropy for a class of four dimensional non-supersymmetric black holes up to the first subleading order in their charges was shown.
Abstract: We show the equality between macroscopic and microscopic (statistical) black hole entropy for a class of four dimensional non-supersymmetric black holes in $$ \mathcal{N} $$ = 2 supergravity theory, up to the first subleading order in their charges. This solves a long standing entropy puzzle for this class of black holes. The macroscopic entropy has been computed in the presence of a newly derived higher-derivative supersymmetric invariant of [1], connected to the five dimensional supersymmetric Weyl squared Lagrangian. Microscopically, the crucial role in obtaining the equivalence is played by the anomalous gauge gravitational Chern-Simons term.

15 citations

Journal ArticleDOI
TL;DR: In this paper, pseudosections are calculated for the peak-pressure assemblage garnet+omphacite+phengite+amphibole+dolomite quartz+rutile.
Abstract: Abstract Phengite-bearing eclogites occur in the Richarddalen Complex of NW Spitsbergen, Arctic Caledonides. Phase equilibrium modelling and conventional geothermobarometry have been used to constrain the metamorphic evolution of these eclogites. Pseudosections are calculated for the peak-pressure assemblage garnet+omphacite+phengite+amphibole+dolomite quartz+rutile. Compositional isopleths for garnet and phengite constrain the pressure–temperature (P–T) conditions to 1.9–2.0 GPa and 720–730 °C, in good agreement with the results obtained from conventional thermobarometry (720–740 °C and 2.4–2.5 GPa). Further P–T pseudosection modelling of clinopyroxene+plagioclase±amphibole±clinozoisite symplectites after omphacite suggests that decompression to c. 1.2 GPa occurred along a steep exhumation path. The eclogite-bearing Richarddalen Complex constitutes the uppermost unit of a simple stack of thrust sheets where the metamorphic grade is increasing structurally upwards in the pile. Thrusting is the favoured uplift mechanism for the initial syn-orogenic exhumation to lower crustal levels. Constrictional north–south stretching in a transpressional regime is interpreted to be responsible for the final exhumation of the assembled stack of thrust sheets. Late Silurian–Early Devonian conglomerates were deposited directly on the eclogite-bearing gneisses of the Richarddalen Complex, and mark the end of exhumation of the nappe stack.

15 citations

Journal ArticleDOI
TL;DR: In this article, the spectral and timing analysis of SAX J1748.9-2021 performed on AstroSat data taken during its faint and short outburst of 2017 is presented.
Abstract: SAX J1748.9-2021 is a transient accretion powered millisecond X-ray pulsar located in the Globular cluster NGC 6440. We report on the spectral and timing analysis of SAX J1748.9-2021 performed on AstroSat data taken during its faint and short outburst of 2017. We derived the best-fitting orbital solution for the 2017 outburst and obtained an average local spin frequency of 442.361098(3) Hz. The pulse profile obtained from 3-7 keV and 7-20 keV energy bands suggest constant fractional amplitude ~0.5% for fundamental component, contrary to previously observed energy pulse profile dependence. Our AstroSat observations revealed the source to be in a hard spectral state. The 1-50 keV spectrum from SXT and LAXPC on-board AstroSat can be well described with a single temperature blackbody and thermal Comptonization. Moreover, we found that the combined spectra from XMM-Newton (EPIC-PN) and AstroSat (SXT+LAXPC) indicated the presence of reflection features in the form of iron (Fe K${\alpha}$) line that we modeled with the reflection model xillvercp. One of the two X-ray burst observed during the AstroSat/LAXPC observation showed hard X-ray emission (>30 keV) due to Compton up-scattering of thermal photons by the hot corona. Time resolved analysis performed on the bursts revealed complex evolution in emission radius of blackbody for second burst suggestive of mild photospheric radius expansion.

15 citations


Authors

Showing all 584 results

NameH-indexPapersCitations
Archana Pai8527956896
M. Saleem8228554132
V. Gayathri6515030208
M. Saleem5619815036
S. Nandan5433711908
Sujit K. Ghosh5315211048
Kankan Bhattacharyya502269752
K. Haris4810013006
Soumen Basak479111540
Avinash Khare4334410129
N. Mazumder42749035
Sunil Mukhi411656098
Sanjit Konar411324721
Manikoth M. Shaijumon40857155
Monika Sharma362384412
Network Information
Related Institutions (5)
Indian Institute of Science
62.4K papers, 1.2M citations

83% related

Max Planck Society
406.2K papers, 19.5M citations

82% related

University of Paris-Sud
52.7K papers, 2.1M citations

81% related

Weizmann Institute of Science
54.5K papers, 3M citations

81% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20224
2021117
2020115
201982
201882
201771