scispace - formally typeset
Search or ask a question
Institution

International Institute of Information Technology, Hyderabad

EducationHyderabad, India
About: International Institute of Information Technology, Hyderabad is a education organization based out in Hyderabad, India. It is known for research contribution in the topics: Computer science & Authentication. The organization has 2048 authors who have published 3677 publications receiving 45319 citations. The organization is also known as: IIIT Hyderabad & International Institute of Information Technology (IIIT).


Papers
More filters
Journal ArticleDOI
TL;DR: A novel chaotic maps-based user authentication with key agreement protocol for multi-server environments that is provably secure in the random oracle model under the chaotic-maps based computational Diffie-Hellman assumption and compared with Lee et al.
Abstract: The widespread popularity of the computer networks has triggered concerns about information security. Password-based user authentication with key agreement protocols have drawn attentions since it provides proper authentication of a user before granting access right to services, and then ensure secure communication over insecure channels. Recently, Lee et al. pointed out different security flaws on Tsaur et al.'s multi-server user authentication protocol, and they further proposed an extended chaotic maps-based user authentication with key agreement protocol for multi-server environments. However, we observed that Lee et al.'s protocol has some functionality and security flaws, i.e., it is inefficient in detection of unauthorized login and it does not support password change mechanism. Besides, their protocol is vulnerable to registration center spoofing attack and server spoofing attack. In order to remedy the aforementioned flaws, we proposed a novel chaotic maps-based user authentication with key agreement protocol for multi-server environments. The proposed protocol is provably secure in the random oracle model under the chaotic-maps based computational Diffie-Hellman assumption. In addition, we analyzed our protocol using BAN logic model. We also compared our protocol with Lee et al.'s protocol in aspects of computation cost, functionalities and securities.

42 citations

Journal ArticleDOI
22 Feb 2020-Sensors
TL;DR: This paper analyzes the recent anonymous authentication scheme for smart home environments with provable security, addresses the security drawbacks and presents a more secure and robust authentication scheme that overcomes the drawbacks found in the analyzed scheme, while incorporating its advantages too.
Abstract: In recent years, the Internet of Things (IoT) has exploded in popularity. The smart home, as an important facet of IoT, has gained its focus for smart intelligent systems. As users communicate with smart devices over an insecure communication medium, the sensitive information exchanged among them becomes vulnerable to an adversary. Thus, there is a great thrust in developing an anonymous authentication scheme to provide secure communication for smart home environments. Most recently, an anonymous authentication scheme for smart home environments with provable security has been proposed in the literature. In this paper, we analyze the recent scheme to highlight its several vulnerabilities. We then address the security drawbacks and present a more secure and robust authentication scheme that overcomes the drawbacks found in the analyzed scheme, while incorporating its advantages too. Finally, through a detailed comparative study, we demonstrate that the proposed scheme provides significantly better security and more functionality features with comparable communication and computational overheads with similar schemes.

42 citations

Journal ArticleDOI
TL;DR: An exhaustive comparative study unveils that AAS-IoTSG supports better security and functionality features and requires less communication and computation overheads as compared to the existing state-of-art authentication mechanisms in smart grid systems.
Abstract: Recent technological evolution in the Internet of Things (IoT) age supports better solutions to magnify the management of the power quality and reliability concerns, and imposes the measures of a smart grid. In smart grid environment, a smart meter needs to securely access the services from a service provider via insecure channel. However, since the communication is via public channel, it imposes various security threats by an adversary. To deal with this, in this article we design a new anonymous signature-based authenticated key exchange scheme for IoT-enabled smart grid environment, called AAS-IoTSG. The dynamic smart meter addition phase is also permissible in AAS-IoTSG after initial deployment. The security of AAS-IoTSG has been tested rigorously using formal security analysis under the real-or-random (ROR) model which is one of the broadly-accepted standard random oracle models, formal security verification under the broadly-used automated validation of Internet security protocols and applications (AVISPA) tool and also using informal security analysis. Finally, an exhaustive comparative study unveils that AAS-IoTSG supports better security and functionality features and requires less communication and computation overheads as compared to the existing state-of-art authentication mechanisms in smart grid systems.

42 citations

Proceedings ArticleDOI
13 Nov 2009
TL;DR: This work proposes a clustering-based method to segment exudates, using multi-space clustering, and colorspace features, and achieves an accuracy of 89.7% and positive predictive value of 87%.
Abstract: Exudates are a class of lipid retinal lesions visible through optical fundus imaging, and indicative of diabetic retinopathy. We propose a clustering-based method to segment exudates, using multi-space clustering, and colorspace features. The method was evaluated on a set of 89 images from a publicly available dataset, and achieves an accuracy of 89.7% and positive predictive value of 87%.

42 citations

Journal ArticleDOI
TL;DR: This work proposes dynamic multi-frame processing schedule which efficiently utilizes the layered-LDPC decoding with minimum pipeline stages and efficient comparison techniques for both column and row layered schedule and rejection-based high-speed circuits to compute the two minimum values from multiple inputs required for row layered processing of hardware-friendly min-sum decoding algorithm.
Abstract: This paper presents architecture of block-level-parallel layered decoder for irregular LDPC code. It can be reconfigured to support various block lengths and code rates of IEEE 802.11n (WiFi) wireless-communication standard. We have proposed efficient comparison techniques for both column and row layered schedule and rejection-based high-speed circuits to compute the two minimum values from multiple inputs required for row layered processing of hardware-friendly min-sum decoding algorithm. The results show good speed with lower area as compared to state-of-the-art circuits. Additionally, this work proposes dynamic multi-frame processing schedule which efficiently utilizes the layered-LDPC decoding with minimum pipeline stages. The suggested LDPC-decoder architecture has been synthesized and post-layout simulated in 90 nm-CMOS process. This decoder occupies 5.19 ${\rm mm}^{2}$ area and supports multiple code rates like 1/2, 2/3, 3/4 & 5/6 as well as block-lengths of 648, 1296 & 1944. At a clock frequency of 336 MHz, the proposed LDPC-decoder has achieved better throughput of 5.13 Gbps and energy efficiency of 0.01 nJ/bits/iterations, as compared to the similar state-of-the-art works.

42 citations


Authors

Showing all 2066 results

NameH-indexPapersCitations
Ravi Shankar6667219326
Joakim Nivre6129517203
Aravind K. Joshi5924916417
Ashok Kumar Das562789166
Malcolm F. White5517210762
B. Yegnanarayana5434012861
Ram Bilas Pachori481828140
C. V. Jawahar454799582
Saurabh Garg402066738
Himanshu Thapliyal362013992
Monika Sharma362384412
Ponnurangam Kumaraguru332696849
Abhijit Mitra332407795
Ramanathan Sowdhamini332564458
Helmut Schiessel321173527
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

90% related

Facebook
10.9K papers, 570.1K citations

89% related

Google
39.8K papers, 2.1M citations

89% related

Carnegie Mellon University
104.3K papers, 5.9M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
202229
2021373
2020440
2019367
2018364