scispace - formally typeset
Search or ask a question

Showing papers in "Biopolymers in 2004"


Journal ArticleDOI
TL;DR: This review gives an overview of the occurrence and importance of beta2-amino acids in nature, placing emphasis on the metabolic pathways of beta-aminoisobutyric acid (beta-Aib) and the appearance of beta1-aminos acids as secondary metabolites or as components of more complex natural products, such as peptides, depsipeptides, lactones, and alkaloids.
Abstract: Although they are less abundant than their alpha-analogues, beta-amino acids occur in nature both in free form and bound to peptides. Oligomers composed exclusively of beta-amino acids (so-called beta-peptides) might be the most thoroughly investigated peptidomimetics. Beside the facts that they are stable to metabolism, exhibit slow microbial degradation, and are inherently stable to proteases and peptidases, they fold into well-ordered secondary structures consisting of helices, turns, and sheets. In this respect, the most intriguing effects have been observed when beta2-amino acids are present in the beta-peptide backbone. This review gives an overview of the occurrence and importance of beta2-amino acids in nature, placing emphasis on the metabolic pathways of beta-aminoisobutyric acid (beta-Aib) and the appearance of beta2-amino acids as secondary metabolites or as components of more complex natural products, such as peptides, depsipeptides, lactones, and alkaloids. In addition, a compilation of the syntheses of both achiral and chiral beta2-amino acids is presented. While there are numerous routes to achiral beta2-amino acids, their EPC synthesis is currently the subject of many investigations. These include the diastereoselective alkylation and Mannich-type reactions of cyclic- or acyclic beta-homoglycine derivatives containing chiral auxiliaries, the Curtius degradation, the employment of transition-metal catalyzed reactions such as enantioselective hydrogenations, reductions, C-H insertions, and Michael-type additions, and the resolution of rac. beta2-amino acids, as well as several miscellaneous methods. In the last part of the review, the importance of beta2-amino acids in the formation of beta-peptide secondary structures is discussed.

276 citations


Journal ArticleDOI
TL;DR: This contribution presents a brief overall look of the methods for the preparation of various types of DNA microarrays and a thorough examination of the method for in situ synthesis of oligonucleotide microarray.
Abstract: This contribution presents a brief overall look of the methods for the preparation of various types of DNA microarrays and a thorough examination of the methods for in situ synthesis of oligonucleotide microarrays.

230 citations


Journal ArticleDOI
TL;DR: Recently, many novel peptide‐based near‐infrared (NIR) fluorescent molecular probes have been developed for in vivo biomedical imaging and have been tested in various in vitro and in vivo models, and the obtained imaging information has been applied to disease detection, medical diagnosis, and drug evaluations.
Abstract: Recently, many novel peptide-based near-infrared (NIR) fluorescent molecular probes have been developed for in vivo biomedical imaging. To report specific information of biological targets, the probes were individually designed according to the unique property or functions of their targets. These peptide-based probes can be classified into targeting, crosslinking, and enzyme-activatable probes. Several of them have been tested in various in vitro and in vivo models, and the obtained imaging information has been applied to disease detection, medical diagnosis, and drug evaluations.

208 citations


Journal ArticleDOI
TL;DR: It is found that the important biochemical changes taking place during cell death, such as the degradation of proteins, DNA breakdown, and the formation of lipid vesicles, can be detected with Raman microspectroscopy.
Abstract: We investigated the use of Raman microspectroscopy to monitor the molecular changes in human lung carcinoma epithelial cells (A549) when cell death was induced by a toxic chemical. We treated A549 cells with 100 microM Triton X-100 and carried out Raman microspectroscopy measurements in parallel with cell viability and DNA integrity assays at time points of 0, 24, 48, and 72 hours. We found that the important biochemical changes taking place during cell death, such as the degradation of proteins, DNA breakdown, and the formation of lipid vesicles, can be detected with Raman microspectroscopy. A decrease in the intensity of the O-P-O stretching Raman peak corresponding to the DNA molecule phosphate-sugar backbone at 788 cm(-1) indicated DNA disintegration, an observation which was confirmed by DNA integrity analysis. We also found a decrease in the intensity of the Raman peaks corresponding to proteins (1005 cm(-1), 1342 cm(-1)) and an increase in the concentration of lipids (1660 cm(-1), 1303 cm(-1)). These changes are the effects of the complex molecular mechanisms during the induction of cell death, such as protein cleavage due to the activation of caspases, followed by DNA fragmentation.

187 citations


Journal ArticleDOI
TL;DR: Investigation of aromatic interactions in the context of structured peptides has complemented studies of protein structure and has provided a wealth of information regarding the role of aromatic interactions in proteinructure and function.
Abstract: Aromatic interactions, including π–π, cation–π, aryl–sulfur, and carbohydrate–π interactions, have been shown to be prevalent in proteins through protein structure analysis, suggesting that they are important contributors to protein structure. However, the magnitude and significance of aromatic interactions is not defined by such studies. Investigation of aromatic interactions in the context of structured peptides has complemented studies of protein structure and has provided a wealth of information regarding the role of aromatic interactions in protein structure and function. Recent advances in this area are reviewed. © 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

176 citations


Journal ArticleDOI
TL;DR: This article presents a current understanding of proton transfer by nucleic acids, and favors a model in which changes in pH lead to changes in the distribution of reactive and nonreactive ionizations of the ribozyme molecules in the ground state, and suggests that "pK(a) changes inThe transition state" do not provide an acceptable explanation for observed pH-rate profiles.
Abstract: Utilization of proton transfer in catalysis, which is well known in the mechanisms of protein enzymes, has been described only relatively recently for RNA enzymes. In this article, we present a current understanding of proton transfer by nucleic acids. Rate enhancement and specificity conferred by general acid-base catalysis are discussed. We also present possibilities for electrostatic catalysis from general acids and bases as well as cationic base pairs. The microenvironments of a large RNA provide the possibility of histidine-like pK(a)s for proton transfer, as well as lysine- and arginine-like pK(a)s for electrostatic catalysis. Discussion on proton transfer focuses on the hepatitis delta virus (HDV) and hairpin ribozymes, with select examples drawn from the protein literature. Discussion on electrostatic catalysis also draws on these two ribozymes, and a postulate for electrostatic catalysis by a cationic base pair in the mechanism of peptidyl transfer in the ribosome is presented. We also provide a perspective on possibilities for phosphoryl transfer mechanisms involving phosphorane intermediates and unusual tautomeric forms of the bases. Lastly, a distinction is made between ground state and "transition state" pK(a)s. We favor a model in which changes in pH lead to changes in the distribution of reactive and nonreactive ionizations of the ribozyme molecules in the ground state, and therefore suggest that "pK(a) changes in the transition state" do not provide an acceptable explanation for observed pH-rate profiles.

140 citations


Journal ArticleDOI
TL;DR: Some of the insights into the relationship between the aggregation state of the peptide at the concentrations used for internalization studies and its interaction with the cell membrane result from the contribution to the field with a new family of amphipathic proline-rich peptides.
Abstract: The discovery of cell-penetrating peptides as gene delivery systems and the interest in the mechanism by which these vectors cross the cell membrane have generated a large number of studies. Among the parameters involved in the translocation process, controversy has arisen about the role of the amphipathicity of the carriers in the interaction and reorganization of the cell membrane. In this review we have summarized the vectors with primary or secondary amphipathicity related to secondary structure. Some of the insights into the relationship between the aggregation state of the peptide at the concentrations used for internalization studies and its interaction with the cell membrane result from our contribution to the field with a new family of amphipathic proline-rich peptides.

137 citations


Journal ArticleDOI
TL;DR: Three proline residues at the X position at 100 K clearly showed an up‐puckering conformation, as opposed to the recent propensity‐based hypothesis for the stabilization and destabilization of triple‐helical structures by proline hydroxylation, which was attributed to the interaction between proline rings and the surrounding water molecules at 100K, which is much weaker at RT, as shown by longer average distance from peptide chains.
Abstract: Triple-helical structures of (Pro-Hyp-Gly)n (n = 10, 11) at 100 K and room temperature (RT) were analyzed at 1.26 A resolution by using synchrotron radiation data. Totals of 49 and 42 water molecules per seven triplets in an asymmetric unit were found for the structures at 100 K and RT, respectively. These water molecules were classified into two groups, those in the first and second hydration shells. Although there was no significant difference between water molecules in the first shell at 100 K and those at RT, a significant difference between those in the second shell was observed. That is, the number of water molecules at RT decreased to one half and the average distance from peptide chains at RT became longer by about 0.3 A. On the other hand, of seven triplets in an asymmetric unit, three proline residues at the X position at 100 K clearly showed an up-puckering conformation, as opposed to the recent propensity-based hypothesis for the stabilization and destabilization of triple-helical structures by proline hydroxylation. This puckering was attributed to the interaction between proline rings and the surrounding water molecules at 100 K, which is much weaker at RT, as shown by longer average distance from peptide chains.

102 citations


Journal ArticleDOI
TL;DR: The preferred conjugation method was used to generate a set of antibody-oligonucleotide conjugates suitable for high-sensitivity protein detection, and this method proved to be stable over long periods of time under physiological conditions.
Abstract: Three methods for the conjugation of oligonucleotides to antibodies and the subsequent application of these conjugates to protein detection at attomole levels in immunoassays are described. The methods are based on chemical modification of both antibody and oligonucleotide. Aldehydes were introduced onto antibodies by modification of primary amines or oxidation of carbohydrate residues. Aldehyde- or hydrazine-modified oligonucleotides were prepared either during phosphoramidite synthesis or by post-synthesis derivatization. Conjugation between the modified oligonucleotide and antibody resulted in the formation of a hydrazone bond that proved to be stable over long periods of time under physiological conditions. The binding activity of each antibody-oligonucleotide conjugate was determined to be comparable to the corresponding unmodified antibody using a standard sandwich ELISA. Each oligonucleotide contained a unique DNA sequence flanked by universal primers at both ends and was assigned to a specific antibody. Highly sensitive immunoassays were performed by immobilizing analyte for each conjugate onto a solid support with cognate capture antibodies. Binding of the antibody-oligonucleotide conjugate to the immobilized analyte allowed for amplification of the attached DNA. Products of amplification were visualized using gel electrophoresis, thus denoting the presence of bound analyte. The preferred conjugation method was used to generate a set of antibody-oligonucleotide conjugates suitable for high-sensitivity protein detection.

95 citations


Journal ArticleDOI
TL;DR: DNA packaging in bacteriophage P4 has been examined using a molecular mechanics model with a reduced representation containing one pseudoatom per turn of the double helix, a discretized version of an elastic continuum model.
Abstract: DNA packaging in bacteriophage P4 has been examined using a molecular mechanics model with a reduced representation containing one pseudoatom per turn of the double helix. The model is a discretized version of an elastic continuum model. The DNA is inserted piecewise into the model capsid, with the structure being reoptimized after each piece is inserted. Various optimization protocols were investigated, and it was found that molecular dynamics at a very low temperature (0.3 K) produces the optimal packaged structure. This structure is a concentric spool, rather than the coaxial spool that has been commonly accepted for so many years. This geometry, which was originally suggested by Hall and Schellman in 1982 (Biopolymers Vol. 21, pp. 2011-2031), produces a lower overall elastic energy than coaxial spooling.

92 citations


Journal ArticleDOI
TL;DR: This article aims to provide versatile and reproducible approaches for the labeling of biomolecules while not focusing on particular systems and it should be left to the readers to derive a strategy for their own peptide.
Abstract: The labeling of targeting peptides with (99m)Tc is a useful concept for the diagnosis of various diseases such as cancer. Although in research for at least one decade, only a very few radiopharmaceuticals based on peptides are in clinical use. The difficulty of labeling, and the resulting authenticity of the new vector, is largely responsible for this observation. In this overview, we present an alternate strategy based on the organometallic fac-[(99m)Tc(CO)(3)](+) core for introducing (99m)Tc in biomolecules in general and in peptides in particular. The three coordination sites available in [(99m)Tc(OH(2))(3)(CO)(3)](+) can be occupied with many different ligand types, pendant to a biomolecule and serving as the anchor group for labeling. This makes the appropriate choice difficult. We intend to present some useful concepts for the practice. Monodentate chelators are robust but bear the risk of multiple binding of biomolecules. Coordinating a bidentate ligand of choice prior to labeling bypasses this problem and enables a systematic drug discovery by variation of the bidentate ligand. Bidentate ligands attached to the biomolecule are stronger but occasionally require protection of the remaining site by a monodentate ligand. Both approaches refer to a mixed-ligand [2+1] approach. Tridentate chelators are the most efficient but need some protecting group chemistry in order to achieve selectivity for the coupling process. Examples with cysteine and histidine are presented. This article aims to provide versatile and reproducible approaches for the labeling of biomolecules while not focusing on particular systems. It should be left to the readers to derive a strategy for their own peptide.

Journal ArticleDOI
TL;DR: This study of atherosclerosis is presented as an illustrative example of the wider potential of these ATR imaging approaches for cardiovascular medicine and biomedical applications.
Abstract: Fourier transform infrared (FTIR) spectroscopic imaging using a focal plane array detector has been used to study atherosclerotic arteries with a spatial resolution of 3-4 microm, i.e., at a level that is comparable with cellular dimensions. Such high spatial resolution is made possible using a micro-attenuated total reflection (ATR) germanium objective with a high refractive index and therefore high numerical aperture. This micro-ATR approach has enabled small structures within the vessel wall to be imaged for the first time by FTIR. Structures observed include the elastic lamellae of the tunica media and a heterogeneous distribution of small clusters of cholesterol esters within an atherosclerotic lesion, which may correspond to foam cells. A macro-ATR imaging method was also applied, which involves the use of a diamond macro-ATR accessory. This study of atherosclerosis is presented as an illustrative example of the wider potential of these ATR imaging approaches for cardiovascular medicine and biomedical applications.

Journal ArticleDOI
TL;DR: The study exhibits that FTIR‐MSP can detect gross biochemical changes in morphologically identical IBD and cancer tissues and suggest which cases of IBD may require further evaluation for carcinogenesis.
Abstract: Elucidation of the evolution of inflammatory bowel disease (IBD) to cancer by clinical symptoms and histopathology of biopsies is important. Fourier transform infrared microspectroscopy (FTIR-MSP) has shown promise as a diagnostic tool for distinction of normal and cancer cells and tissues. In the present work, FTIR-MSP is used to evaluate IBD cases and to study the IR spectral characteristic with respect to cancer and normal tissues from formalin-fixed colonic biopsies from patients. Specific regions of the spectra were analyzed by statistical tools to study variations in metabolites that signified changes between the two pathological conditions: IBD and cancer. IBD tissues can be grouped with cancer or normal tissue using certain parameters such as phosphate content and RNA/DNA ratio as calculated from the spectra and show intermediate levels with regard to these metabolites. Further classification of the spectra by cluster analysis indicated which cases of Crohn's disease (3 of 10 cases) or ulcerative colitis (7 of 10 cases) were more likely to progress to cancer. The study exhibits that FTIR-MSP can detect gross biochemical changes in morphologically identical IBD and cancer tissues and suggest which cases of IBD may require further evaluation for carcinogenesis.

Journal ArticleDOI
TL;DR: High‐resolution structures of double‐stranded B‐DNA either isolated or bound to proteins are analyzed, and the impact of both the standard BI and the unusual BII phosphate backbone conformations on neighboring sugar puckers and on selected helical parameters are explored.
Abstract: Sugar–phosphate backbone conformations are an important structural element for a complete understanding of specific recognition in nucleic acid–protein interactions. They can be involved both in early stages of target discrimination and in structural adaptation upon binding. In the first part of this study, we have analyzed high-resolution structures of double-stranded B-DNA either isolated or bound to proteins, and explored the impact of both the standard BI and the unusual BII phosphate backbone conformations on neighboring sugar puckers and on selected helical parameters. Correlations are found to be similar for free and bound DNA, and in both categories, the possible facing backbone conformations (BI.BI, BI.BII, and BII.BII) define well-characterized substates in the B-DNA conformational space. Notably, BII.BII steps are characterized by specific, and sequence-independent, structural effects involving reduced standard deviations for almost all conformational parameters. In the second part of this work, we analyze four 10 ns molecular dynamics simulations in explicit solvent on the DNA targets of NF-κB and bovine papillomavirus E2 proteins, highlighting the multiplicity of backbone dynamical behavior. These results show sequence effects on the percentages of BI and BII conformers, the preferential state of facing backbones, the occurrence of coupled transitions. The backbone states can consequently be seen as a mechanism for transmitting information from the bases to the phosphate groups and thus for modulating the overall structural properties of the target DNA. © 2003 Wiley Periodicals, Inc. Biopolymers 73:356–368, 2004

Journal ArticleDOI
TL;DR: Those low-lying singlet states of all-trans carotenoids can facilitate multiple channels of singlet-energy transfer to bacteriochlorophyll in the LH2 antenna complexes of purple photosynthetic bacteria.
Abstract: This minireview article highlights the energetics and the dynamics of the 1(1)B(u)(-) and 3(1)A(g)(-) states of carotenoids discovered very recently. Those "hidden" covalent states have been revealed by measurements of resonance-Raman excitation profiles of crystalline carotenoids. The dependence of the energies of the low-lying singlet states, including the 1(1)B(u)(+), 3(1)A(g)(-), 1(1)B(u)(-), and 2(1)A(g)(-) states, on the number of conjugated double bonds (n) is in agreement with the extrapolation of those state energies calculated by Tavan and Schulten for shorter polyenes (P. Tavan and K. Schulten, Journal of Chemical Physics, 1986, vol. 85, pp. 6602-6609). It has also been shown that the internal-conversion processes among those singlet states take place in accord with the state ordering, i.e., 1(1)B(u)(+) --> 1(1)B(u)(-) --> 2(1)A(g)(-) --> 1(1)A(g)(-) (the ground state) for carotenoids having n = 9 and 10, whereas 1(1)B(u)(+) --> 3(1)A(g)(-) --> 1(1)B(u) (-) --> 2(1)A(g)(-) --> 1(1)A(g)(-) for carotenoids having n = 11-13. Radiative transitions of 1(1)B(u)(+) --> 2(1)A(g)(-) and 1(1)B(u)(-) --> 2(1)A(g)(-) as well as a branching into the triplet manifold of 1(1)B(u)(-) --> 1(3)A(g) --> 1(3)B(u) have also been found. Those low-lying singlet states of all-trans carotenoids can facilitate multiple channels of singlet-energy transfer to bacteriochlorophyll in the LH2 antenna complexes of purple photosynthetic bacteria. Thus, the newly found 1(1)B(u)(-) and 3(1)A(g)(-) states of carotenoids need to be incorporated into the picture of carotenoid-to-bacteriochlorophyll singlet-energy transfer.

Journal ArticleDOI
TL;DR: The unusual capability of a DeltaPhe ring to form the hub of multicentered interactions namely, a donor in aromatic C--H.O==C and an acceptor in a CH(3).pi interaction suggests its exploitation in introducing long-range interactions in the folding of supersecondary structures.
Abstract: Incorporation of alpha,beta-dehydrophenylalanine (DeltaPhe) residue in peptides induces folded conformations: beta-turns in short peptides and 3(10)-helices in larger ones. A few exceptions-namely, alpha-helix or flat beta-bend ribbon structures-have also been reported in a few cases. The most favorable conformation of DeltaPhe residues are (phi,psi) approximately (-60 degrees, -30 degrees ), (-60 degrees, 150 degrees ), (80 degrees, 0 degrees ) or their enantiomers. DeltaPhe is an achiral and planar residue. These features have been exploited in designing DeltaPhe zippers and helix-turn-helix motifs. DeltaPhe can be incorporated in both right and left-handed helices. In fact, consecutive occurrence of three or more DeltaPhe amino acids induce left-handed screw sense in peptides containing L-amino acids. Weak interactions involving the DeltaPhe residue play an important role in molecular association. The C--H.O==C hydrogen bond between the DeltaPhe side-chain and backbone carboxyl moiety, pi-pi stacking interactions between DeltaPhe side chains belonging to enantiomeric helices have shown to stabilize folding. The unusual capability of a DeltaPhe ring to form the hub of multicentered interactions namely, a donor in aromatic C--H.pi and C--H.O==C and an acceptor in a CH(3).pi interaction suggests its exploitation in introducing long-range interactions in the folding of supersecondary structures.

Journal ArticleDOI
TL;DR: Several covalent attachment chemistries were tested for the immobilization of DNA onto glass beads and cyanuric chloride, isothiocyanate, nitrophenyl chloroformate, and hydrazone gave the best hybridization signals.
Abstract: Several covalent attachment chemistries were tested for the immobilization of DNA onto glass beads. The comparison was based on the ability of these chemistries to produce derivatized beads that give good hybridization signals. Cyanuric chloride, isothiocyanate, nitrophenyl chloroformate, and hydrazone chemistries gave us the best (yet comparable) hybridization signals. We further characterized the cyanuric chloride method for the number of attachment sites, number of hybridizable sites, hybridization kinetics, effect of linker length on hybridization intensity and stability of the derivatized beads.

Journal ArticleDOI
TL;DR: Comparison of the structures of its constituent domains free and fully assembled demonstrates that the hairpin ribozyme undergoes extensive structural rearrangement, which results in a distortion of the substrate RNA that primes it for cleavage.
Abstract: The hairpin ribozyme is a naturally occurring RNA that catalyzes sequence-specific cleavage and ligation of RNA. It has been the subject of extensive biochemical and structural studies, perhaps the most detailed for any catalytic RNA to date. Comparison of the structures of its constituent domains free and fully assembled demonstrates that the RNA undergoes extensive structural rearrangement. This rearrangement results in a distortion of the substrate RNA that primes it for cleavage. This ribozyme is known to achieve catalysis employing exclusively RNA functional groups. Metal ions or other catalytic cofactors are not used. Current experimental evidence points to a combination of at least four mechanistic strategies by this RNA: (1) precise substrate orientation, (2) preferential transition state binding, (3) electrostatic catalysis, and (4) general acid base catalysis.

Journal ArticleDOI
TL;DR: In this paper, a temperature-tuned FTIR spectroscopy was used to study the α-helix to β-sheet transition in poly(L-lysine) chains.
Abstract: The chain-length dependence of the α-helix to β-sheet transition in poly(L-lysine) is studied by temperature-tuned FTIR spectroscopy. This study shows that heterogeneous samples of poly(L-lysine), comprising polypeptide chains with various lengths, undergo the α–β transition at an intermediate temperature compared to homogenous ingredients. This holds true as long as each individual fraction of the polypeptide is capable of adopting an antiparallel β-sheet structure. The tendency is that the longer chain is, the lower the α–β transition temperature is, which has been linked to the presence of distorted or solvated helices with turns or β sheets in elongating chains of poly(L-lysine). As such helical structures are apparently conducive to the α–β transition, this draws a comparison to the hypothesis of metastable protein conformational states being a common stage in amyloid-formation pathways. The antiparallel architecture of the β sheet is likely to reflect the pretransition interhelical interactions in poly(L-lysine). Namely, the chains are arranged in an antiparallel manner because of energetically favored antiparallel preassembly of dipolar α helices. © 2004 Wiley Periodicals, Inc. Biopolymers, 2004

Journal ArticleDOI
TL;DR: The NMR solution structure of a highly stable coiled‐coil IAAL‐E3/K3 has been solved and provides a structural framework for visualizing the important interactions for stability and specificity, which are key to protein engineering applications such as affinity purification and de novo design.
Abstract: The NMR solution structure of a highly stable coiled-coil IAAL-E3/K3 has been solved. The E3/K3 coiled-coil is a 42-residue de novo designed coiled-coil comprising three heptad repeats per subunit, stabilized by hydrophobic contacts within the core and electrostatic interactions at the interface crossing the hydrophobic core which direct heterodimer formation. This E3/K3 domain has previously been shown to have high alpha-helical content as well as possessing a low dissociation constant (70 nM). The E3/K3 structure is completely alpha-helical and is an archetypical coiled-coil in solution, as determined using a combination of (1)H-NOE and homology based structural restraints. This structure provides a structural framework for visualizing the important interactions for stability and specificity, which are key to protein engineering applications such as affinity purification and de novo design.

Journal ArticleDOI
TL;DR: It is found that these prodrugs, 2′‐O‐isoform of taxoids, showed promising results with higher water solubility and proper kinetics in their parent drug formation by a simple pH‐dependent chemical mechanism with ON intramolecular acyl migration.
Abstract: N-Ointramolecular acyl migration in Ser- or Thr-containing peptides is a well-known side reaction in peptide chemistry. It results in the mutual conversion of ester and amide bonds. Our medicinal chemistry study focused on the fact that the O-acyl product can be readily converted to the original N-acyl form under neutral or slightly basic conditions in an aqueous buffer and the liberated ionized amino group enhances the water solubility of O-acyl products. Because of this, we have developed a novel class of "O-N intramolecular acyl migration"-type water-soluble prodrugs of HIV-1 protease inhibitors. These prodrugs released the parent drugs via a simple chemical mechanism with no side reaction. In this study, we applied this strategy to important cancer chemotherapeutic agents, paclitaxel and its derivatives, to develop water-soluble taxoid prodrugs, and found that these prodrugs, 2'-O-isoform of taxoids, showed promising results with higher water solubility and proper kinetics in their parent drug formation by a simple pH-dependent chemical mechanism with O-N intramolecular acyl migration. These results suggest that this strategy would be useful in toxicology and medical economics. After the successful application of O-N intramolecular acyl migration in medicinal chemistry, this concept was recently used in peptide chemistry for the synthesis of "difficult sequence-containing peptides." The strategy was based on hydrophilic O-acyl isopeptide synthesis followed by the O-N intramolecular acyl migration reaction, leading to the desired peptide. In a model study with small, difficult sequence-containing peptides, synthesized "O-acyl isopeptides" not only improved the solubility in various media and efficiently performed the high performance liquid chromatography purification, but also altered the nature of the difficult sequence during SPPS, resulting in the efficient synthesis of O-acyl isopeptides with no complications. The subsequent O-N intramolecular acyl migration of purified O-acyl isopeptides afforded the desired peptides as precipitates with high yield and purity. Further study of the synthesis of a larger difficult sequence-containing peptide, Alzheimer's disease-related peptide (A beta 1-42), surprisingly showed that only one insertion of the O-acyl group drastically improved the unfavorable nature of the difficult sequence in A beta 1-42, and achieved efficient synthesis of 26-O-acyl isoA beta 1-42 and subsequent complete conversion to A beta 1-42 via the O-N intramolecular acyl migration reaction of 26-O-acyl isoA beta 1-42. This suggests that our new method based on O-N intramolecular acyl migration is an important method for the synthesis of difficult sequence-containing bioactive peptides.

Journal ArticleDOI
TL;DR: It is concluded that multifunctional peptide fibrils can be designed by conjugation of active peptides on A208 and that this construct has potential to serve as a bioadhesive for tissue regeneration and engineering.
Abstract: The Ile-Lys-Val-Ala-Val (IKVAV) containing peptide, A208 (AASIKVAVSADR, mouse laminin α1 chain 2097–2108), was recently found to form amyloid-like fibrils. Fibril formation is critical for its biological activities, including promotion of cell adhesion and neurite outgrowth. In the present study, we designed multifunctional peptide fibrils using the A208 peptide and an Arg-Gly-Asp (RGD)-containing fibronectin active sequence for biomedical applications. The fibronectin active sequence GRGDS (FN) or a scrambled sequence RSGGD (SC) were conjugated to either A208 or to A208S (AASVVIAKSADR), a scrambled peptide of A208, with a glycine as a spacer. The FN-A208 and SC-A208 peptides formed a gel and were stained with Congo red similar to that of A208, but FN-A208S and SC-A208S did not form a gel. These results indicate that FN-A208 and SC-A208 form amyloid-like fibrils similar to A208. A208 and SC-A208 promoted cell attachment with filopodia formation, and this adhesion was inhibited by the IKVAV-containing peptide, but not by EDTA or a GRGDS peptide. FN-A208 promoted cell attachment with well-organized actin stress fibers, and this adhesion was partially inhibited by either EDTA, GRGDS, or IKVAV. These data suggest that A208 binds to only IKVAV receptor(s) while the FN-A208 interacts with both integrins and the IKVAV receptor(s). We conclude that multifunctional peptide fibrils can be designed by conjugation of active peptides on A208 and that this construct has potential to serve as a bioadhesive for tissue regeneration and engineering. © 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

Journal ArticleDOI
TL;DR: The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small‐ and wide‐angle x‐ray scattering techniques and found to be amorphous with β‐conformation according to infrared spectroscopy.
Abstract: The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with beta-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 microm beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

Journal ArticleDOI
TL;DR: This review uses ribonuclease P (RNase P) as an example to illustrate how the protein subunit of this RNP affects different aspects of catalysis, and a combination of highly conserved RNA and altered protein components is a puzzle that allows the dissection of the functional roles of protein subunits in these RNP complexes.
Abstract: Ribonucleoproteins (RNP) are involved in many essential processes in life. However, the roles of RNA and protein subunits in an RNP complex are often hard to dissect. In many RNP complexes, including the ribosome and the Group II introns, one main function of the protein subunits is to facilitate RNA folding. However, in other systems, the protein subunits may perform additional functions, and can affect the biological activities of the RNP complexes. In this review, we use ribonuclease P (RNase P) as an example to illustrate how the protein subunit of this RNP affects different aspects of catalysis. RNase P plays an essential role in the processing of the precursor to transfer RNA (pre-tRNA) and is found in all three domains of life. While every cell has an RNase P (ribonuclease P) enzyme, only the bacterial and some of the archaeal RNase P RNAs (RNA component of RNase P) are active in vitro in the absence of the RNase P protein. RNase P is a remarkable enzyme in the fact that it has a conserved catalytic core composed of RNA around which a diverse array of protein(s) interact to create the RNase P holoenzyme. This combination of highly conserved RNA and altered protein components is a puzzle that allows the dissection of the functional roles of protein subunits in these RNP complexes.

Journal ArticleDOI
TL;DR: It is confirmed that the denatured lentinan molecule, which was dissolved in 0.15M NaOH to be disrupted into single coil chains, could be renatured as triple helical chain by dialyzing against abundant water in the regenerated cellulose tube at ambient temperature (15°C).
Abstract: Molecular morphologies and conformation transition of lentinan, a β-(13)-D-glucan from Lentinus edodes, were studied in aqueous NaOH solution by atomic force microscopy (AFM), viscometry, multiangle laser light scattering, and optical rotation measurements. The results revealed that lentinan exists as triple-helical chains and as single random-coil chains at NaOH concentration lower than 0.05M and higher than 0.08M, respectively. Moreover, the dramatic changes in weight-average molecular weight Mw, radius of gyration 〈s2〉1/2, intrinsic viscosity [η], as well as specific optical rotation at 589 nm [α]589 occurred in a narrow range of NaOH concentration between 0.05 and 0.08M NaOH, indicating that the helix–coil conformation transition of lentinan was carried out more easily than that of native schizophyllan and scleroglucan, and was irreversible. For the first time, we confirmed that the denatured lentinan molecule, which was dissolved in 0.15M NaOH to be disrupted into single coil chains, could be renatured as triple helical chain by dialyzing against abundant water in the regenerated cellulose tube at ambient temperature (15°C). In view of the AFM image, lentinan in aqueous solution exhibited the linear, circular, and branched species of triple helix compared with native linear schizophyllan or scleroglucan. © 2004 Wiley Periodicals, Inc. Biopolymers, 2004

Journal ArticleDOI
TL;DR: An overall structural description of VGVAPG behavior in water is given and the existence of an ensemble of rather extended and folded conformations in solution is suggested that could be relevant for the peptide-receptor interaction and thus for biological activity.
Abstract: Elastic fibers are an important component of the extracellular matrix, providing elasticity and resilience to tissues that require the ability to deform repetitively and reversibly. Among the elastin-derived peptides, the Val–Gly–Val–Ala–Pro–Gly (VGVAPG) hexapeptide is known for its chemotactic activity and metalloproteinases upregulation properties. As other elastin-derived peptides, having homologous similar sequences, do not exhibit any biological activity, the following question arises: Does the peptide–receptor interaction need a specific active conformation? Previous experimental studies including NMR and CD spectroscopies did not clearly identify the conformations adopted by the VGVAPG peptide in solution. However, structural predictions made on VGVAPG and related XGXXPG peptides suggested a folded β-turn conformation. So we undertook a theoretical and experimental study of the VGVAPG peptide. The work presented here, which gives an overall structural description of VGVAPG behavior in water, also provides an additional insight into its structure–activity relationship. Both theoretical and experimental results suggest the existence of an ensemble of rather extended and folded conformations in solution. All the folded structures obtained exhibit a type VIII β-turn spanning the GVAP sequence. In the lack of any structural information concerning the elastin receptor, these results suggest that such a conformation could be relevant for the peptide–receptor interaction and thus for biological activity. © 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

Journal ArticleDOI
TL;DR: The results of MD modeling of A‐tract oligonucleotides are validated by close accord with corresponding crystal structure results and nuclear magnetic resonance (NMR) nuclear Overhauser effect (NOE) and residual dipolar coupling (RDC) structures of d(CGCGAATTCGCG) and d(GGCAAAAAACGG).
Abstract: Recent studies of DNA axis curvature and flexibility based on molecular dynamics (MD) simulations on DNA are reviewed. The MD simulations are on DNA sequences up to 25 base pairs in length, including explicit consideration of counterions and waters in the computational model. MD studies are described for ApA steps, A-tracts, for sequences of A-tracts with helix phasing. In MD modeling, ApA steps and A-tracts in aqueous solution are essentially straight, relatively rigid, and exhibit the characteristic features associated with the B′-form of DNA. The results of MD modeling of A-tract oligonucleotides are validated by close accord with corresponding crystal structure results and nuclear magnetic resonance (NMR) nuclear Overhauser effect (NOE) and residual dipolar coupling (RDC) structures of d(CGCGAATTCGCG) and d(GGCAAAAAACGG). MD simulation successfully accounts for enhanced axis curvature in a set of three sequences with phased A-tracts studied to date. The primary origin of the axis curvature in the MD model is found at those pyrimidine/purine YpR “flexible hinge points” in a high roll, open hinge conformational substate. In the MD model of axis curvature in a DNA sequence with both phased A-tracts and YpR steps, the A-tracts appear to act as positioning elements that make the helix phasing more precise, and key YpR steps in the open hinge state serve as curvature elements. Our simulations on a phased A-tract sequence as a function of temperature show that the MD simulations exhibit a premelting transition in close accord with experiment, and predict that the mechanism involves a B′-to-B transition within A-tracts coupled with the prediction of a transition in key YpR steps from the high roll, open hinge, to a low roll, closed hinge substate. Diverse experimental observations on DNA curvature phenomena are examined in light of the MD model with no serious discrepancies. The collected MD results provide independent support for the “non-A-tract model” of DNA curvature. The “junction model” is indicated to be a special case of the non-A-tract model when there is a Y base at the 5′ end of an A-tract. In accord with crystallography, the “ApA wedge model” is not supported by MD. © 2004 Wiley Periodicals, Inc. Biopolymers 73: 380–403, 2004

Journal ArticleDOI
TL;DR: The systems under investigation involve a donor and an acceptor moiety linked to the N- and C-termini of the oligopeptide spacer main chain that can be easily modulated.
Abstract: A proper understanding of the detailed nature and mechanism of physicochemical interactions depends heavily upon our ability to design and synthesize conformationally constrained 3D structures whose intercomponent geometry (either rigorously rigid or able to undergo destructuration, if required, but in all cases precisely tunable) would be well defined. To this end we have recently reported a few initial studies and we are currently working on the exploitation of stable, short, helical peptide spacers based on achiral and/or chiral Cα-tetrasubstituted α-amino acids. These building blocks are known to force the peptides either to predominantly fold into a 310-helical structure or to adopt a fully extended, planar 2.05-helix. The systems under investigation involve a donor and an acceptor moiety linked to the N- and C-termini of the oligopeptide spacer main chain. By increasing the number of intervening residues the donor···acceptor separation can be easily modulated. This review highlights details of these two novel peptide secondary structures and their use as molecular spacers in physicochemical investigations. © 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

Journal ArticleDOI
TL;DR: The linearity of Scatchard plot indicates that isofraxidin binds to a single class of binding sites on BSA and the values given for the binding constants agree very closely with those obtained by the modified Stern-Volmer equation.
Abstract: The binding of isofraxidin to bovine serum albumin (BSA) was studied under physiological conditions with BSA concentration of 1.5×10−6 mol · L−1 and drug concentration in the range of 1.67×10−6 mol · L−1 to 2.0×10−5 mol · L−1. Fluorescence quenching spectra in combination with uv absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and CD spectroscopy was used to determine the drug-binding mode, binding constant, and the protein structure changes in the presence of isofraxidin in aqueous solution. The linearity of Scatchard plot indicates that isofraxidin binds to a single class of binding sites on BSA and the values given for the binding constants agree very closely with those obtained by the modified Stern-Volmer equation. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), were calculated to be −17.63 kJ · mol−1 and 51.38 J · mol−1 · K−1 according to the van't Hoff equation, which indicated that hydrophobic interaction played a main role in the binding of isofraxidin to BSA. © 2004 Wiley Periodicals, Inc. Biopolymers, 2004

Journal ArticleDOI
TL;DR: Calculated helical parameters of the DNA show that the tethered end of theDNA changed its conformation noticeably when attracted to the surface, and the linker between the DNA and the surface went from standing upright to tilted, and finally collapsed on the surface.
Abstract: DNA orientation near surfaces determines many properties related to hybridization efficiency We performed a 40-ns molecular dynamics simulation to study the structure and orientation of a 12-base-pair DNA duplex tethered to a neutral, epoxide-coated silica surface Starting with a canonical B-form tethered in an up-right position, normal to the surface, the DNA tilted to over 55° and back The time scale was a few nanoseconds for tilting events The linker between the DNA and the surface went from standing upright to tilted, and finally collapsed on the surface Although the DNA conformation fluctuated, it remained closed to B-form for the entire 40 ns Calculations of helical parameters of the DNA show that the tethered end of the DNA changed its conformation noticeably when attracted to the surface © 2004 Wiley Periodicals, Inc Biopolymers, 2004