scispace - formally typeset
Search or ask a question

Showing papers in "Biologia Plantarum in 2016"


Journal ArticleDOI
TL;DR: Drought stress elicits a plethora of responses in plants resulting in strict amendments in physiological, biochemical, and molecular processes, which affects many other metabolic processes as well as affecting gene expression.
Abstract: Crop plants are regularly exposed to an array of abiotic and biotic stresses, among them drought stress is a major environmental factor that shows adverse effects on plant growth and productivity. Because of this these factors are considered as hazardous for crop production. Drought stress elicits a plethora of responses in plants resulting in strict amendments in physiological, biochemical, and molecular processes. Photosynthesis is the most fundamental physiological process affected by drought due to a reduction in the CO2 assimilation rate and disruption of primary photosynthetic reactions and pigments. Drought also expedites the generation of reactive oxygen species (ROS), triggering a cascade of antioxidative defense mechanisms, and affects many other metabolic processes as well as affecting gene expression. Details of the drought stress-induced changes, particularly in crop plants, are discussed in this review, with the major points: 1) leaf water potentials and water use efficiency in plants under drought stress; 2) increased production of ROS under drought leading to oxidative stress in plants and the role of ROS as signaling molecules; 3) molecular responses that lead to the enhanced expression of stress-inducible genes; 4) the decrease in photosynthesis leading to the decreased amount of assimilates, growth, and yield; 5) the antioxidant defense mechanisms comprising of enzymatic and non-enzymatic antioxidants and the other protective mechanisms; 6) progress made in identifying the drought stress tolerance mechanisms; 7) the production of transgenic crop plants with enhanced tolerance to drought stress.

76 citations


Journal ArticleDOI
TL;DR: In this paper, Salicylic acid (SA) was applied to wheat seedlings to study the effect of SA on the antioxidant system and photosystem II (PS II) in wheat.
Abstract: To study the effects of application of salicylic acid (SA) on the antioxidant system and photosystem II (PS II) in wheat seedlings we used two different experiments. The first method was carried out by immersing roots in Hoagland’s nutrient solution containing 0, 0.25, or 2.5 mM SA, and the second method was performed by spraying two-week-old seedlings with the same SA concentrations. After 24 h, chlorophyll fluorescence, thylakoid membrane proteins, antioxidant enzyme activities, and reactive oxygen species were measured. The low concentration of SA caused a significant increase in the antioxidant enzyme activities. However, the treatment with 2.5 mM SA resulted in an increase in the non-photochemical quenching coefficient and a decrease in the antioxidant enzyme activities, the quantum yield of PS II photochemistry, and the photochemical quenching, especially in the first method of application. All these results indicate that the effects of SA on PS II and the antioxidative defense system were dependent on the concentration used and the method of application.

62 citations


Journal ArticleDOI
TL;DR: This paper dissects the array of transcriptional factors/genes down- or up-regulated, their identification in different plant species, recognition of cold tolerant/resistant transgenic plants, complexity of the mitogen-activated protein kinase cascade, and comprehensively elucidates physio-biochemical interferences in cold acclimation with a particular emphasis on endogenous content.
Abstract: Agricultural production worldwide has been severely impacted by cold and freezing stresses. Plant capacity to acclimate to environmental conditions in their immediate vicinity largely control their survival, growth, and productivity. Molecular as well as biochemical mechanisms underpinning plant cold acclimation are very complex and interwoven. The cold-impacted plants try to modulate expression of variety genes controlling cell membrane lipid composition, mitogen-activated protein kinase cascade, total soluble proteins, polyamines, glycinebetaine, proline, reactive oxygen species (ROS) scavengers, cryoprotectants, and a large number of cold responsive factors. To this end, this paper dissects the array of transcriptional factors/genes down- or up-regulated, their identification in different plant species, recognition of cold tolerant/resistant transgenic plants, complexity of the mitogen-activated protein kinase cascade, as well as their cross talk under different stresses and molecular mechanisms. Furthermore, it also comprehensively elucidates physio-biochemical interferences in cold acclimation with a particular emphasis on endogenous content as well as exogenously supplied different types of polyamines, ROS, and osmoprotectants. Overall, low temperature stress tolerance or cold acclimation varies greatly among species depending on the stress intensity and duration and type of plant species.

62 citations


Journal ArticleDOI
TL;DR: In the NaCl-treated seedlings, exogenous GABA partially enhanced photosynthetic capacity and antioxidant enzyme activities and decreased MDA content and REC, therefore, GABA reduced the impact of salinity on the wheat seedlings.
Abstract: Gamma-aminobutyric acid (GABA) is a non-protein amino acid that accumulates in a number of plant species under various environmental stresses. In this paper, the ability of applied GABA for the alleviation of NaCl stress was investigated in view of growth parameters, gas exchange, photosynthetic pigments, chlorophyll fluorescence, activities of antioxidant enzymes, malondialdehyde (MDA) content, and electrolyte conductivity (REC) in wheat seedlings. Germination rate and shoot dry mass decreased with an increasing NaCl concentration and this decrease was less pronounced when 0.5 mM GABA was applied. In the NaCl-treated seedlings, exogenous GABA partially enhanced photosynthetic capacity and antioxidant enzyme activities and decreased MDA content and REC. Therefore, GABA reduced the impact of salinity on the wheat seedlings.

50 citations


Journal ArticleDOI
TL;DR: The findings indicate that CsWRKY2 played an important role in plant defense responses to the cold and drought stresses by participating in the ABA signaling pathway, downstream to ABA.
Abstract: One of the largest families of transcriptional regulators contains WRKY proteins. They play important roles in plant defense responses. In this study, a novel WRKY gene, CsWRKY2, was isolated from the tea [Camellia sinensis (L.) O. Kuntze] plant. The full-length cDNA of CsWRKY2 was 2 050 bp in length and encoded a 522-amino acid peptide chain containing two typical WRKY domains and two zinc finger motifs, suggesting that CsWRKY2 was member of the WRKY group I family. A subcellular localization assay shows that CsWRKY2 was localized to the nucleus. Real time qPCR analysis shows that CsWRKY2 expression was higher in leaves than in other organs and was induced by cold (4 °C), drought stress, and exogenous abscisic acid (ABA). Additionally, ABA content was enhanced after the cold or drought stress and the effects were relieved by an ABA biosynthesis inhibitor. Furthermore, the expression of CsWRKY2 was up-regulated by exogenous ABA under the cold and drought stresses and down-regulated by an ABA biosynthesis inhibitor. Our findings indicate that CsWRKY2 played an important role in plant defense responses to the cold and drought stresses by participating in the ABA signaling pathway, downstream to ABA.

46 citations


Journal ArticleDOI
TL;DR: The data obtained in the present study suggest that plant DNA regions may undergo dem methylation during plant aging via reduction of DNA methylation processes and activation of active DNA demethylation.
Abstract: Little is known about the contributions of DNA methylation/demethylation to plant aging and senescence. We used Arabidopsis thaliana to study how increasing age of an annual plant species influences DNA methylation. Based on methylation-sensitive DNA fragmentation assay, it could be concluded that aging A. thaliana was accompanied by DNA demethylation. Bisulfite sequencing reveals that cytosine methylation within the Actin2 3’ untranslated region and internal transcribed spacer with 5.8S rRNA (ITS1-5.8SrRNA-ITS2) DNA regions decreased with A. thaliana growth and aging. We show that transcription of methyltransferase genes, chromomethyltransferase AtCMT3 and methyltransferse AtMETI, significantly decreased during development and aging of the A. thaliana plants, whereas expression of demethylase genes - repressor of silencing AtROS1, demeter AtDME, and demeter-like AtDML2 and AtDML3 - increased at least at some stages of plant development. The data obtained in the present study suggest that plant DNA regions may undergo demethylation during plant aging via reduction of DNA methylation processes and activation of active DNA demethylation.

45 citations


Journal ArticleDOI
TL;DR: In this article, the effect of 24-epibrassinolide (EBR) on the activities of ferric-chelate reductase (FCR), H+-ATPase, Ca2+-atpase, NR, antioxidant enzymes, Fe and other minerals content and distribution, chlorophylls, soluble protein, free proline, reactive oxygen species, and malondialdehyde in peanut (Arachis hypogea L.) plants subjected to Fe deficiency.
Abstract: Limited information is available on the role of brassinosteroids (BRs) in response of plants to nutrient deficiency. To understand the functions of BRs in response to iron deficiency, we investigated the effect of 24-epibrassinolide (EBR) on activities of ferric-chelate reductase (FCR), H+-ATPase, Ca2+-ATPase, nitrate reductase (NR), antioxidant enzymes, Fe and other minerals content and distribution, chlorophylls, soluble protein, free proline, reactive oxygen species, and malondialdehyde in peanut (Arachis hypogea L.) plants subjected to Fe deficiency (10−5 M Fe(III)-EDTA) with foliar application of EBR (0, 10−8, 5.0×10−8, 10−7, 5.0×10−7, and10−6 M). Results show that EBR increased Fe translocation from roots to shoots and increased Fe content in cell organelles. Activities of antioxidant enzymes increased and so the ability of resistance to oxidative stress was enhanced. As result of enhancement of H+-ATPase and Ca2+-ATPase activities, the inhibition of Fe, Ca, Mg, and Zn uptake and distribution was ameliorated. Chlorophyll, soluble protein, and free proline content also increased and consequently, chlorosis induced by Fe deficiency was alleviated. The results demonstrate that EBR had a positive role in regulating peanut growth and development under Fe deficiency and an optimal concentration appeared to be 10−7 M.

41 citations


Journal ArticleDOI
W. Hou1, A. H. Sun, H. L. Chen, Fan Yang1, J. L. Pan, M. Y. Guan 
TL;DR: In this paper, the effects of chilling (CT, day/night temperatures of 12/10 °C, an irradiance of 250 μmol m−2 s−1), chilling combined with a low irradiance (CL, 12/ 10 °C), and a high temperature (HT, 42/40 °C) on chlorophyll content, chlorophil fluorescence, and gas exchange were studied in two watermelon cultivars.
Abstract: The effects of chilling (CT, day/night temperatures of 12/10 °C, an irradiance of 250 μmol m−2 s−1), chilling combined with a low irradiance (CL, 12/10 °C, 80 μmol m−2 s−1), and a high temperature (HT, 42/40 °C, 250 μmol m−2 s−1) on chlorophyll content, chlorophyll fluorescence, and gas exchange were studied in two watermelon cultivars, ZJ8424 and YS01, differing in their resistance. The chlorophyll content, net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) decreased substantially, whereas the intercellular CO2 concentration (ci) increased when the two watermelon cultivars were grown under these stresses. The photosynthetic parameters showed greater changes at chilling than at the high temperature, and the CL caused a more pronounced inhibition in PN compared with the CT. After 2 d exposure to the CT, YS01 had higher PN, gs, and E, but a lower ci compared with ZJ8424. The maximum efficiency of photosystem (PS) II photochemistry (Fv/Fm), effective quantum yield of PS II photochemistry (ΦPSII), photochemical quenching (qP), and electron transport rate (ETR) decreased under the CT and CL but showed only a slight drop under the HT. All these stresses significantly increased non-photochemical quenching (NPQ). The CT brought more damage to the photosynthetic apparatus of leaves compared with the CL. In addition, after returning to normal conditions (25/15 °C, 250 μmol m−2 s−1) for 3 d, the photosynthetic parameters recovered to pre-stress levels in HT treated seedlings but not in CT treated seedlings. In conclusion, the low irradiance could help to alleviate the extent of photoinhibition of PS II photochemistry caused by chilling and cv. ZJ8424 was more sensitive to the extreme temperatures than cv. YS01.

36 citations


Journal ArticleDOI
F. Yan1, Yaxi Liu1, Huajin Sheng1, Yuqi Wang1, Houyang Kang1, Jian Zeng1 
TL;DR: In this paper, the effects of exogenous salicylic acid (SA), sodium nitropusside (SNP), or their combination on dwarf polish wheat (Triticum polonicum L.) seedlings under UV-B stress were studied.
Abstract: The effects of exogenous salicylic acid (SA), sodium nitropusside (SNP, a nitric oxide donor), or their combination on dwarf polish wheat (Triticum polonicum L.) seedlings under UV-B stress were studied. The UV-B stress significantly decreased plant height, shoot dry mass, pigment content, net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, transpiration rate, and variable to maximum chlorophyll fluorescence ratio (Fv/Fm) in all plants, but less in the presence of SA, SNP, and their combination. On the other hand, there were considerable increases in malondialdehyde (MDA), proline, O2•-, and H2O2 content under the UV-B stress. When SA, SNP, and their combination were applied, content of MDA, proline, H2O2, and O2•- were less increased. Moreover, there were considerable increases in activities of superoxide dismutase, peroxidase, ascorbate peroxidase, and glutathione reductase under the UV-B stress and more in the presence of SA, SNP, and their combination. Therefore, it is considered that SA, SNP, and especially their combination could alleviate UV-B stress in dwarf polish wheat.

35 citations


Journal ArticleDOI
TL;DR: Results indicate that SaCAX2h was responsible for Ca and Mn sequestration into vacuoles, and over-expression of SaCAx2h enhanced Cd accumulation in the transgenic tobacco.
Abstract: Two genes encoding CAX2-like proteins were isolated from a Zn/Cd hyperaccumulating ecotype (HE) and nonhyperaccumulating ecotype (NHE) of Sedum alfredii Hance, and they were named SaCAX2h and SaCAX2n, respectively. Both SaCAX2h:eGFP and SaCAX2n:eGFP proteins were localized to the vacuolar membrane of tobacco epidermal cells and yeast mutants. Heterologous expression of SaCAX2h or SaCAX2n in the Δzrc1 yeast mutant increased Cd content in yeast cells. Yeast complementary assay also revealed that both the transporters could suppress Ca and Mn hypersensitivity and enhance Ca and Mn accumulation in a K667 yeast mutant. The expression patterns of the two genes were different under the Cd treatment. Transcription of SaCAX2h was down-regulated in roots and up-regulated in shoots whereas transcription of SaCAX2n was down-regulated in shoots after the exposition to Cd. Furthermore, over-expression of SaCAX2h enhanced metal accumulation in the tobacco plants. The Cd content increased by 17–19 % in shoots and 31–36 % in roots; the Ca content of the transgenic plants increased by 31–32 % in shoots, and the Mn content increased by 60–79 % in shoots and 22–29 % in roots. These results indicate that SaCAX2h was responsible for Ca and Mn sequestration into vacuoles, and over-expression of SaCAX2h enhanced Cd accumulation in the transgenic tobacco.

35 citations


Journal ArticleDOI
TL;DR: The results suggest that the poor development of inferior spikelets of SG-1 under the HT could be attributed, at least in part, to the changed content and ratios of free polyamines and phytohormones and the conversion efficiency of sucrose into starch.
Abstract: Heat stress severely reduces rice yield and quality; however, differences between the superior, early-flowering and inferior, later-flowering spikelets of indica rice in response to high-temperature stress during grain filling remain unclear. This study investigated the effects of high temperature (HT, 33.6/20.7 °C day/night) on growth, endosperm structure, and hormone and polyamine content of superior and inferior spikelets of heat-sensitive (SG-1) and heat-tolerant (HHZ) indica cultivars. The HT decreased fertilization rate, caused earlier grain filling, and reduced duration of grain filling, thus resulting in decreased grain mass and a poor endosperm structure. In addition, soluble sugar and sucrose content increased, and starch synthesis decreased by HT at the early stage of grain filling. The HT increased polyamine [spermidine (Spd) and spermine (Spm)] and abscisic acid (ABA) content, but reduced zeatin (Z) + zeatin riboside (ZR) and indole-3-acetic acid (IAA) content in the grains. Such effects were more apparent in the inferior than superior spikelets; however, the inferior spikelets of SG-1 were more affected than those of HHZ. At the middle grain filling stage, HT produced little difference between the two cultivars. Our results suggest that the poor development of inferior spikelets of SG-1 under the HT could be attributed, at least in part, to the changed content and ratios of free polyamines [putrescine (Put), Spd, and Spm] and phytohormones (Z+ZR, IAA, and ABA) and the conversion efficiency of sucrose into starch.

Journal ArticleDOI
TL;DR: In this paper, the root number and root fresh mass (FM) of Prunus cerasus L (P. canescens × P. cerasus) were investigated with four amino acids (L-asparagine, L-cysteine, l-citrulline, and L-glutamine) combined with 2 mg dm-3 indole-3-butyric acid.
Abstract: Effects of four amino acids, L-asparagine, L-cysteine, L-citrulline, and L-glutamine in different concentrations (0, 0.5, 1, and 2 mg dm-3) combined with 2 mg dm-3 indole-3-butyric acid, on in vitro rooting and biochemical constituents of cherry rootstocks CAB-6P (Prunus cerasus L.) and Gisela 6 (P. canescens × P. cerasus) were investigated. In CAB-6P, root number and root fresh mass (FM) were maximum at 0.5 mg dm-3 cysteine. All amino acids reduced root length in CAB-6P and root number as well as root FM in Gisela 6. In Gisela 6, 0.5 mg dm-3 asparagine or 2 mg dm-3 glutamine reduced root length. In CAB-6P, 100 % rooting was achieved in the control and with 1 and 2 mg dm-3 cysteine or 1 mg dm−3 citrulline. In Gisela 6, the rooting percentage was maximum (76.92 %) with 0.5 mg dm−3 asparagine. Callus FM in CAB-6P was the greatest at 1 mg dm−3 and in Gisela 6 at 2 mg dm−3 citrulline. Callusing was 100 % in the majority of treatments for CAB-6P and 92.31 % for Gisela 6 with 0.5 or 2 mg dm−3 citrulline. Cysteine, citrulline, and glutamine diminished chlorophyll content in Gisela 6 whereas in CAB-6P all four amino acids hardly affected it. Carotenoid and porphyrin content in CAB-6P was decreased due to asparagine (0.5 or 1 mg dm−3). Porphyrin content in CAB-6P was also reduced by adding 0.5 or 1 mg dm−3 cysteine or 2 mg dm−3 citrulline. In Gisela 6, all amino acids decreased carotenoid and porphyrin content. In CAB-6P, all treatments except 0.5 mg dm−3 glutamine or 2 mg dm−3 asparagine increased leaf sucrose content. In roots, both sucrose and proline content were increased only at 1 mg dm−3 cysteine whereas in leaves only 0.5 mg dm−3 asparagine caused a 3-fold increase in proline content. A decrease in root proline in CAB-6P was observed due to asparagine, citrulline, or glutamine. In Gisela 6, decreased leaf sucrose and proline content was recorded at 2 mg dm−3 cysteine. All amino acids did not alter root sugar content remarkably whereas root proline content was raised by adding 0.5 mg dm−3 glutamine or 1 mg dm−3 cysteine.

Journal ArticleDOI
TL;DR: In this article, the influence of exogenous AsAscorbic acid (AsA) on the embryogenic callus of indica rice (Oryza sativa L.) cv. MRQ74 cultivated under saline conditions was assessed.
Abstract: Ascorbic acid (AsA) is naturally occurring compound with antioxidant activity and plays a pivotal role in plant cell adaptation to salinity stress. The objective of this work was to assess the influence of exogenous AsA on the embryogenic callus of indica rice (Oryza sativa L.) cv. MRQ74 cultivated under saline conditions. NaCl (200 mM) decreased callus fresh and dry masses, relative growth rate, and K+ and Ca+2 content, and increased Na+ content and Na+/K+ ratio. Application of AsA (0.5 or 1 mM) alleviated these effects of salinity. Activities of peroxidase, catalase, superoxide dismutase, as well as content of proline increased due to the NaCl treatment, and these parameters were mostly further increased by 0.5 mM AsA. Thus, AsA can increase callus tolerance to NaCl stress.

Journal ArticleDOI
TL;DR: It is suggested that CO pretreatment could improve the heat tolerance of tobacco suspension cultured cells, and H2S might exert its signal role downstream to CO-induced heat tolerance.
Abstract: Carbon monoxide (CO) is considered as a new emerging cell signal molecule which is involved in plant growth, development, and acquisition of stress tolerance. In recent years, hydrogen sulfide (H2S) has been found to have similar functions, but crosstalk between CO and H2S in the acquisition of heat tolerance in plants is not clear. In this study, pretreatment of tobacco (Nicotiana tabaccum L.) cells cultured in a suspension with a CO donor hematin significantly increased survival percentage of cells under a heat stress and regrowth ability after the heat stress, alleviated a decrease in cell vitality, and accumulation of malondialdehyde. In addition, treatment with hematin enhanced the activity of L-cysteine desulfhydrase, a key enzyme in H2S biosynthesis, which in turn induced accumulation of endogenous H2S in tobacco cells. Interestingly, hematin-induced heat tolerance was enhanced by addition of NaHS, a H2S donor, but weakened by specific inhibitors of H2S biosynthesis DL-propargylglycine or its scavenger hypotaurine. Furthermore, pretreatment with hemoglobin (a CO scavenger) and zinc protoporphyrin IX (a CO specific synthetic inhibitor) had no significant effect on NaHS-induced heat tolerance of tobacco cells. These results suggest that CO pretreatment could improve the heat tolerance of tobacco suspension cultured cells, and H2S might exert its signal role downstream to CO-induced heat tolerance.

Journal ArticleDOI
TL;DR: It was possible to conclude that exogenous NO influenced the ability of plants to tolerate As, and this finding has implications for phytoremediation in areas contaminated by As.
Abstract: Nitric oxide (NO) is an important molecule involved in the perception of stress induced by toxic compounds such as arsenic (As). The present study investigated the role of NO applied as sodium nitroprusside (SNP) in cell signalling and the ability of NO to attenuate the toxic effects of As (in the form of sodium arsenate) in water hyacinth (Eichhornia crassipes). Water hyacinth plants were collected and assigned to one of the following treatments: control; 100 μM SNP; 20 μM As; or 20 μM As + 100 μM SNP. The plants remained under these conditions for 0, 4, 12, and 24 h. After each time interval, the plants were collected and As absorption, production of reactive oxygen species (ROS), integrity of membranes, and antioxidant enzyme activities were evaluated. The plants were able to absorb and accumulate large amounts of As, even after only four hours of exposure to the pollutant. The absorption and bioaccumulation factor of As was even greater when plants were exposed to both As and SNP. The accumulation of As triggered increases in ROS production and cell membrane damage. In the presence of SNP, the tolerance index to As increased and damage was mitigated. Therefore, from the present work, it was possible to conclude that exogenous NO influenced the ability of plants to tolerate As; this finding has implications for phytoremediation in areas contaminated by As.

Journal ArticleDOI
TL;DR: The potential contribution of stored malate to the substrate requirements of metabolism in ripening grape pericarp is dependent on the cultivar and the function of gluconeogenesis is not to support accumulation of sugars in the fruits, but probably it plays other roles.
Abstract: Malate is accumulated in grape pericarp until the start of ripening and then it is dissimilated. One aim of this study was to determine if the potential contribution of stored malate to the substrate requirements of metabolism in ripening grape pericarp is dependent on the cultivar. Two Vitis vinifera L. cultivars which accumulated different amounts of malate and had ripening periods of a different length were compared. The potential contribution of stored malate over the whole period of ripening was around 20 % in the cv. Sagrantino and 29 % in the cv. Pinot Noir. The contribution was higher in Pinot Noir because it contained more malate and had a shorter ripening period. A second aim of this study was to evaluate the contribution of gluconeogenesis to the amount of sugar accumulated in the pericarp. If all the dissimilated malate was utilized by gluconeogenesis, then the maximum contribution of stored malate to the total amount of sugar accumulated in the pericarp over the whole period of ripening was around 2.4 % in Sagrantino and 2.9 % in Pinot Noir. However, the actual contribution was only about 0.1–0.6 % in both cultivars because the majority of stored malate was not utilized by gluconeogenesis. However, it is likely that the actual contribution is much lower. This suggests that the function of gluconeogenesis is not to support accumulation of sugars in the fruits, but probably it plays other roles.

Journal ArticleDOI
TL;DR: Content of GABA and MDA increased significantly in all pop2 mutants and wild type (WT) seedlings in response to all the treatments, however, content of GABA was lower in allpop2 mutants comparing to the WT under the same treatments.
Abstract: In the present study, three Arabidopsis thaliana pop2 mutant lines with different T-DNA insertions in a gene coding γ-aminobutyric acid transaminase (GABA-TA) were screened for seed germination percentage, stress-induced oxidative damage, and GABA content and metabolism under various abiotic stresses including high temperature (42 °C), low temperature (4 °C), salinity (NaCl), and osmotic stress (mannitol). All mutant lines showed a decreased germination under all the stress treatments with a significant reduction in the pop2-1 and pop2-3 mutant lines. Content of GABA and MDA increased significantly in all pop2 mutants and wild type (WT) seedlings in response to all the treatments. However, content of GABA and MDA was lower in all pop2 mutants comparing to the WT under the same treatments. GABA increased already after 30 min and increased significantly after 2 h at 42 °C especially in the pop2-3 and WT seedlings. In response to the cold treatment, GABA content increased up to 4-fold compared to the control in all pop2 mutants and WT seedlings. In response to the NaCl treatment, GABA accumulated slightly in the WT and all pop2 mutants. On the contrary, GABA content increased significantly in the pop2, pop2-1, and pop2-3 mutants and WT under all mannitol treatments.

Journal ArticleDOI
TL;DR: It is demonstrated that BR regulated nitrogen uptake and assimilation via the BR signaling pathway through the BES1 activation inhibited NH4+-mediated GS/GOGAT induction, which might in turn inhibit AMT1 repression.
Abstract: Several studies have been performed to elucidate the role of brassinosteroids (BRs) in plant growth and development. However, information on the role of BR signaling in nutrient uptake is limited. This study explores the relationship between BRs and ammonium transporter 1 (AMT1) expression in Arabidopsis roots. We found that BR treatment reduced the expression of AMT1 genes and that a BR receptor BRI1 mutant bri1-5 reversed its BR-repressed expression. Furthermore, the BR signaling transcription factor, BES1, regulates AMT1 expression in roots. NH4 +-mediated repression of AMT1;1, AMT1;2, and AMT1;3 was suppressed in a gain-of-function BES1 mutant (bes1-D). This mutant was more sensitive to methyl-ammonium and contained a higher ammonium content compared to wild-type plants. However, BES1 failed to bind E-box elements present in the promoter region of the AMT1 genes. Furthermore, NH4 +-mediated glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) gene expressions were partially inhibited, and GS activity was slightly lower in the bes1-D mutant relative to that observed in wild-type En2 roots. NH4 +-mediated AMT1 suppressions are known to be caused by N-metabolites rather than NH4 + itself, and glutamine application inhibited AMT1 expression in both En2 and bes1-D indicating that BES1 activation inhibited NH4 +-mediated GS/GOGAT induction, which might in turn inhibit AMT1 repression. In conclusion, the present study demonstrates that BR regulated nitrogen uptake and assimilation via the BR signaling pathway.

Journal ArticleDOI
TL;DR: The results suggest that SAMs was involved in the response to the flooding and drought and it might affect ethylene biosynthesis in soybean.
Abstract: Soybean is stress-sensitive crop that exhibits markedly reduced growth under flooding and drought conditions. Three S-adenosylmethionine synthetases (SAMs) proteins were identified as flooding and drought responsive proteins in soybean using a proteomic technique. To better understand the role of these SAMs proteins in soybean under flooding and drought stresses, temporal, organ, and stress specificities were examined at mRNA and enzyme activity levels. The activity of SAMs decreased in response to the flooding, however, it was not significantly changed by NaCl, cold, gibberellic acid, and calcium in soybean roots. The activity of SAMs was induced in roots and hypocotyls under drought. The mRNA expression of the S-adenosylmethionine synthetase (SAMs) family was down-regulated in root tips and roots under the flooding and the drought, and SAMs 1 and SAMs 2 were down-regulated in roots under both stresses. A gene 1-aminocyclopropane-1-carboxylate synthase was up-regulated in root tips, roots, and hypocotyls under drought, however, it was not changed in root tips and roots under the flooding. In addition, 1-aminocyclopropane-1-carboxylate oxidase was induced in root tips under flooding and drought. These results suggest that SAMs was involved in the response to the flooding and drought and it might affect ethylene biosynthesis in soybean.

Journal ArticleDOI
TL;DR: Results show that, in contrast to the unthinned trees, thinning to 4 fruits cm−2(TCSA) resulted in a significant decrease of yield per tree, but a significant increase of fruit mass, return bloom, and leaf area, suggesting that flowering inhibition depended on the phytohormones that were exported to buds and on sugar-hormone signalling cross-talk.
Abstract: The amount and composition of phytohormones, sugars, and some other leaf characteristics depending on a crop load were evaluated in apple (Malus domestica Borkh. cv. Ligol grafted on P 60 rootstock) trees in order to prevent biennial bearing. The crop load was adjusted to 12 (control, unthinned), 8, 4, and 0 (non-fruiting) inflorescences (or fruits) per cm2 of trunk cross-sectional area (TCSA). Inflorescences were removed in May before flowering. Phytohormones were analyzed in axillary buds and leaves in September. Results show that, in contrast to the unthinned trees, thinning to 4 fruits cm−2(TCSA) resulted in a significant decrease of yield per tree, but a significant increase of fruit mass, return bloom, and leaf area. The heavy crop load resulted in suppressed bloom in the following year. Composition and content of phytohormones was changed considerably. Moreover, thinning resulted in an increased hexose accumulation. Such data suggest that flowering inhibition depended on the phytohormones that were exported to buds and on sugar-hormone signalling cross-talk.

Journal ArticleDOI
Juanjuan Fu1, X. T. Chu1, Y. F. Sun1, Yuefei Xu1, Tianming Hu1 
TL;DR: Results suggest that NO might be acting as a downstream signal to mediate 5ALA-induced cold resistance by activating antioxidant defense and PM H+-ATPase and maintaining Na+ and K+ homeostasis.
Abstract: Nitric oxide (NO) and 5-aminolevulinic acid (5ALA) play fundamental roles in plant responses to environmental stresses, but their cross-talk in antioxidant defense in cold-stressed Elymus nutans Griseb. have not been investigated. We herein report that 5ALA and NO donor, sodium nitroprusside (SNP), alleviated cold stress-induced plant growth inhibition and lipid peroxidation in roots of two E. nutans ecotypes (Damxung, DX and Zhengdao, ZD). However, application of an NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (PTIO) differentially blocked these protective effects indicating that an inhibition of NO accumulation reduced 5ALA-enhanced cold resistance. Application of exogenous 5ALA or NO markedly up-regulated activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, enhanced reduced glutathione accumulation and reduced glutathione to oxidized glutathione ratio, activated plasma membrane (PM) H+-ATPase, and reduced Na+/K+ ratio in roots of the two E. nutans ecotypes. Moreover, in the presence of 5ALA, nitric oxide synthase (NOS) activity and NO release in cold-resistant DX were higher than those in cold-sensitive ZD. Conversely, both NO treatment and inhibition of endogenous NO accumulation by PTIO or NOS inhibitor Nω-nitro-L-arginine did not induce 5ALA production. These results suggest that NO might be acting as a downstream signal to mediate 5ALA-induced cold resistance by activating antioxidant defense and PM H+-ATPase and maintaining Na+ and K+ homeostasis.

Journal ArticleDOI
TL;DR: Hydrogen-rich water up-regulated expression of two hydrogenase genes, SA, JA, and ET receptor genes and synthesis genes in the seedling stage of wild rice, but this positive regulation by HW was less significant in the vegetative and reproductive stages.
Abstract: Molecular hydrogen (H2) could be a novel signal in phytohormone signaling pathways in response to biotic and abiotic stresses. Here, we employed two wild rice species (Oryza rufipogon Griff. and O. minuta J. Presl) to test this hypothesis using hydrogen-rich water (HW). The expression differences of phytohormone and hydrogenase genes between conventional rice (Oryza sativa L,) and wild rice were determined by real-time quantitative polymerase chain reaction, and the effects of HW on gene expression of wild rice were detected during three growth stages. Expression of hydrogenase genes, synthesis genes, and receptor genes of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) signalling pathways was higher in six wild rice types than in conventional rice. Hydrogen-rich water up-regulated expression of two hydrogenase genes, SA, JA, and ET receptor genes and synthesis genes in the seedling stage of wild rice. But this positive regulation by HW was less significant in the vegetative and reproductive stages.

Journal ArticleDOI
TL;DR: In this paper, the authors present their experience with the most frequently used tracers representing various types of chemicals with different characteristics and examine their behaviour, characteristics, and limitations, showing that results gained with an apoplastic tracer assay technique are reliable but depend on many parameters, such as chemical properties of a selected tracer, plant species, cell wall properties, exposure time, or sample processing.
Abstract: Root epidermis and apoplastic barriers (endodermis and exodermis) are the critical root structures involved in setting up plant-soil interface by regulating free apoplastic movement of solutes within root tissues. Probing root apoplast permeability with “apoplastic tracers” presents one of scarce tools available for detection of “apoplastic leakage” sites and evaluation of their role in overall root uptake of water, nutrients, or pollutants. Although the tracers are used for many decades, there is still not an ideal apoplastic tracer and flawless procedure with straightforward interpretation. In this article, we present our experience with the most frequently used tracers representing various types of chemicals with different characteristics. We examine their behaviour, characteristics, and limitations. Here, we show that results gained with an apoplastic tracer assay technique are reliable but depend on many parameters–chemical properties of a selected tracer, plant species, cell wall properties, exposure time, or sample processing.

Journal ArticleDOI
TL;DR: Comparison of inhibition elongation associated with auxin in the LR and PR clearly demonstrates that PR elongation was more sensitive to auxin than LR elongation.
Abstract: The role of auxins on root system architecture was studied by applying indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 1-naphthaleneacetic acid (NAA) to maize roots and analysing the main processes involved in root development: primary root (PR) elongation, lateral root (LR) formation, and LR root elongation. We found that these effects were not dependent only on concentration, but also on the type of auxin applied. We also studied temporal changes in auxin inhibition of PR elongation. These temporal changes were analysed calculating the elongation ratio between two consecutive one day periods after auxin application. It was observed that a reduction in root elongation was also dependent on the type of auxin applied and its concentration. The inhibitory effect of IBA and IAA decreased on the second day, and the ratio also increased with the concentration. In contrast, NAA increased root elongation inhibition with time. Indeed, the ratio decreased as the NAA concentration increased. Regarding LR formation, we observed that external auxin increased only LR formation in certain zones of the PR. Finally, comparison of inhibition elongation associated with auxin in the LR and PR clearly demonstrates that PR elongation was more sensitive to auxin than LR elongation.

Journal ArticleDOI
TL;DR: Differences in the expression patterns of the eight genes involved in fruit development and pod shatter in Arabidopsis may be associated with dehiscence variation within these four species, and this work isolated and identified homologs of SHATTERPROOF.
Abstract: Members of the Brassicaceae family disperse their seeds through a mechanism commonly referred to as fruit dehiscence or pod shatter. Pod shatter is influenced by variations in valve margin structure and by the molecular control pathways related to valve development. Anatomical patterns of the dehiscence zone from Brassica napus L., Brassica rapa L., Brassica carinata L., and Sinapis alba L., representing fruit types differing in pod shatter resistance, were compared using histological staining. The pod shatter-susceptible plant B. napus showed an increased lignin deposition at the vascular bundle of the replum as well as an increased separation of cell layers. In pod shatter-resistant plants S. alba, B. rapa, and B. carinata, we observed two layers of lignified valve margin cells. From these four species, we isolated and identified homologs of SHATTERPROOF (SHP1, SHP2), INDEHISCENT (IND), ALCATRAZ (ALC), FRUITFULL (FUL), AGAMOUS (AG), NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1), and SEEDSTICK (STK) genes involved in fruit development and pod shatter in Arabidopsis. Transcriptional analysis of these eight genes was performed by real-time polymerase chain reaction and the results demonstrate that differences in the expression patterns of the eight genes may be associated with dehiscence variation within these four species.

Journal ArticleDOI
TL;DR: In this paper, a FRI-like gene called PvFRI-L was located in the nucleus of onion epidermal cells and was expressed in all tested organs of flowering and non-flowering bamboo plants with a higher expression in nonflowering than in flowering plants.
Abstract: The gene FRIGIDA (FRI) is floral repressor and plays a key role in the timing of Arabidopsis flowering. To study the function of FRI-like genes in bamboo, we isolated a FRI family gene from bamboo Phyllostachys violascens and named it PvFRI-L. Sequence alignment and phylogenetic analysis show that the PvFRI-L protein belongs to the FRL3 (III) subfamily from monocots and contains a conserved FRIGIDA domain. PvFRI-L was located in the nucleus of onion epidermal cells. PvFRI-L was expressed in all tested organs of flowering and non-flowering bamboo plants with a higher expression in non-flowering than in flowering plants. Overexpression of PvFRI-L in Arabidopsis caused late flowering by downregulating flowering locus T and upregulating flowering locus C. A P-box, the binding site involved in gibberellin response, was found only in the promoter region of PvFRI-L but not in that of FRI. Furthermore, PvFRI-L expression in the leaves of Ph. violascens seedlings was downregulated with gibberellic acid treatment. Taking together, our observation suggests that PvFRI-L may be flowering repressor and its delaying floral timing may be regulated by gibberellic acid in bamboo.

Journal ArticleDOI
Jie Yang1, Xue-Li Wan1, C. Guo1, Jianwei Zhang1, M. Z. Bao1 
TL;DR: Phylogenetic analysis showed that each NF-Y subunit family from Prunus mume and Arabidopsis could be divided into 4 or 2 clades based on their full-length proteins.
Abstract: The nuclear factor Y (NF-Y) is one of the largest transcription factor families in plants consisting of NF-YA, NF-YB, and NF-YC subunits. It could play important roles in various processes such as flowering time, seed development, and response to drought. In this study, 6 NF-YA, 13 NF-YB, and 8 NF-YC proteins were identified and characterized in Prunus mume. Analyses of a conserved domain indicated that the PmNF-Y subunits shared an elevated degree of homology with the corresponding Arabidopsis NF-Y ones. Phylogenetic analysis showed that each NF-Y subunit family from Prunus mume and Arabidopsis could be divided into 4 or 2 clades based on their full-length proteins. The gene expression patterns of all 27 PmNF-Y genes were examined under abscisic acid (ABA), osmotic, salt, and H2O2 treatments using real-time quantitative PCR analyses. PmNF-YA1/2/4/5/6, PmNF-YB3/4/8/10/11/13, and PmNF-YC1/2/4/5/6/8 were found to be up-regulated under the ABA and osmotic treatments. PmNF-YA1/2/3/4/5/6, PmNF-YB1/3/8/10/11/13, and PmNF-YC1/2/5/6/8 were obviously induced by the H2O2. In addition, only PmNF-YA2 and PmNF-YB3 expressions were enhanced under the salt stress. These findings could provide an entry point to investigating the roles of PmNF-Y genes during abiotic stress responses.

Journal ArticleDOI
TL;DR: In grapevine, expression of VvZFP11 was induced by salicylic acid and methyl jasmonate and also quickly responded to infection with Erisiphe necator, and real time quantitative polymerase chain reaction revealed that defense-related genes AtPR1 and AtPDF1.2 were up-regulated in the overexpressing lines.
Abstract: In plants, many C2H2-type zinc finger transcription factors function in plant defense responses to biotic and abiotic stresses. Here, we report cloning and characterization of VvZFP11 which encoded a C2H2-type zinc finger protein (ZFP) in grapevine (Vitis vinifera). Sequence analysis shows that VvZFP11 contained one L-box, two C2H2-type zinc finger motifs and one ERF-associated amphiphilic repression (EAR) motif. The VvZFP11 localized to the nucleus and functional analysis shows that full-length VvZFP11 had no transcriptional activity, but VvZFP11 lacking the EAR motif had a strong transcriptional activity in yeast. In grapevine, expression of VvZFP11 was induced by salicylic acid and methyl jasmonate and also quickly responded to infection with Erisiphe necator. Arabidopsis thaliana plants overexpressing VvZFP11 were more resistant to Golovinomyces cichoracearum, and real time quantitative polymerase chain reaction revealed that defense-related genes AtPR1 and AtPDF1.2 were up-regulated in the overexpressing lines. These results suggest that VvZFP11 might play an important role in defense responses in grapevine.

Journal ArticleDOI
TL;DR: The operation of a control mechanism that coordinated Phe synthesis and its channeling towards Capsicum chinense Jacq.
Abstract: Activities of phenylalanine (Phe) biosynthetic enzymes chorismate mutase (CM) and arogenate dehydratase (ADT) and of phenylalanine ammonia lyase [PAL, an enzyme that directs Phe towards capsaicinoid (CAP) synthesis] were analyzed during Capsicum chinense Jacq. (habanero pepper) fruit development. A maximum CM activity coincided with a maximum CAP accumulation. However, ADT exhibited two activity peaks, one during the early phase (10 - 17 days post-anthesis, DPA) and another during the late phase (35 - 37 DPA); only the latter coincided with CAP. Interestingly, PAL activity was inversely related to CAP accumulation; lower activities coincided with a maximum CAP content. These results suggest the operation of a control mechanism that coordinated Phe synthesis and its channeling towards CAP synthesis during the course of fruit development.

Journal ArticleDOI
TL;DR: Transgenic ASD16 rice plants harbouring rice chitinase chi11 gene, belonging to a PR-3 group of defense gene conferring sheath blight (Rhizoctonia solani Kuhn) resistance, were used in this study and showed consistent results in all the generations and gave a better protection against the she Heath blight pathogen.
Abstract: Development of transgenic plants by introducing defense genes is one of the strategies to engineer disease resistance. Transgenic ASD16 rice plants harbouring rice chitinase chi11 gene, belonging to a PR-3 group of defense gene conferring sheath blight (Rhizoctonia solani Kuhn) resistance, were used in this study. Three T2 homozygous lines (ASD16-4-1-1, 5-1-1, and 6-1-1) were identified from seven putative (T0) transgenic lines expressing chi11 using Western blotting analysis. The inheritance of sheath blight resistance in those lines was studied over generations. The stability of chi11 expression up to T4 generation in all the three homozygous lines was proved by Western blot and the stability of sheath blight resistance in the homozygous lines was proved up to T4 generation using detached leaf and intact leaf sheath assays. Among the three homozygous lines tested, ASD16-4-1-1 showed consistent results in all the generations and gave a better protection against the sheath blight pathogen than the other two lines.