scispace - formally typeset
Search or ask a question

Showing papers in "Aeronautical Journal in 2020"


Journal ArticleDOI
TL;DR: The RemoveDEBRIS mission has been the first mission to successfully demonstrate, in-orbit, a series of technologies that can be used for the active removal of space debris as discussed by the authors, which was sponsored by a grant from the EC.
Abstract: The RemoveDEBRIS mission has been the first mission to successfully demonstrate, in-orbit, a series of technologies that can be used for the active removal of space debris. The mission started late in 2014 and was sponsored by a grant from the EC that saw a consortium led by the Surrey Space Centre to develop the mission, from concept to in-orbit demonstrations, that terminated in March 2019. Technologies for the capture of large space debris, like a net and a harpoon, have been successfully tested together with hardware and software to retrieve data on non-cooperative target debris kinematics from observations carried out with on board cameras. The final demonstration consisted of the deployment of a drag-sail to increase the drag of the satellite to accelerate its demise.

35 citations


Journal ArticleDOI
TL;DR: A survey of published works on ducted fans for aeronautical applications can be found in this article, where early and recent experiments on full-or model-scale ducted fan are reviewed.
Abstract: This paper presents a survey of published works on ducted fans for aeronautical applications. Early and recent experiments on full- or model-scale ducted fans are reviewed. Theoretical studies, lower-order simulations and high-fidelity CFD simulations are also summarised. Test matrices of several experimental and numerical studies are compiled and discussed. The paper closes with a summary of challenges for future ducted fan research.

24 citations


Journal ArticleDOI
TL;DR: This paper presents AeroVR—an immersive aerospace design environment with the objective of aiding the component aerodynamic design process by interactively visualizing performance and geometry and decomposes the design of such an environment into function structures.
Abstract: One of today’s most propitious immersive technologies is virtual reality (VR) This term is colloquially associated with headsets that transport users to a bespoke, built-for-purpose immersive 3D virtual environment It has given rise to the field of immersive analytics—a new field of research that aims to use immersive technologies for enhancing and empowering data analytics However, in developing such a new set of tools, one has to ask whether the move from standard hardware setup to a fully immersive 3D environment is justified—both in terms of efficiency and development costs To this end, in this paper, we present AeroVR—an immersive aerospace design environment with the objective of aiding the component aerodynamic design process by interactively visualizing performance and geometry We decompose the design of such an environment into function structures, identify the primary and secondary tasks, present an implementation of the system, and verify the interface in terms of usability and expressiveness We deploy AeroVR on a prototypical design study of a compressor blade for an engine

24 citations


Journal ArticleDOI
TL;DR: A review of the various aeronautical air conditioning systems that are currently available and discusses possible system configurations in the context of the aeronuclear environmental control systems is presented in this paper.
Abstract: This paper presents a review of the various aeronautical air conditioning systems that are currently available and discusses possible system configurations in the context of the aeronautical environmental control systems. Descriptions of the standard vapor compression cycle and air cycles are provided. The latter includes, simple-cycle, bootstrap-cycle, simple-bootstrap cycle (3-wheel) and condensing cycle (4-wheel). Water separation and air recirculation systems are also explored. A comparison between vapor compression cycles and air cycles is provided, as well as a comparison between different air cycles. Air cycle units are far less efficient than vapor compression cycle units, but they are lighter and more reliable for an equivalent cooling capacity. Details regarding the aircraft conceptual design phase along with general criteria for the selection of an air conditioning system are provided. Additionally, industry trends and technological advances are examined. Conclusions are compiled to guide the systems engineer in the search for the most appropriate design for a particular application.

19 citations



Journal ArticleDOI
TL;DR: An analysis of the impact on the delay time of arriving aircraft in the airspace within a radius of 100 nautical miles around an airport and the combination of airspace capacity control and reduction of the flight time and separation variance is the most powerful solution to mitigate delays experienced by arriving traffic.
Abstract: Although the application of new, reduced aircraft separation minima can directly increase runway throughput, the impact thereof on the traffic flow of aircraft arriving at the destination airport has not been discussed yet. This paper proposes a data-driven and queue-based modeling approach and presents an analysis of the impact on the delay time of arriving aircraft in the airspace within a radius of 100 nautical miles around an airport. The parameters of our queuing model were estimated by analysing the data contained in the radar tracks and flight plans for flights that arrived at Tokyo International Airport during the 2 years of 2016 and 2017. The results clarified the best arrival strategy according to the distance from the arrival airport: The combination of airspace capacity control and reduction of the flight time and separation variance is the most powerful solution to mitigate delays experienced by arriving traffic while also allowing an increase in the amount of arrival traffic. The application of new wake vortex categories would enable us to increase the arrival traffic to 120%. In addition, the arrival delay time could be minimised by implementing the proposed arrival traffic strategies together with automation support for air traffic controllers.

14 citations


Journal ArticleDOI
TL;DR: In this article, large-eddy simulations (LES) have been employed to investigate the far-field four-vortex wake vortex evolution over 10min behind an aircraft formation, showing that the wake vortex behavior was much more complex, chaotic and also diverse than in the classical single aircraft case, depending very sensitively on the formation geometry, i.e. the lateral and vertical offset of the two involved aircraft.
Abstract: Large-eddy simulations (LES) have been employed to investigate the far-field four-vortex wake vortex evolution over 10min behind an aircraft formation. In formation flight scenarios, the wake vortex behaviour was found to be much more complex, chaotic and also diverse than in the classical single aircraft case, depending very sensitively on the formation geometry, i.e. the lateral and vertical offset of the two involved aircraft. Even though the case-by-case variability of the wake vortex behaviour across the various formation flight scenarios is large, the final plume dimensions after vortex dissolution are in general substantially different from those of single aircraft scenarios. The plumes are around 170 to 250m deep and 400m to 680m broad, whereas a single A350/B777 aircraft would produce a 480m deep and 330m broad plume. Formation flight plumes are thus not as deep, yet they are broader, as the vortices do not only propagate vertically but also in span-wise direction. Two different LES models have been employed independently and show consistent results suggesting the robustness of the findings. Notably, C02 emissions are only one contribution to the aviation climate impact among several others like contrails and emission of water vapour and nitrogen oxides, which would be all affected by the implementation of formation flight. Thus, we also highlight the differences in ice microphysical and geometrical properties of young formation flight contrails relative to the classical single aircraft case.

14 citations


Journal ArticleDOI
TL;DR: The design and experimental testing of the control system used in a new morphing wing application with a full-scaled portion of a real wing and the evaluation of the aerodynamic benefits brought by the morphing technology on this project are presented.
Abstract: The paper presents the design and experimental testing of the control system used in a new morphing wing application with a full-scaled portion of a real wing. The morphing actuation system uses four similar miniature brushless DC (BLDC) motors placed inside the wing, which execute a direct actuation of the flexible upper surface of the wing made from composite materials. The control system of each actuator uses three control loops (current, speed and position) characterised by five control gains. To tune the control gains, the Particle Swarm Optimisation (PSO) method is used. The application of the PSO method supposed the development of a MATLAB/Simulink® software model for the controlled actuator, which worked together with a software sub-routine implementing the PSO algorithm to find the best values for the five control gains that minimise the cost function. Once the best values of the control gains are established, the software model of the controlled actuator is numerically simulated in order to evaluate the quality of the obtained control system. Finally, the designed control system is experimentally validated in bench tests and wind-tunnel tests for all four miniature actuators integrated in the morphing wing experimental model. The wind-tunnel testing treats the system as a whole and includes, besides the evaluation of the controlled actuation system, the testing of the integrated morphing wing experimental model and the evaluation of the aerodynamic benefits brought by the morphing technology on this project. From this last perspective, the airflow on the morphing upper surface of the experimental model is monitored by using various techniques based on pressure data collection with Kulite pressure sensors or on infrared thermography camera visualisations.

13 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluated six supersonic business jet (SSBJ) concepts in a multidisciplinary design analysis optimisation (MDAO) environment in terms of their aerodynamics and sonic boom intensities.
Abstract: This paper evaluates six supersonic business jet (SSBJ) concepts in a multidisciplinary design analysis optimisation (MDAO) environment in terms of their aerodynamics and sonic boom intensities. The aerodynamic analysis and sonic boom prediction are investigated by a number of conceptual-level numerical approaches. The panel method PANAIR is integrated to perform automated aerodynamic analysis. The drag coefficient is corrected by the Harris wave drag formula and form factor method. For sonic boom prediction, the near-field pressure is predicted through the Whitham F-function method. The F-function is decomposed to the F-function due to volume and the F-function due to lift to investigate the separate effect on sonic boom. The propagation method for the near-field signature in a stratified windy atmosphere is the waveform parameter method. In this research, using the methods described and publically available data on the concepts, the supersonic drag elements and sonic boom signature due to volume distribution and lift distribution are analysed. Based on the analysis, low-boom and low-drag design principles are identified.

13 citations


Journal ArticleDOI
TL;DR: A stochastic mixed-integer linear programming model is proposed to handle aircraft sequencing and scheduling problems using the simulated annealing algorithm to minimise total aircraft delay for a runway airport serving mixed operations.
Abstract: Aircraft sequencing and scheduling within terminal airspaces has become more complicated due to increased air traffic demand and airspace complexity. A stochastic mixed-integer linear programming model is proposed to handle aircraft sequencing and scheduling problems using the simulated annealing algorithm. The proposed model allows for proper aircraft sequencing considering wind direction uncertainties, which are critical in the decision-making process. The proposed model aims to minimise total aircraft delay for a runway airport serving mixed operations. To test the stochastic model, an appropriate number of scenarios were generated for different air traffic demand rates. The results indicate that the stochastic model reduces the total aircraft delay considerably when compared with the deterministic approach.

13 citations


Journal ArticleDOI
TL;DR: It has been concluded from this study that the wing design is more sensitive to the changing angle of the inner section and more efficient in terms of aerodynamic characteristics.
Abstract: This work presents a comparative study of design and development, in addition, of analyses of variable span morphing of the tapered wing (VSMTW) for the unmanned aerial vehicle (UAV). The proposed concept consists in the sliding of the inner section into the fixed part along the wing with varying the angle of the inner section inside the fixed part (parallel with the leading edge and the moving-wing axis is coincident to the fixed-wing axis) within two configurations. The wing design is based on a NACA 4412 aerofoil with the root chord of 0.675m and the tip chord of 0.367m for the fixed segment and 0.320m for the moving segment. Morphing wing analysis occurs at three selected locations that have been specified for extending and modifying span length by (25%, 50%, and 75%) of its original length to fulfill various flight mission requirements. The main objective of this paper is to compare the aerodynamic characteristics for several span lengths and sweep angles and to find their most efficient combinations. The wing is optimised for different velocities during all phases of flight (min speed, loiter, cruise, and max speed) which are 17, 34, 51, and 68m/s, respectively. The analyses are performed by computing forces (drag and lift) and moments at various altitudes, such as at the sea level, at 5,000 and 10,000ft. Two-dimensional aerodynamic analyses are carried out using XFLR5 code, and the ANSYS Fluent solver is used for investigating the flow field on the three-dimensional wing structure. It has been observed that a variable span morphing of tapered wing technology with a variable sweep angle can deliver up to 32.93% improved aerodynamic efficiency. This concept design can also be used for the aircraft roll motion technique instead of conventional control devices. Furthermore, the range flight mission increases up to 46.89% when the wing is placed at its full length compared to an original position. Finally, it has been concluded from this study that the wing design is more sensitive to the changing angle of the inner section and more efficient in terms of aerodynamic characteristics.

Journal ArticleDOI
TL;DR: Simulations showed significant drift and overlapping properties for phasing and target orbits of interest, motivating the search for safe natural drift trajectories and using impact prediction strategies.
Abstract: In the context of future human spaceflight exploration missions, Rendezvous and Docking (RVD) activities are critical for the assembly and maintenance of cislunar structures. The scope of this research is to investigate the specifics of orbits of interest for RVD in the cislunar realm and to propose novel strategies to safely perform these kinds of operations. This paper focuses on far rendezvous approaches and passively safe drift trajectories in the Ephemeris model. The goal is to exhibit phasing orbit requirements to ensure a safe far approach. Ephemeris representations of Near Rectilinear Halo Orbits (NRHOs) were derived using multiple-shooting and adaptive receding-horizon targeting algorithms. Simulations showed significant drift and overlapping properties for phasing and target orbits of interest, motivating the search for safe natural drift trajectories and using impact prediction strategies.

Journal ArticleDOI
TL;DR: In this article, the ability of microramps to control boundary layer interaction at the vicinity of an axisymmetric compression corner was investigated computationally in a Mach 4 flow.
Abstract: The ability of microramps to control shock - boundary layer interaction at the vicinity of an axisymmetric compression corner was investigated computationally in a Mach 4 flow. A cylinder/flare model with a flare angle of 25° was chosen for this study. Height (h) of the microramp device was 22% of the undisturbed boundary layer thickness (δ) obtained at the compression corner location. A single array of these microramps with an inter-device spacing of 7.5h was placed at three different streamwise locations viz. 5δ, 10δ and 15δ (22.7h, 45.41h and 68.12h in terms of the device height) upstream of the corner and the variations in the flowfield characteristics were observed. These devices modified the separation bubble structure noticeably by producing alternate upwash and downwash regions in the boundary layer. Variations in the separation bubble’s length and height were observed along the spanwise (circumferential) direction due to these devices.

Journal ArticleDOI
TL;DR: Different approaches to actuator redundancy management for a redundant multirotor Unmanned Aerial Vehicle under actuators failures are proposed: using robust control (passive fault tolerance), and reconfigurable control (active fault tolerance).
Abstract: This paper considers actuator redundancy management for a redundant multirotor Unmanned Aerial Vehicle (UAV) under actuators failures. Different approaches are proposed: using robust control (passive fault tolerance), and reconfigurable control (active fault tolerance). The robust controller is designed using high-order super-twisting sliding mode techniques, and handles the failures without requiring information from a Fault Detection scheme. The Active Fault-Tolerant Control (AFTC) is achieved through redistributing the control signals among the healthy actuators using reconfigurable multiplexing and pseudo-inverse control allocation. The Fault Detection and Isolation problem is also considered by proposing model-based and model-free modules. The proposed techniques are all implemented on a coaxial octorotor UAV. Different experiments with different scenarios were conducted for the validation of the proposed strategies. Finally, advantages, disadvantages, application considerations and limitations of each method are examined through quantitative and qualitative studies.

Journal ArticleDOI
TL;DR: In this paper, the effect of the position of the first and second lateral jets on the impact of the leading shock wave and the first lateral jet has been investigated numerically by means of the two-dimensional axisymmetric Navier-Stokes equations coupled with the shear stress transport (SST) k-ω turbulence model.
Abstract: The analysis of the aerodynamic environment of the re-entry vehicle attaches great importance to the design of the novel drag reduction strategies, and the combinational spike and jet concept has shown promising application for the drag reduction in supersonic flows. In this paper, the drag force reduction mechanism induced by the combinational spike and lateral jet concept with the freestream Mach number being 5.9332 has been investigated numerically by means of the two-dimensional axisymmetric Navier-Stokes equations coupled with the shear stress transport (SST) k-ω turbulence model, and the effects of the lateral jet location and its number on the drag reduction of the blunt body have been evaluated. The obtained results show that the drag force of the blunt body can be reduced more profoundly when employing the dual lateral jets, and its maximum percentage is 38.81%, with the locations of the first and second lateral jets arranged suitably. The interaction between the leading shock wave and the first lateral jet has a great impact on the drag force reduction. The drag force reduction is more evident when the interaction is stronger. Due to the inclusion of the lateral jet, the pressure intensity at the reattachment point of the blunt body decreases sharply, as well as the temperature near the walls of the spike and the blunt body, and this implies that the multi-lateral jet is beneficial for the drag reduction.

Journal ArticleDOI
TL;DR: It is demonstrated that the variable rotor speed successfully improves the performance across the flight range, but especially in the mid-speed range, where the rotor speed strategy can reduce the overall power consumption by around 15%.
Abstract: The coaxial compound helicopter with lift-offset rotors has been proposed as a concept for future high-performance rotorcraft. This helicopter usually utilizes a variable-speed rotor system to improve the high-speed performance and the cruise efficiency. A flight dynamics model of this helicopter associated with rotor speed governor/engine model is used in this article to investigate the effect of the rotor speed change and to study the variable rotor speed strategy. Firstly, the power-required results at various rotor rotational speeds are calculated. This comparison indicates that choice of rotor speed can reduce the power consumption, and the rotor speed has to be reduced in high-speed flight due to the compressibility effects at the blade tip region. Furthermore, the rotor speed strategy in trim is obtained by optimizing the power required. It is demonstrated that the variable rotor speed successfully improves the performance across the flight range, but especially in the mid-speed range, where the rotor speed strategy can reduce the overall power consumption by around 15%. To investigate the impact of the rotor speed strategy on the flight dynamics properties, the trim characteristics, the bandwidth and phase delay, and eigenvalues are investigated. It is shown that the reduction of the rotor speed alters the flight dynamics characteristics as it affects the stability, damping, and control power provided by the coaxial rotor. However, the handling qualities requirements are still satisfied with different rotor speed strategies. Finally, a rotor speed strategy associated with the collective pitch is designed for maneuvering flight considering the normal load factor. Inverse simulation is used to investigate this strategy on maneuverability in the Push-up & Pull-over Mission-Task-Element (MTE). It is shown that the helicopter can achieve Level 1 ratings with this rotor speed strategy. In addition, the rotor speed strategy could further reduce the power consumption and pilot workload during the maneuver.

Journal ArticleDOI
TL;DR: Simulation results have verified the effectiveness and superiority of the proposed three-dimensional finite-time guidance law with impact-angle constraints based on the theory of nonhomogeneous fast terminal sliding surface and second-order sliding mode control.
Abstract: Aiming at the issue of missiles attacking on-ground maneuvering targets in three-dimensional space, a three-dimensional finite-time guidance law with impact-angle constraints is proposed. In order to improve convergence speed and restrain chattering phenomenon, the nonsingular fast terminal three-dimensional second-order sliding mode guidance law with coupling terms is designed based on the theory of nonhomogeneous fast terminal sliding surface and second-order sliding mode control. The system model need not be linearized during the design process, and the singular problem is avoided. A nonhomogeneous disturbance observer is designed to estimate and compensate the total disturbance, which is caused by target maneuvering information and coupling terms of line of sight. And the stability and finite-time convergence of the guidance law are proved strictly and mathematically. Finally, simulation results have verified the effectiveness and superiority of the proposed guidance law.

Journal ArticleDOI
TL;DR: This study presents a mixed integer linear programming model (MILP) using a space discretisation technique to deal with aircraft conflict resolutions in en-route flight operations using a new heuristic algorithm due to the complexity of the problem.
Abstract: Aircraft conflict resolution is an important part of air traffic control operations. This study presents a mixed integer linear programming model (MILP) using a space discretisation technique to deal with aircraft conflict resolutions in en-route flight operations. The purpose of space discretisation is to concentrate on only the significant points of the airspace. The model integrates the multi entry point approach with an airspeed adjustment technique in the horizontal plane. The model aims to generate conflict-free trajectories while minimising the total changes in entry points and airspeed values. A new heuristic algorithm was developed due to the complexity of the problem. The computational results demonstrated that the proposed approach resolved aircraft conflicts for 450 different traffic scenarios in less than a minute. Considerable fuel savings were achieved with no significant increase in delay or flight time compared to conventional vectoring techniques in a fixed entry point airspace structure.

Journal ArticleDOI
TL;DR: In this paper, the effect of pylon geometry within a pylon-cavity aided SCRAMJET combustor on mixing enhancement, flame-holding capability, fuel jet penetration and total pressure loss are conducted.
Abstract: Numerical investigation of the effect of pylon geometry within a pylon-cavity aided Supersonic Combustion Ramjet (SCRAMJET) combustor on mixing enhancement, flame-holding capability, fuel jet penetration and total pressure loss are conducted in the current study. RANS equations for compressed real gas are solved by coupled, implicit, second-order upwind solver. A two-equation SST model is used for turbulence modelling. Validation of the computational model is performed with the help of experimental data collected using surface pressure taps, Schlieren flow visualisation and particle image velocimetry (PIV). The study uses four distinct pylon geometry cases, which include the baseline geometry. Sonic injection of hydrogen fuel through a 1mm diameter hole at 2mm downstream of the pylon rear face along the axis of the test section floor is performed for every case. A crossflow of Mach number 2.2 at four bar absolute pressure and standard atmospheric temperature is maintained. A comparative study of mixing efficiency, total pressure loss, fuel jet penetration and fuel plume area fraction for the different cases evaluate the mixing performance. The simulations show that the Pylon 2 case gives a significant improvement in the performance parameters compared to the other geometries. It is observed that mixing efficiency and fuel jet penetration capability of the system are highly dependent on the streamwise vortex within the flameholder.

Journal ArticleDOI
TL;DR: In this article, the effects of synthetic jet actuators on the aerodynamic characteristics of a rotor in steady state and in hover were investigated with different jet parameters, such as jet locations, jet angles, and jet velocities.
Abstract: Experimental analyses of synthetic jet control (SJC) effects on aerodynamic characteristics of rotor in steady state and in hover were conducted. To ensure the structural strength of rotor and enough interior space for holding the synthetic jet actuators (SJAs), a particular blade with a frame-covering structure was designed and processed, and the experiment was conducted with low free stream velocities and rotor rotation speeds. There were three test conditions. In steady state, there were three free stream velocities (10m/s, 15m/s and 20m/s). In hover state, the rotor was worked with two rotation speeds of 180RPM and 240RPM. In forward flight, the rotor was worked with a rotation speed of 180RPM and a free stream velocity of 7.5m/s. To measure the synthetic jet control effect on rotor in stall, the range of collective pitch was set from 10° to 28° in steady state. The aerodynamic forces and sectional velocity field were measured by using the six-component balance and the Particle Image Velocimetry (PIV) system in the wind tunnel. Flow control effects on the blade based on the synthetic jets (SJ) were experimentally investigated with different jet parameters, such as jet locations, jet angles, and jet velocities. In steady state, the jet closer to the leading edge, and the jet angle of 90° had more advantages in improving the aerodynamic characteristics. Furthermore, the aerodynamic forces and sectional velocity field measurement of rotor in hover were conducted, it showed that SJAs could increase flow velocity at the upper surface, which led to lower upper surface pressure. As a result, the normal forces of rotor with two rotation speeds were increased significantly. These results indicated that the synthetic jet has a capability of increasing the normal force and delaying or preventing the stall of rotor.

Journal ArticleDOI
TL;DR: A two-step mixed integer linear programming model was developed that minimises total conflict resolution time and then total airborne delay using lexicographic goal programming and can obtain conflict-free and time optimal aircraft trajectories for RNAV route structures.
Abstract: Air traffic flow becomes denser and more complex within terminal manoeuvering areas (TMAs) due to rapid growth rates in demand. Effective TMA arrival management plays a key role in the improvement of airspace capacity, flight efficiency and air traffic controller performance. This study proposes a mixed integer linear programming model for aircraft landing problems with area navigation (RNAV) route structure using three conflict resolution and sequencing techniques together: flexible route allocation, airspeed reduction and vector manoeuver. A two-step mixed integer linear programming model was developed that minimises total conflict resolution time and then total airborne delay using lexicographic goal programming. Experimental results demonstrate that the model can obtain conflict-free and time optimal aircraft trajectories for RNAV route structures.

Journal ArticleDOI
TL;DR: In this paper, a numerical setup based on the volume-of-fluid method is presented and employed to investigate the two-phase flow phenomena occurring in the vicinity of the gear teeth.
Abstract: Oil-jet lubrication and cooling of high-speed gears is frequently employed in aeronautical systems, such as novel high-bypass civil aero engines based on the geared turbofan technology. Using such oil-jet system, practitioners aim to achieve high cooling rates on the flanks of the highly thermally loaded gears with minimum oil usage. Thus, for an optimal design, detailed knowledge about the flow processes is desired. These involve the oil exiting the nozzle, the oil impacting on the gear teeth, the oil spreading on the flanks, the subsequent oil fling-off, as well as the effect of the design parameters on the oil flow. Better understanding of these processes will improve the nozzle design phase, e.g. regarding the nozzle positioning and orientation, as well as the nozzle sizing and operation. Most related studies focus on the impingement depth to characterize the two-phase flow. However, the level of information of this scalar value is rather low for a complete description of the highly dynamic three-dimensional flow. Motivated by the advancements in numerical methods and the computational resources available nowadays, the investigation of the oil-jet gear interaction by means of computational fluid dynamics (CFD) has come into focus lately. In this work, a numerical setup based on the volume-of-fluid method is presented and employed to investigate the two-phase flow phenomena occurring in the vicinity of the gear teeth. The setup consists of a single oil-jet impinging on a single rotating spur gear. By introducing new metrics for characterizing the flow phenomena, extensive use of the possibilities of modern CFD is made, allowing a detailed transient and spatially resolved flow analysis. Thus, not only the impingement depth, but also the temporal and spatial evolution of wetted areas on the gear flanks, as well as the evolution of the oil volume in contact with the gear flanks are extracted from the simulation data and compared in a CFD study. The study consists of 21 different simulation cases, whereby the effect of varying the jet velocity, the jet inclination angle, the jet diameter, and the gear speed are examined. Consistent results compared to a simplified analytical approach for the impinging depth are obtained and the results for the newly introduced metrics are presented.

Journal ArticleDOI
TL;DR: Ant colony optimisation in engine exergy efficiency parametric modeling is a new approach in authors’ point of view and improvement of the fitness function is observed as the number of fitting points is increased.
Abstract: Exergy efficiency can be used as an objective function in order to improve systems efficiency. Thus, the most efficient regions for the operation parameters can be searched easily. Exergy efficiency data of a turboprop engine’s components that have been calculated using basic engine parameters in the previous studies are modeled using cubic spline curve fitting methodology. Spline curves are on the two dimensional plane, where x axis is the input parameter and y axis is the exergy efficiency of the component. A spline curve is defined by the points subject to arbitrary selection of number and position. Initially positions of the points are located with two different methods and then in order to obtain better accuracy point positions are improved by ‘Ant colony’ and ‘Goldsection’ optimisation methods. Sum of Squares of the errors between the fitted value and data value was used as the fitness function. Least square error of 5 × 10−9 is assumed as acceptable accuracy which yields to a minimum R = 0.9998 linear correlation coefficient. In the optimisation step, independent engine variable versus calculated engine performance parameters were checked against spline fitted values. Improvement of the fitness function is observed as the number of fitting points is increased. Ant colony optimisation in engine exergy efficiency parametric modeling is a new approach in authors’ point of view.

Journal ArticleDOI
TL;DR: In this article, an initial investigation is conducted on the NACA 0012 aerofoil section, before transition to 3D propellers and full aero-elastic calculations.
Abstract: Aeroelastic phenomena of stall flutter are the result of the negative aerodynamic damping associated with separated flow. From this basis, an investigation has been conducted to estimate the aerodynamic damping from a time-marching aeroelastic computation. An initial investigation is conducted on the NACA 0012 aerofoil section, before transition to 3D propellers and full aeroelastic calculations. Estimates of aerodynamic damping are presented, with a comparison made between URANS and SAS. Use of a suitable turbulence closure to allow for shedding of flow structures during stall is seen as critical in predicting negative damping estimations. From this investigation, it has been found that the SAS method is able to capture this for both the aerofoil and 3D test cases.

Journal ArticleDOI
TL;DR: It is demonstrated that the presence of propellers can influence the aeroelastic stability of a Very Flexible Aircraft.
Abstract: This work investigates the propeller’s influence on the stability of High Altitude Long Endurance aircraft, incorporating all resultant loads at the propeller hub, propeller slipstream, and gyroscopic loads. Such effects are usually neglected in the aeroelastic simulation of HALE aircraft. For that goal, a previously developed framework, which couples a geometrically nonlinear structural solver with an Unsteady Vortex Lattice method (uVLM) for lifting surfaces and a Viscous Vortex Particle (VVP) method for propeller slipstream, was employed to generate time-data series. Also, a method, based on a combination of Proper Orthogonal Decomposition and system identification, to extract dynamic information (frequencies, damping, and modes) of the aircraft from a time-series signal is proposed and successfully tested for a purely structural case, for which reference data is available. The method is then applied to investigate the stability of aeroelastic cases. The results demonstrate that the presence of propellers can influence the aeroelastic stability of a Very Flexible Aircraft.

Journal ArticleDOI
TL;DR: An improvement of the test technique is made and verified through the experimental work, and application of more compact actuator and an accelerometer as a sensor makes the current technique the most advanced ground flutter emulation test method.
Abstract: ABSTRACT In demand of simpler and alternative ground flutter test, a new technique that emulates flutter on the ground has recently emerged. In this paper, an improvement of the test technique is made and verified through the experimental work. The technique utilizes general ground vibration test (GVT) devices. The key idea is to emulate the distributed unsteady aerodynamic force by using a few concentrated actuator forces; referred to as emulated flutter test (EFT) technique. The EFT module contains two main logics; namely, real-time aerodynamic equivalent force calculator and multi-input-multi-output (MIMO) force controller. The module is developed to emulate the subsonic, linear flutter on a specified target structure, which is a thin aluminum clamped-plate with aspect ratio (AR) of 2.25. In this study, doublet hybrid method (DHM) was applied to model the subsonic aerodynamic force, which restricts the application to a 2-dimensional structure. Given that, correlation of several experimental works, such as wind-tunnel flutter test, EFT using laser displacement sensor (LDS), and EFT using accelerometer, on the target structure are investigated to verify the technique. In addition to the flutter boundary, flutter mode shape and trend of aerodynamic damping effect are also presented in this work. Together with these various kinds of test results, application of more compact actuator and an accelerometer as a sensor, makes the current technique the most advanced ground flutter emulation test method.

Journal ArticleDOI
TL;DR: The simulation results show that the guidance law designed by this paper can complete the cooperative attack task while suppressing the chattering phenomenon effectively.
Abstract: Based on the missiles with adjustable thrust, a distributed synergetic guidance law for multiple missiles with angle-of-attack constraint is designed to achieve a cooperative attack by multiple missiles on a moving target. Divide the guidance law into two parts: the line of sight (LOS) direction and the normal direction of LOS. The guidance law is designed in LOS direction based on the multi-agent system cooperative control theory and super-twisting algorithm, which can control missiles’ time-to-go converging in finite time. In the normal direction of LOS, the other guidance law is designed to control missiles hitting the target with impact angle constraint based on zeroing LOS rate thought and finite-time sliding mode control theory. The two non-homogeneous disturbance observers are designed to estimate the target manoeuvring information in the two parts of the guidance law. The simulation results show that the guidance law designed by this paper can complete the cooperative attack task while suppressing the chattering phenomenon effectively.

Journal ArticleDOI
TL;DR: In this article, a non-linear least-squares problem is used to identify dimension reducing subspaces for turbomachinery functionals at a fraction of the cost associated with prior methods, including sliced inverse regression, sliced average variance estimation, principal Hessian directions and contour regression.
Abstract: Motivated by the idea of turbomachinery active subspace performance maps, this paper studies dimension reduction in turbomachinery 3D CFD simulations. First, we show that these subspaces exist across different blades—under the same parametrisation—largely independent of their Mach number or Reynolds number. This is demonstrated via a numerical study on three different blades. Then, in an attempt to reduce the computational cost of identifying a suitable dimension reducing subspace, we examine statistical sufficient dimension reduction methods, including sliced inverse regression, sliced average variance estimation, principal Hessian directions and contour regression. Unsatisfied by these results, we evaluate a new idea based on polynomial variable projection—a non-linear least-squares problem. Our results using polynomial variable projection clearly demonstrate that one can accurately identify dimension reducing subspaces for turbomachinery functionals at a fraction of the cost associated with prior methods. We apply these subspaces to the problem of comparing design configurations across different flight points on a working line of a fan blade. We demonstrate how designs that offer a healthy compromise between performance at cruise and sea-level conditions can be easily found by visually inspecting their subspaces.

Journal ArticleDOI
TL;DR: In this article, a mm variable-stiffness unitised integrated stiffener out-of-autoclave thermoplastic composite wingbox is tested for a combined shear-bending-torsion induced buckling load.
Abstract: Automated manufacturing of thermoplastic composites has found increased interest in aerospace applications over the past three decades because of its great potential in low-cost, high rate, repeatable production of high performance composite structures. Experimental validation is a key element in the development of structures made using this emerging technology. In this work, a mm variable-stiffness unitised integrated-stiffener out-of-autoclave thermoplastic composite wingbox is tested for a combined shear-bending-torsion induced buckling load. The wingbox is manufactured by in-situ consolidation using a laser-assisted automated tape placement technique. It is made and tested as a demonstrator section located at 85% of the wing semi-span of a B-737/A320 sized aircraft. A bespoke in-house test rig and two aluminium dummy wingboxes are also designed and manufactured for testing the wingbox assembly which spans more than 3m. Prior to testing, the wingbox assembly and the test rig were analysed using a high fidelity finite element method to minimise the failure risk due to the applied load case. The experimental test results of the wingbox are also compared with the predictions made by a numerical study performed by nonlinear finite element analysis showing less than 5% difference in load-displacement behaviour and buckling load and full agreement in predicting the buckling mode shape.

Journal ArticleDOI
TL;DR: In this paper, the results of an experimental campaign to measure thruster-relevant parameters for a high-power (180kW) inductive propulsion system utilising Ar,,, and as propellants were presented.
Abstract: This paper presents the results of an experimental campaign to measure thruster-relevant parameters for a high-power (180kW) inductive propulsion system utilising Ar, , , and as propellants. Results from the investigation show that inductive thrusters can make use of these propellants without the severe degradation seen in other electric propulsion systems. Furthermore, the collection of experimental data at powers greater than 100kW provides a reference of performance for the high-power electric propulsion devices intended for missions in the near future. Thrust and specific impulse in inductive systems can be improved by preferentially combining the chemical properties of atomic and molecular propellants. The maximum thrust recorded during these experiments was 7.9N, obtained using a combination of argon and oxygen (0.68 Ar + 0.32 ). The combination of argon and molecular propellants also decreased thermal losses within the discharge volume. Specific impulse can be doubled for the same input electric power by combining propellants, and future modifications to the thruster geometry and acceleration mechanism can be used to further improve the performance of such systems.