scispace - formally typeset
Search or ask a question
Institution

Rolls-Royce Holdings

CompanyDerby, United Kingdom
About: Rolls-Royce Holdings is a company organization based out in Derby, United Kingdom. It is known for research contribution in the topics: Turbine & Gas compressor. The organization has 4027 authors who have published 6305 publications receiving 80517 citations. The organization is also known as: Rolls-Royce Holdings plc.


Papers
More filters
Patent
26 Aug 1987
TL;DR: In this paper, an annular connecting ring fairing a channel section with radially inner and outer flanges to which the forward end of the fabricated main body is secured at the peaks and troughs of its lobes.
Abstract: A bypass gas turbine has a mixer nozzle at the turbine outlet with a main body, of lobed cross-section to promote mixing of the turbine gas flow and the bypass flow. For a transition at the forward end of the nozzle from the essentially circular boundary between the two flows preceding the turbine outlet to said lobed form, there is an annular connecting ring fairing a channel section with radially inner and outer flanges to which the forward end of the fabricated main body is secured at the peaks and troughs of its lobes. Fairing elements are secured to the flanges to blend with the lobed form of the nozzle body. Because the nozzle body has a lobed form along its entire length it can be constructed as a single skin fabrication while retaining sufficient stiffness to prevent unacceptable deformations from the pressure forces on it under reverse thrust conditions.

33 citations

Patent
11 May 1993
TL;DR: In this article, a gas turbine engine tip clearance between rotor blades and an encircling shroud liner is controlled by moving the shroud liner radially to match the thermal and centrifugal growth of the rotor assembly.
Abstract: In a gas turbine engine tip clearance between rotor blades and an encircling shroud liner is controlled by moving the shroud liner radially to match the thermal and centrifugal growth of the rotor assembly. The shroud liner segments are suspended between two axially displaced control rings located in a passageway carrying air ducted from the compressor. One control ring responds very quickly to changes in gas temperature corresponding to centrifugal growth and blade thermal growth. The other ring responds very much more slowly and corresponds to the thermal growth of the disc. The shroud liner segments are suspended from the control rings to adopt a position that constitutes the average between the growth positions of the two control rings.

33 citations

Journal ArticleDOI
TL;DR: In this article, the performance of a high-lift profile for low pressure turbines at Reynolds numbers lower than in previous investigations was investigated in a closed-circuit continuous wind tunnel where the Reynolds number and Mach number can be fixed independently.
Abstract: This paper presents a study of the performance of a high-lift profile for low pressure turbines at Reynolds numbers lower than in previous investigations. By following the results of Coull et al. (2008, "Velocity Distributions for Low Pressure Turbines," ASME Paper No. GT2008-50589) on the design of high-lift airfoils, the profile is forward loaded. The separate and combined effects of roughness and wake passing are compared. On a front loaded blade, the effect of incidence becomes more important and the consequences in terms of cascade losses, is evaluated. The experimental investigation was carried out in the high speed wind tunnel of Whittle Laboratory, University of Cambridge. This is a closed-circuit continuous wind tunnel where the Reynolds number and Mach number can be fixed independently. The unsteadiness caused by wake passing in front of the blades is reproduced using a wake generator with rotating bars. The results confirm that the beneficial effect of unsteadiness on losses is present even at the lowest Reynolds number examined (Re 3 = 20,000). This beneficial effect is reduced at positive incidence. With a front loaded airfoil and positive incidence, the transition occurs on the suction side close to the leading edge and this results in higher losses. This has been found valid for the entire Reynolds range investigated (20,000 ≤ Re 3 140,000). Roughening the surface also had a beneficial effect on the losses but this effect vanishes at the lower Reynolds numbers, i.e., (Re 3 ≤ 30,000), where the surface becomes hydraulically smooth. The present study suggests that a blade with as-cast surface roughness has a lower loss than a polished one.

33 citations

Journal ArticleDOI
TL;DR: In this article, the effect of carbon and hafnium on the microporosity of a single crystal superalloy RR2086 was investigated and the results provided additional evidence that carbon has a positive effect on the alleviation of microshrinkage in this alloy system.

33 citations

Proceedings ArticleDOI
01 Jan 2008
TL;DR: In this paper, the authors present the results of a number of studies, both experimental and computational, into the potential aerodynamic benefits of applying PEWs in axial flow compressors.
Abstract: Non-axisymmetric end wall profiling is now a well established design methodology in axial flow turbines, used principally to improve their aerodynamic efficiency by reducing secondary loss. However, profiled end walls (PEWs) have yet to find an in-service application in a gas turbine compressor. This two-part paper presents the results of a number of studies, both experimental and computational, into the potential aerodynamic benefits of applying PEWs in axial flow compressors. The first paper reports research carried out using a linear compressor stator cascade at Cambridge University. The datum geometry was based on previous research with this cascade. The PEW geometry was generated using a method that had been proven to reduce secondary loss in turbine blade rows. Data was taken on the datum and PEW geometries in the form of exit area traverses and surface static pressure measurements. The experiments demonstrated improvements to the exit flow field in terms of local reductions in the loss and under-turning in the secondary flow region due to the PEW. It was found that the original design method had over estimated the benefits of the PEW. The datum and PEW geometries were further analysed using state-of-the-art CFD (Computational Fluid Dynamics). The CFD is shown to achieve very good agreement with measurement at the design condition and a reasonable, qualitative match at off-design. It is concluded that the PEW geometry, though not optimum, effected predictable changes to the compressor stator flow field. The mechanisms for these effects are discussed and conclusions are drawn for taking the work forward. In particular, a mechanism is identified whereby the PEW enhances the cross-flow on the end wall and the subsequent radial migration of the secondary flow adjacent to the aerofoil suction surface. The control of corner stall by means of this flow mechanism is highlighted as a possible area for further investigation. This is followed up in the second paper, which presents a computational study of applying PEWs to a multi-stage HP compressor.Copyright © 2008 by Rolls-Royce plc

32 citations


Authors

Showing all 4029 results

NameH-indexPapersCitations
David A. Jackson136109568352
David Harvey11573894678
David J. Williams107206062440
Michael Walsh10296342231
Zi-Qiang Zhu89104933963
H. K. D. H. Bhadeshia7747627588
Nigel P. Brandon7141218511
Sanjib Kumar Panda6463313808
Fabrizio Scarpa6346713559
Robert J.K. Wood5631410439
Howard P. Hodson502267118
Martin Rose4924110299
Andy J. Keane4630113753
Stephen J. Finney452636821
D.M. Vilathgamuwa452127827
Network Information
Related Institutions (5)
Glenn Research Center
31K papers, 450.6K citations

83% related

General Motors
63.1K papers, 986K citations

82% related

Beihang University
73.5K papers, 975.6K citations

80% related

Langley Research Center
37.6K papers, 821.6K citations

79% related

Missouri University of Science and Technology
21.1K papers, 462.5K citations

79% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20228
2021191
2020367
2019318
2018274