scispace - formally typeset
Search or ask a question
Institution

Tsinghua University

EducationBeijing, Beijing, China
About: Tsinghua University is a education organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: Computer science & Catalysis. The organization has 129978 authors who have published 200506 publications receiving 4549561 citations. The organization is also known as: Tsinghua & THU.


Papers
More filters
Journal ArticleDOI
TL;DR: SDSS-IV as mentioned in this paper is a project encompassing three major spectroscopic programs: the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and the Time Domain Spectroscopy Survey (TDSS).
Abstract: We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median $z\sim 0.03$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $z\sim 0.6$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.

1,200 citations

Journal ArticleDOI
18 Jun 2016
TL;DR: This work proposes a novel PIM architecture, called PRIME, to accelerate NN applications in ReRAM based main memory, and distinguishes itself from prior work on NN acceleration, with significant performance improvement and energy saving.
Abstract: Processing-in-memory (PIM) is a promising solution to address the "memory wall" challenges for future computer systems. Prior proposed PIM architectures put additional computation logic in or near memory. The emerging metal-oxide resistive random access memory (ReRAM) has showed its potential to be used for main memory. Moreover, with its crossbar array structure, ReRAM can perform matrix-vector multiplication efficiently, and has been widely studied to accelerate neural network (NN) applications. In this work, we propose a novel PIM architecture, called PRIME, to accelerate NN applications in ReRAM based main memory. In PRIME, a portion of ReRAM crossbar arrays can be configured as accelerators for NN applications or as normal memory for a larger memory space. We provide microarchitecture and circuit designs to enable the morphable functions with an insignificant area overhead. We also design a software/hardware interface for software developers to implement various NNs on PRIME. Benefiting from both the PIM architecture and the efficiency of using ReRAM for NN computation, PRIME distinguishes itself from prior work on NN acceleration, with significant performance improvement and energy saving. Our experimental results show that, compared with a state-of-the-art neural processing unit design, PRIME improves the performance by ~2360× and the energy consumption by ~895×, across the evaluated machine learning benchmarks.

1,197 citations

Posted Content
TL;DR: In this article, the authors address the problem of 3D reconstruction from a single image, generating a straight-forward form of output -point cloud coordinates. But the groundtruth shape for an input image may be ambiguous, and they design architecture, loss function and learning paradigm that are novel and effective.
Abstract: Generation of 3D data by deep neural network has been attracting increasing attention in the research community. The majority of extant works resort to regular representations such as volumetric grids or collection of images; however, these representations obscure the natural invariance of 3D shapes under geometric transformations and also suffer from a number of other issues. In this paper we address the problem of 3D reconstruction from a single image, generating a straight-forward form of output -- point cloud coordinates. Along with this problem arises a unique and interesting issue, that the groundtruth shape for an input image may be ambiguous. Driven by this unorthodox output form and the inherent ambiguity in groundtruth, we design architecture, loss function and learning paradigm that are novel and effective. Our final solution is a conditional shape sampler, capable of predicting multiple plausible 3D point clouds from an input image. In experiments not only can our system outperform state-of-the-art methods on single image based 3d reconstruction benchmarks; but it also shows a strong performance for 3d shape completion and promising ability in making multiple plausible predictions.

1,194 citations

Journal ArticleDOI
Xue-Qiang Zhang1, Xin-Bing Cheng1, Xiang Chen1, Chong Yan1, Qiang Zhang1 
TL;DR: In this article, fluoroethylene carbonate (FEC) additives are used to form a LiF-rich solid electrolyte interphase (SEI) layer, which is compact and stable, and thus beneficial to obtain a uniform morphology of Li deposits.
Abstract: Lithium (Li) metal has been considered as an important substitute for the graphite anode to further boost the energy density of Li-ion batteries. However, Li dendrite growth during Li plating/stripping causes safety concern and poor lifespan of Li metal batteries (LMB). Herein, fluoroethylene carbonate (FEC) additives are used to form a LiF-rich solid electrolyte interphase (SEI). The FEC-induced SEI layer is compact and stable, and thus beneficial to obtain a uniform morphology of Li deposits. This uniform and dendrite-free morphology renders a significantly improved Coulombic efficiency of 98% within 100 cycles in a Li | Cu half-cell. When the FEC-protected Li metal anode matches a high-loading LiNi0.5Co0.2Mn0.3O2 (NMC) cathode (12 mg cm−2), a high initial capacity of 154 mAh g−1 (1.9 mAh cm−2) at 180.0 mA g−1 is obtained. This LMB with conversion-type Li metal anode and intercalation-type NMC cathode affords an emerging energy storage system to probe the energy chemistry of Li metal protection and demonstrates the material engineering of batteries with very high energy density.

1,192 citations


Authors

Showing all 131304 results

NameH-indexPapersCitations
Yi Cui2201015199725
Yi Chen2174342293080
Jing Wang1844046202769
Joel Schwartz1831149109985
Xiaohui Fan183878168522
Jie Zhang1784857221720
Lei Jiang1702244135205
Yang Gao1682047146301
Qiang Zhang1611137100950
Wei Li1581855124748
Rui Zhang1512625107917
Zhenwei Yang150956109344
Philip S. Yu1481914107374
Hui-Ming Cheng147880111921
Yoshio Bando147123480883
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

95% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023536
20223,110
202116,998
202016,972
201916,082