scispace - formally typeset
Search or ask a question
Institution

Tsinghua University

EducationBeijing, Beijing, China
About: Tsinghua University is a education organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: Computer science & Catalysis. The organization has 129978 authors who have published 200506 publications receiving 4549561 citations. The organization is also known as: Tsinghua & THU.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey of NMF algorithms can be found in this paper, where the principles, basic models, properties, and algorithms along with its various modifications, extensions, and generalizations are summarized systematically.
Abstract: Nonnegative Matrix Factorization (NMF), a relatively novel paradigm for dimensionality reduction, has been in the ascendant since its inception. It incorporates the nonnegativity constraint and thus obtains the parts-based representation as well as enhancing the interpretability of the issue correspondingly. This survey paper mainly focuses on the theoretical research into NMF over the last 5 years, where the principles, basic models, properties, and algorithms of NMF along with its various modifications, extensions, and generalizations are summarized systematically. The existing NMF algorithms are divided into four categories: Basic NMF (BNMF), Constrained NMF (CNMF), Structured NMF (SNMF), and Generalized NMF (GNMF), upon which the design principles, characteristics, problems, relationships, and evolution of these algorithms are presented and analyzed comprehensively. Some related work not on NMF that NMF should learn from or has connections with is involved too. Moreover, some open issues remained to be solved are discussed. Several relevant application areas of NMF are also briefly described. This survey aims to construct an integrated, state-of-the-art framework for NMF concept, from which the follow-up research may benefit.

712 citations

Journal ArticleDOI
01 Jul 2005-Cell
TL;DR: The structure correlates the protein environments around prosthetic groups with their unique midpoint redox potentials and provides a bona fide model for study of the mitochondrial respiratory system and human mitochondrial diseases related to mutations in this complex.

712 citations

Journal ArticleDOI
01 Aug 2019
TL;DR: Robust model-based charging optimisation strategies are identified as key to enabling fast charging in all conditions, with a particular focus on techniques capable of achieving high speeds and good temperature homogeneities.
Abstract: In the recent years, lithium-ion batteries have become the battery technology of choice for portable devices, electric vehicles and grid storage. While increasing numbers of car manufacturers are introducing electrified models into their offering, range anxiety and the length of time required to recharge the batteries are still a common concern. The high currents needed to accelerate the charging process have been known to reduce energy efficiency and cause accelerated capacity and power fade. Fast charging is a multiscale problem, therefore insights from atomic to system level are required to understand and improve fast charging performance. The present paper reviews the literature on the physical phenomena that limit battery charging speeds, the degradation mechanisms that commonly result from charging at high currents, and the approaches that have been proposed to address these issues. Special attention is paid to low temperature charging. Alternative fast charging protocols are presented and critically assessed. Safety implications are explored, including the potential influence of fast charging on thermal runaway characteristics. Finally, knowledge gaps are identified and recommendations are made for the direction of future research. The need to develop reliable onboard methods to detect lithium plating and mechanical degradation is highlighted. Robust model-based charging optimisation strategies are identified as key to enabling fast charging in all conditions. Thermal management strategies to both cool batteries during charging and preheat them in cold weather are acknowledged as critical, with a particular focus on techniques capable of achieving high speeds and good temperature homogeneities.

712 citations

Journal ArticleDOI
TL;DR: A carbonized plain-weave silk fabric is fabricated into wearable and robust strain sensors, which can be stretched up to 500% and show high sensitivity in a wide strain range.
Abstract: A carbonized plain-weave silk fabric is fabricated into wearable and robust strain sensors, which can be stretched up to 500% and show high sensitivity in a wide strain range. This sensor can be assembled into wearable devices for detection of both large and subtle human activities, showing great potential for monitoring human motions and personal health.

711 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that MoTe2 is a type-II Weyl semimetal, hosting Weyl fermions that have no counterpart in high-energy physics.
Abstract: Observations of topological surface states provide strong evidence that MoTe2 is a type-II Weyl semimetal, hosting Weyl fermions that have no counterpart in high-energy physics.

711 citations


Authors

Showing all 131304 results

NameH-indexPapersCitations
Yi Cui2201015199725
Yi Chen2174342293080
Jing Wang1844046202769
Joel Schwartz1831149109985
Xiaohui Fan183878168522
Jie Zhang1784857221720
Lei Jiang1702244135205
Yang Gao1682047146301
Qiang Zhang1611137100950
Wei Li1581855124748
Rui Zhang1512625107917
Zhenwei Yang150956109344
Philip S. Yu1481914107374
Hui-Ming Cheng147880111921
Yoshio Bando147123480883
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

95% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023536
20223,110
202116,998
202016,972
201916,082