scispace - formally typeset
Search or ask a question
Institution

Mary Bird Perkins Cancer Center

Healthcare
About: Mary Bird Perkins Cancer Center is a based out in . It is known for research contribution in the topics: Dosimetry & Tomotherapy. The organization has 114 authors who have published 186 publications receiving 3062 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The basic aspects of the physics of proton therapy are reviewed, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design.
Abstract: The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy.

455 citations

Journal ArticleDOI
TL;DR: The procedures described in this report should assist a qualified medical physicist in either measuring a complete set of beam data, or in verifying a subset of data before initial use or for periodic quality assurance measurements.
Abstract: For commissioning a linear accelerator for clinical use, medical physicists are faced with many challenges including the need for precision, a variety of testing methods, data validation, the lack of standards, and time constraints. Since commissioning beam data are treated as a reference and ultimately used by treatment planning systems, it is vitally important that the collected data are of the highest quality to avoid dosimetric and patient treatment errors that may subsequently lead to a poor radiation outcome. Beam data commissioning should be performed with appropriate knowledge and proper tools and should be independent of the person collecting the data. To achieve this goal, Task Group 106 (TG-106) of the Therapy Physics Committee of the American Association of Physicists in Medicine was formed to review the practical aspects as well as the physics of linear accelerator commissioning. The report provides guidelines and recommendations on the proper selection of phantoms and detectors, setting up of a phantom for data acquisition (both scanning and no-scanning data), procedures for acquiring specific photon and electron beam parameters and methods to reduce measurement errors (<1%), beam data processing and detector size convolution for accurate profiles. The TG-106 also provides a brief.discussion on the emerging trend in Monte Carlo simulation techniques in photon and electron beam commissioning. The procedures described in this report should assist a qualified medical physicist in either measuring a complete set of beam data, or in verifying a subset of data before initial use or for periodic quality assurance measurements. By combining practical experience with theoretical discussion, this document sets a new standard for beam data commissioning.

335 citations

Journal ArticleDOI
TL;DR: This review looks at many of the important contributions of physics and dosimetry to the development and utilization of electron beam therapy, including electron treatment machines, dose specification and calibration, dose measurement, electron transport calculations, treatment and treatment-planning tools, and clinical utilization, including special procedures.
Abstract: For over 50 years, electron beams have been an important modality for providing an accurate dose of radiation to superficial cancers and disease and for limiting the dose to underlying normal tissues and structures. This review looks at many of the important contributions of physics and dosimetry to the development and utilization of electron beam therapy, including electron treatment machines, dose specification and calibration, dose measurement, electron transport calculations, treatment and treatment-planning tools, and clinical utilization, including special procedures. Also, future changes in the practice of electron therapy resulting from challenges to its utilization and from potential future technology are discussed.

185 citations

Journal ArticleDOI
TL;DR: The report will provide guidelines on risk assessment approaches with emphasis on failure mode and effect analysis (FMEA) and an achievable QM program based on risk analysis, based on estimates of clinical outcome, risk assessment, and failure modes.
Abstract: The increasing complexity of modern radiation therapy planning and delivery techniques challenges traditional prescriptive quality control and quality assurance programs that ensure safety and reliability of treatment planning and delivery systems under all clinical scenarios. Until now quality management (QM) guidelines published by concerned organizations (e.g., American Association of Physicists in Medicine [AAPM], European Society for Therapeutic Radiology and Oncology [ESTRO], International Atomic Energy Agency [IAEA]) have focused on monitoring functional performance of radiotherapy equipment by measurable parameters, with tolerances set at strict but achievable values. In the modern environment, however, the number and sophistication of possible tests and measurements have increased dramatically. There is a need to prioritize QM activities in a way that will strike a balance between being reasonably achievable and optimally beneficial to patients. A systematic understanding of possible errors over the course of a radiation therapy treatment and the potential clinical impact of each is needed to direct limited resources in such a way to produce maximal benefit to the quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and is developing a framework for designing QM activities, and hence allocating resources, based on estimates of clinical outcome, risk assessment, and failure modes. The report will provide guidelines on risk assessment approaches with emphasis on failure mode and effect analysis (FMEA) and an achievable QM program based on risk analysis. Examples of FMEA to intensity-modulated radiation therapy and high-dose-rate brachytherapy are presented. Recommendations on how to apply this new approach to individual clinics and further research and development will also be discussed.

150 citations

Journal ArticleDOI
TL;DR: Some radiomics features are robust to the noise and poor image quality of CBCT images when the imaging protocol is consistent, relative changes in the features are used, and patients are limited to those with less than 1 cm of motion.
Abstract: Purpose: Increasing evidence suggests radiomics features extracted from computed tomography (CT) images may be useful in prognostic models for patients with nonsmall cell lung cancer (NSCLC). This study was designed to determine whether such features can be reproducibly obtained from cone-beam CT (CBCT) images taken using medical Linac onboard-imaging systems in order to track them through treatment. Methods: Test-retest CBCT images of ten patients previously enrolled in a clinical trial were retrospectively obtained and used to determine the concordance correlation coefficient (CCC) for 68 different texture features. The volume dependence of each feature was also measured using the Spearman rank correlation coefficient. Features with a high reproducibility (CCC > 0.9) that were not due to volume dependence in the patient test-retest set were further examined for their sensitivity to differences in imaging protocol, level of scatter, and amount of motion by using two phantoms. The first phantom was a texture phantom composed of rectangular cartridges to represent different textures. Features were measured from two cartridges, shredded rubber and dense cork, in this study. The texture phantom was scanned with 19 different CBCT imagers to establish the features’ interscanner variability. The effect of scatter on these features was studied by surrounding the same texture phantom with scattering material (rice and solid water). The effect of respiratory motion on these features was studied using a dynamic-motion thoracic phantom and a specially designed tumor texture insert of the shredded rubber material. The differences between scans acquired with different Linacs and protocols, varying amounts of scatter, and with different levels of motion were compared to the mean intrapatient difference from the test-retest image set. Results: Of the original 68 features, 37 had a CCC >0.9 that was not due to volume dependence. When the Linac manufacturer and imaging protocol were kept consistent, 4–13 of these 37 features passed our criteria for reproducibility more than 50% of the time, depending on the manufacturer-protocol combination. Almost all of the features changed substantially when scatter material was added around the phantom. For the dense cork, 23 features passed in the thoracic scans and 11 features passed in the head scans when the differences between one and two layers of scatter were compared. Using the same test for the shredded rubber, five features passed the thoracic scans and eight features passed the head scans. Motion substantially impacted the reproducibility of the features. With 4 mm of motion, 12 features from the entire volume and 14 features from the center slice measurements were reproducible. With 6–8 mm of motion, three features (Laplacian of Gaussian filtered kurtosis, gray-level nonuniformity, and entropy), from the entire volume and seven features (coarseness, high gray-level run emphasis, gray-level nonuniformity, sum-average, information measure correlation, scaled mean, and entropy) from the center-slice measurements were considered reproducible. Conclusions: Some radiomics features are robust to the noise and poor image quality of CBCT images when the imaging protocol is consistent, relative changes in the features are used, and patients are limited to those with less than 1 cm of motion.

144 citations


Authors

Showing all 114 results

NameH-indexPapersCitations
Rui Zhang1512625107917
Huamin Wang7628920411
Snehal G. Patel7336716905
Charles E. Wood5652413680
Edison Liang432466973
Wayne D. Newhauser421665157
Michelle A. Mathiason321433291
John A. Antolak29765156
Jonas D. Fontenot25691861
Indra J. Das201381355
David J. McLaughlin191061572
Brent Parker1432646
Oleg N Vassiliev1348763
John P. Gibbons13371118
Kenneth R. Hogstrom13751215
Network Information
Related Institutions (5)
Fox Chase Cancer Center
14K papers, 867.5K citations

81% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

78% related

Sunnybrook Health Sciences Centre
15.2K papers, 523K citations

78% related

Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

77% related

Roswell Park Cancer Institute
19.5K papers, 944.8K citations

75% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20221
202115
202014
20195
201813
201714