scispace - formally typeset
Search or ask a question

Showing papers in "Bioresources in 2012"


Journal ArticleDOI
TL;DR: Alkaline pretreatment with NaOH under mild operating conditions was used to improve ethanol and biogas production from softwood spruce and hardwood birch as discussed by the authors, which resulted in significant reduction of hemicellulose and the crystallinity of cellulose, which might be responsible for improved enzymatic hydrolyses of birch from 6.9% to 82.3%.
Abstract: Alkaline pretreatment with NaOH under mild operating conditions was used to improve ethanol and biogas production from softwood spruce and hardwood birch. The pretreatments were carried out at different temperatures between minus 15 and 100oC with 7.0% w/w NaOH solution for 2 h. The pretreated materials were then enzymatically hydrolyzed and subsequently fermented to ethanol or anaerobically digested to biogas. In general, the pretreatment was more successful for both ethanol and biogas production from the hardwood birch than the softwood spruce. The pretreatment resulted in significant reduction of hemicellulose and the crystallinity of cellulose, which might be responsible for improved enzymatic hydrolyses of birch from 6.9% to 82.3% and spruce from 14.1% to 35.7%. These results were obtained with pretreatment at 100°C for birch and 5°C for spruce. Subsequently, the best ethanol yield obtained was 0.08 g/g of the spruce while pretreated at 100°C, and 0.17 g/g of the birch treated at 100°C. On the other hand, digestion of untreated birch and spruce resulted in methane yields of 250 and 30 l/kg VS of the wood species, respectively. The pretreatment of the wood species at the best conditions for enzymatic hydrolysis resulted in 83% and 74% improvement in methane production from birch and spruce.

239 citations


Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art of material derived from the forest sector with respect to its potential for use in the packaging industry is described and some innovative approaches are highlighted.
Abstract: This review describes the state-of-the-art of material derived from the forest sector with respect to its potential for use in the packaging industry. Some innovative approaches are highlighted. The aim is to cover recent developments and key challenges for successful introduction of renewable materials in the packaging market. The covered subjects are renewable fibers and bio-based polymers for use in bioplastics or as coatings for paper-based packaging materials. Current market sizes and forecasts are also presented. Competitive mechanical, thermal, and barrier properties along with material availability and ease of processing are identified as fundamental issues for sustainable utilization of renewable materials.

238 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive overview of the latest insights into the biomass pelletization processes, such as the forces involved in the pelletizing processes, modeling, bonding, and adhesive mechanisms.
Abstract: The depletion of fossil fuels and the need to reduce greenhouse gas emissions has resulted in a strong growth of biomass utilization for heat and power production. Attempts to overcome the poor handling properties of biomass, i.e. its low bulk density and inhomogeneous structure, have resulted in an increasing interest in biomass densification technologies, such as pelletization and briquetting. The global pellet market has developed quickly, and strong growth is expected for the coming years. Due to an increase in demand for biomass, the traditionally used wood residues from sawmills and pulp and paper industry are not sufficient to meet future needs. An extended raw material base consisting of a broad variety of fibrous residues from agriculture and food industries, as well as thermal pre-treatment processes, provides new challenges for the pellet industry. Pellet production has been an established process for several decades, but only in the past five years has there been significant progress made to understand the key factors affecting pelletizing processes. A good understanding about the pelletizing process, especially the processing parameters and their effect on pellet formation and bonding are important for process and product optimization. The present review provides a comprehensive overview of the latest insights into the biomass pelletization processes, such as the forces involved in the pelletizing processes, modeling, bonding, and adhesive mechanisms. Furthermore, thermal pretreatment of the biomass, i.e. torrefaction and other thermal treatment to enhance the fuel properties of biomass pellets are discussed.

225 citations


Journal ArticleDOI
TL;DR: In this paper, the physical and mechanical properties of bleached Eucalyptus pulp reinforced with nanofibrillated cellulose (NFC) are compared with those of traditional beaten pulp used in the making of writing/printing and offset printing papers.
Abstract: In this work, the physical and mechanical properties of bleached Eucalyptus pulp reinforced with nanofibrillated cellulose (NFC) are compared with those of traditional beaten pulp used in the making of writing/printing and offset printing papers. For this purpose, three different types of hardwood slurries were prepared: beaten pulps, unbeaten pulps reinforced with NFC, and slightly beaten pulps also reinforced with NFC. Physical and mechanical tests were performed on handsheets from these different slurries. The results showed that adding NFC to unbeaten pulps results in physical and mechanical properties similar to those in pulps used for printing/writing papers. Nevertheless, the best results were obtained in slurries previously beaten at slight conditions and subsequently reinforced with NFC. These results demonstrate that the addition of NFC allows a reduction in beating intensity without decreasing the desired mechanical properties for this specific purpose.

194 citations


Journal ArticleDOI
TL;DR: In this article, the effect of alkali treatment on the moisture absorption tendency of single abaca fiber was investigated and it was shown that the alkali treated fiber absorbs less moisture than the untreated raw fiber.
Abstract: Environmentally beneficial composites can be made by replacing synthetic fibers with various types of cellulosic fibers. Fibers from pine wood, coir, sisal, abaca, coir, etc. are all good candidates. The most important factor in finding good fiber reinforcement in the composites is the strength of adhesion between matrix polymer and fiber. Due to the presence of hydroxyl groups and other polar groups in various constituents of abaca, the moisture absorption is high, which leads to poor wettability and weak interfacial bonding between fibers and the more hydrophobic matrices. Therefore, it is necessary to impart a hydrophobic nature to the fibers by suitable chemical treatments in order to develop composites with better mechanical properties. In the present work, the effect of alkali treatment on the moisture absorption tendency of single abaca fiber was investigated. The results shown that the alkali treated fiber absorbs less moisture than the untreated raw fiber.

141 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the use of homogeneous acid catalysts for the conversion of waste biomass to levulinic acid in the presence of various cheap raw materials (poplar sawdust, paper mill sludge, tobacco chops, wheat straw, olive tree pruning) as substrates.
Abstract: The hydrothermal conversion of waste biomass to levulinic acid was investigated in the presence of homogeneous acid catalysts. Different cheap raw materials (poplar sawdust, paper mill sludge, tobacco chops, wheat straw, olive tree pruning) were employed as substrates. The yields of levulinic acid were improved by optimization of the main reaction parameters, such as type and amount of acid catalyst, temperature, duration, biomass concentration, and electrolyte addition. The catalytic performances were also improved by the adoption of microwave irradiation as an efficient heating method, allowing significant energy and time savings. The hydrothermal conversions of inulin and wheat straw were carried out in the presence of niobium phosphate, which up to now have never been employed in these reactions. The preliminary results appeared to be in need of further optimization.

139 citations


Journal Article
TL;DR: In this paper, the effect of rice straw pretreatment using ammonium hydroxide and hydrogen peroxide (H2O2) on the biogasification performance through AD was investigated.
Abstract: Lignocellulosic biomass is considered the most abundant renewable resource that has the potential to contribute remarkably in the supply of biofuel. Previous studies have shown that chemical pretreatment prior to anaerobic digestion (AD) can increase the digestibility of lignocellulosic biomass and methane yield. In the present study, the effect of rice straw pretreatment using ammonium hydroxide (NH3•H2O) and hydrogen peroxide (H2O2) on the biogasification performance through AD was investigated. A self-designed, laboratory-scale, and continuous anaerobic biogas digester was used for the evaluation. Results showed that the contents of the rice straw, i.e. the lignin, cellulose, and hemicellulose were degraded significantly after the NH3•H2O and H2O2 treatments, and that biogas production from all pretreated rice straw increased. In addition, the optimal treatments for biogas production were the 4% and 3% H2O2 treatments (w/w), which yielded 327.5 and 319.7 mL/gVS, biogas, respectively, higher than the untreated sample. Biogas production from H2O2 pretreated rice straw was more favorable than rice straw pretreated with same concentration of ammonia, ranking in the order of 4% ≈ 3% > 2% > 1%. The optimal amount of H2O2 treatment for rice straw biogas digestion is 3% when economics and biogas yields are considered.

117 citations


Journal ArticleDOI
TL;DR: In this paper, a review summarizes the proposed mechanisms for irreversible coalescence of cellulose microfibrils within fibers during various common industrial treatments for chemical pulp fibers as well as the methods to evaluate it.
Abstract: This review summarizes the proposed mechanisms for irreversible coalescence of cellulose microfibrils within fibers during various common industrial treatments for chemical pulp fibers as well as the methods to evaluate it. It is a phenomenon vital for cellulose accessibility but still under considerable debate. The proposed coalescence mechanisms include irreversible hydrogen bonding. Coalescence is induced by high temperature and by the absence of obstructing molecules, such as water, hemicelluloses, and lignin. The typical industrial processes, in the course of which nano-scale coalescence and possible aggregation of cellulose microfibrillar elements occurs, are drying and chemical pulping. Coalescence reduces cellulose accessibility and therefore, in several instances, the quality of cellulose as a raw material for novel products. The degree of coalescence also affects the processing and the quality of the products. For traditional paper-based products, the loss of strength properties is a major disadvantage. Some properties lost during coalescence can be restored to a certain extent by, e.g., beating. Several factors, such as charge, have an influence on the intensity of the coalescence. The evaluation of the phenomenon is commonly conducted by water retention value measurements. Other techniques, such as deuteration combined with FTIR spectroscopy, are being applied for better understanding of the changes in cellulose accessibility.

102 citations


Journal ArticleDOI
TL;DR: In this article, the effect of kenaf-derived cellulose (KDC)-filled poly(lactic acid) (PLA) composites were prepared via melt blending and compression molding to improve the properties of PLA by introducing a natural cellulose that was chemically derived (chlorination and mercerization processes).
Abstract: Kenaf-derived cellulose (KDC)-filled poly(lactic acid) (PLA) composites were prepared via melt blending and compression molding to improve the properties of PLA by introducing a natural cellulose that was chemically derived (chlorination and mercerization processes) from plant-based kenaf bast fibers. The effect of KDC content (0-60 wt.%) on the tensile elongation at the break point and during flexural and impact testing and on the water absorption and density of the composites was investigated, while the neat PLA polymer (without the addition of cellulose) served as a reference for the composites. The elongation at the break point of the composites was 9% on average, making it less elastic than the neat PLA. The flexural strength and modulus also increased by 36% and 54%, respectively. The impact strength of the composites was improved at KDC contents below 40 wt.%, but the impact strength was reduced above 40 wt.%. The composite containing the highest amount of KDC (60 wt.%) was denser than the neat PLA and had a water uptake of approximately 12%, which is notably low for a biocomposite system.

93 citations


Journal ArticleDOI
TL;DR: In this article, the authors reviewed the current status of oil palm biomass, including the availability of this tree, in order to illustrate the potential of palm biomass as an alternative source for compressed wood.
Abstract: Compressed wood, which is formed by a process that increases the wood’s density, aims to improve its strength and dimensional stability. Compressed wood can be used in building and construction, especially for construction of walls and flooring. Currently, supplies of wood are becoming limited, and the oil palm tree has become one of the largest plantation species in Malaysia. Oil palm trunk could be an appropriate choice for an alternative source for compressed wood. This paper aims to review the current status of oil palm biomass, including the availability of this tree, in order to illustrate the potential of oil palm biomass as an alternative source for compressed wood. Up to the present there has been insufficient information regarding the manufacturing conditions and properties of compressed wood from oil palm trunk. This paper will cover the background of compressed wood and the possibilities of producing compressed wood using oil palm trunk as a raw material.

92 citations


Journal ArticleDOI
TL;DR: In this article, a field study involving wheat production was extended in order to study the effects of biochar (BC) amendment in paddy soil that had long-term contamination of Cd.
Abstract: A field study involving wheat production was extended in order to study the effects of biochar (BC) amendment in paddy soil that had long-term contamination of Cd. The BC was used as an amendment in Cd-contaminated soil for its special property. BC was amended at rates of 10 to 40 t ha-1 during the rice season before rice transplantation in 2009. BC amendments increased soil pH by 0.11 to 0.24 and by 0.09 to 0.24 units, respectively, while the soil CaCl2-extracted Cd was reduced by 10.1% to 40.2% and by 10.0% to 57.0% in 2010 and 2011, respectively. Consequently, the total wheat Cd uptake was decreased by 16.8% to 37.3% and by 6.5% to 28.3%. Wheat grain Cd concentration was reduced by 24.8% to 44.2% and by 14.0% to 39.2% in 2010 and 2011, respectively. The BC application in soil reduced Cd phyto-availability in two wheat seasons possibly by raising soil pH and soil organic carbon (SOC). Therefore, BC may be used for soil remediation, but not to reduce Cd uptake to an adequate level for food production on Cd contaminated soils.

Journal ArticleDOI
TL;DR: In this article, a nano-crystalline cellulose (NCC) was produced from kenaf core wood using the acid hydrolysis method, which was shown to be characteristic of cellulose I. The resulting NCC suspension was characterized using X-ray diffraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) analysis, and scanning transmission electron microscope (STEM).
Abstract: Natural fibers such as kenaf have been studied extensively as a reinforcing phase and received major attention recently due to their renewability, biodegradability, and high strength comparable to other synthetic fibers. In this study, nano-crystalline cellulose (NCC) was produced from kenaf core wood using the acid hydrolysis method. Kenaf core was alkali treated with a 4 wt% of sodium hydroxide solution and subsequently bleached using sodium chlorite in acidic buffer. The resulting white, bleached kenaf core was hydrolyzed in 64 wt% sulfuric acid (H2SO4) to obtain NCC. The resulting NCC suspension was characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) analysis, and scanning transmission electron microscope (STEM). Hydrolysis with highly concentrated H2SO4 further increased the crystallinity of bleached kenaf core cellulose and reduced the dimension of cellulose to nano scale. FTIR results showed that with each subsequent treatment, hemicellulose and lignin were removed, while the chemical functionalities of cellulose remained after the acid hydrolysis treatment. XRD peaks shown by bleached kenaf core were characteristic of cellulose I, which was reaffirmed by the DSC results. The diameters of NCC obtained from kenaf core were found to be in the range of 8.5 to 25.5 nm with an average aspect ratio of 27.8.

Journal ArticleDOI
TL;DR: In this article, the effects of oxygen and moisture content (MC) on the chemical and color changes of black locust (Robinia pseudoacacia) wood during heat treatment were investigated.
Abstract: The aim of this study was to investigate the effects of oxygen and moisture content (MC) on the chemical and color changes of black locust (Robinia pseudoacacia) wood during heat treatment. The wood flour was conditioned to different initial MCs and heated for 24 h at a constant temperature of 120oC in either oxygen or nitrogen atmosphere. The pH values and chromaticity indexes were examined. Diffuse reflectance UV-Vis (DRUV) and Fourier transform infrared (FTIR) spectra were used to characterize the changes of chromophores upon heating. The study demonstrated that the pH values decreased after heat treatment, and it was lower when the heat treated was in oxygen than in nitrogen. The L* decreased significantly, while a* and b* increased. The total color difference ΔE* increased with increasing initial MC until a plateau was reached after 30% MC. The color change was greater in oxygen than in nitrogen. The hydroxyl groups decreased after heat treatment. The releases of acid and formation of quinoid compounds and carboxylic groups during heat treatment were confirmed. Discoloration of wood is due mainly to the condensation and oxidation reactions, which are accelerated by oxygen. Higher MCs are required to obtain the greatest color change of wood in inert atmosphere.

Journal ArticleDOI
TL;DR: In this article, the effect of superheated steam treatment on oil palm empty fruit bunches (OPEFB) was investigated in terms of physicochemical property changes and enzymatic hydrolysis enhancement.
Abstract: The effect of superheated steam treatment on oil palm empty fruit bunches (OPEFB) was investigated in terms of physicochemical property changes and enzymatic hydrolysis enhancement. The experimental treatment was carried out at different temperatures (140-210°C) and durations (20-90 min). Results showed that as the superheated steam temperature and time increased, the size distribution also changed, resulting in more small particles. Analysis on the surface texture, color, and mechanical properties of the treated OPEFB also showed that significant changes resulted due to the superheated steam treatment. In support to this, Fourier Transform Infrared (FTIR) spectroscopy and thermogravimetric (TG) analyses showed that solubilization and removal of the hemicelluloses component also took place. As a result of this phenomenon, higher total sugar and glucose yield was achieved once the treated OPEFB was subjected to enzymatic hydrolysis. This suggests that superheated steam treatment could enhance OPEFB structure degradation for the preparation of a suitable substrate in order to produce a higher glucose yield in the enzymatic hydrolysis process.

Journal ArticleDOI
TL;DR: In this paper, a cross-linked biomass-polymer composite with a lignin content of up to 60% was prepared by blending Lignin with an epoxy resin and polyamine using a hot press molding process.
Abstract: A cross-linked biomass-polymer composite with a lignin content of up to 60% was prepared by blending lignin with an epoxy resin and polyamine using a hot press molding process. The characteristics of the curing reaction of lignin with epoxy resin were studied using DSC and FTIR analysis. The effect of molding temperature and molding pressure on the mechanical properties and microstructure of the lignin/epoxy resin composite was also studied by SEM, DMA, and TG analyses. The results showed that the epoxy resin can be cured by lignin, and the curing temperature for the blends can be reduced by the introduction of a polyamine cure agent. The properties of the composite, such as bending strength, impact strength, glass-transition temperature, and thermal stability, were evidently influenced by the molding process. A good interfacial combination was formed between lignin and epoxy resin. Increasing the molding temperature and pressure proved beneficial to achieve a better interfacial combination for the composite, and the degree of ductile fracture was increased in the fracture surface of the composite.

Journal ArticleDOI
TL;DR: In this article, a study was undertaken to isolate ligninase-producing white-rot fungi for use in the extraction of fibre from pineapple leaf agriwaste, and 15 fungal strains were isolated from dead tree trunks and leaf litter.
Abstract: This study was undertaken to isolate ligninase-producing white-rot fungi for use in the extraction of fibre from pineapple leaf agriwaste. Fifteen fungal strains were isolated from dead tree trunks and leaf litter. Ligninolytic enzymes (lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac)), were produced by solid-state fermentation (SSF) using pineapple leaves as the substrate. Of the isolated strains, the one showing maximum production of ligninolytic enzymes was identified to be Ganoderma lucidum by 18S ribotyping. Single parameter optimization and response surface methodology of different process variables were carried out for enzyme production. Incubation period, agitation, and Tween-80 were identified to be the most significant variables through Plackett-Burman design. These variables were further optimized by Box-Behnken design. The overall maximum yield of ligninolytic enzymes was achieved by experimental analysis under these optimal conditions. Quantitative lignin analysis of pineapple leaves by Klason lignin method showed significant degradation of lignin by Ganoderma lucidum under SSF.

Journal ArticleDOI
TL;DR: A locally isolated white rot fungal strain Trametes versicolor IBL-04 produced high laccase activities in solid state bio-processing of corn cobs, suggesting its potential for industrial applications.
Abstract: A locally isolated white rot fungal strain Trametes versicolor IBL-04 produced high laccase activities in solid state bio-processing of corn cobs. Addition of glucose and yeast extract (C: N ratio; 25:1) enhanced laccase synthesis. Addition of Tween-80 and CuSO4 enhanced laccase production to 1012 U/mL under optimized process conditions. Laccase was further purified to 2.89-fold (specific activity of 840 U/mg) by ammonium sulfate fractional precipitation, dialysis, and Sephadex G-100 gel filtration chromatography. The purified laccase had a relative molecular mass of 63 kDa as detected by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). Best enzyme activity was at pH 5 and 40oC. Using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as substrate, the enzyme showed maximum activity (Vmax) of 780 U/mL with a corresponding Michaelis constant (Km) value of 73µM. Among the different activators/inhibitors, Cu2+, Mn2+, and Fe2+ stimulated laccase activity, whereas EDTA and cystein inhibited the enzyme. The higher Vmax and lower Km for T. versicolor IBL-04 laccase as compared to most of the reported laccases suggests its potential for industrial applications.

Journal ArticleDOI
TL;DR: In this paper, the results of the characterization of Norway spruce (Picea abies Karst.) and fir (Abies alba Mill.) wood thermally modified by TERMOVUOTO® technology at temperatures in the range of 160 to 220°C in vacuum conditions were presented.
Abstract: The study presents results of the characterization of Norway spruce (Picea abies Karst.) and fir (Abies alba Mill.) wood thermally modified by TERMOVUOTO® technology at temperatures in the range of 160 to 220°C in vacuum conditions. Sixteen thermo-vacuum treatment tests were carried out using a pilot laboratory unit on 30-mm-thick spruce and fir boards in various combinations of the process parameters, i.e. temperature (T), duration (t), and pressure (p). The treated material was characterized to reveal the changes of the physical-mechanical properties including color and durability. The treated wood showed an improved performance with relation to the dimensional stability and durability. The measured mechanical properties did not show any significant decrease. Analytical models, based on the existing correlations between wood properties and process parameters, were assessed, thus allowing the control of the process.

Journal ArticleDOI
TL;DR: In this paper, an overview of the deep-drawing of paper-based materials with the emphasis on the experienced deformations, on the role of mechanical properties of materials in deep drawing, and on the typical defects found in the shapes after the forming.
Abstract: Fibre-based packaging materials are widely utilized all over the world. They have several important advantages in comparison with fossil-based packaging: biodegradability, recyclability, and renewability. However, fibre-based packaging cannot fully compete with plastic in its barrier properties. Also there are limitations regarding its shapes due to poorer formability. The deep-drawing forming process can be used for the production of advanced three-dimensional shapes from paper-based materials. Formability and related characteristics are essential for deep-drawing of paper-based materials. This paper aims to give an overview of the deep-drawing of paper-based materials with the emphasis on the experienced deformations, on the role of mechanical properties of materials in deep-drawing, and on the typical defects found in the shapes after the forming. Additionally, strategies are proposed to help mitigate common problems in deep-drawing.

Journal ArticleDOI
TL;DR: In this paper, the effect of deacetylation of chitosan on the chemical structure, thermal properties, and compatibility of polyamide66 (CS/PA66) blends were investigated.
Abstract: The effect of the degree of deacetylation of chitosan on the chemical structure, thermal properties, and compatibility of chitosan/polyamide66 (CS/PA66) blends were investigated. Blends of CS with PA66 were prepared via the solution casting technique by using 85% formic acid. Structural interaction between PA66, CS, and CS/PA66 blends were analyzed by infrared spectroscopy. FT-IR spectra showed displacement of the carbonyl band of the amide group of chitosan toward smaller wave numbers, indicating possible existence of hydrogen bonding between the two macromolecules. Thermal and morphological behavior of films containing chitosan with degree of deacetylation (DD) ranging from 52.9% to 85% in the polymer blends were investigated by thermogravimetric analysis and scanning electron microscopy. Thermal analysis showed that the CS/PA66 blends became more thermally stable than pure chitosan. The morphological behavior observed by scanning electron microscopy indicated phase segregation in all types of blending. Acetyl content in chitosan was found to influence the degree of compatibility. Decreasing the acetyl group or increasing the DD of chitosan increases the compatibility of the CS/PA66 blends.

Journal ArticleDOI
TL;DR: In this article, a computational approach was used to analyze the FTIR spectra of a wide range of treated and untreated lignocellulosic biomass (coconut husk, banana trunk, sago hampas, rice husk and empty fruit bunch).
Abstract: A computational approach was used to analyze the FTIR spectra of a wide range of treated and untreated lignocellulosic biomass (coconut husk, banana trunk, sago hampas, rice husk, and empty fruit bunch). The biomass was treated with strong sulphuric acid and NaOH, respectively. A total of 87 spectra were obtained in which the absorption bands were de-convoluted automatically, generating a peak table of 87 rows and 60 columns. Square roots were taken of the peak values, with further standardization prior to Principal Component Analysis (PCA) for data exploration. In a scores plot, the treated and untreated biomass were distinguishable along the two main axes, PC1 and PC2. Examining the absorption bands corresponding to lignocellulosic components indicated that the acid pretreatment had resulted in dissolution and degradation of hemicelluloses and lignin, confirmed typically by disappearance of bands. The alkali treatment however was not as rigorous as the acid treatment, as some characteristic bands of hemicelluloses and lignin were enhanced, suggesting condensation of the degraded polysaccharides. The computer-assisted analysis of the FTIR spectra allowed efficient and simultaneous comparisons of lignocellulosic compositions present in various treated and untreated biomass. This represents an improvement relative to the conventional methods, since a large dataset can be handled efficiently and individual peaks can be examined.

Journal ArticleDOI
TL;DR: In this paper, the authors focus on recent progress regarding the mechanisms of light-induced discoloration of mechanical and chemimechanical pulps and on the proposed preventive treatments.
Abstract: This review will focus on recent progress regarding the mechanisms of light-induced discoloration of mechanical and chemimechanical pulps and on the proposed preventive treatments. It is evident that the mechanisms behind photoyellowing of lignin-rich pulps are complex and that several types of reaction pathways may coexist. Photoyellowing proceeds via one initial fast phase and a slower following phase. The fast phase has been ascribed to oxidation of free phenolic groups and/or hydroquinones and catechols to photoproducts of mainly quinonoid character. A multitude of reactions involving several lignin subunits are possible. Important intermediates are phenoxyl radicals, and to some extent ketyl radicals. The importance of the phenacyl aryl ether pathway might be more important than previously thought, even though the original content of such groups is low in lignin. Even though many preventive methods against photoyellowing have been suggested, no cost-efficient treatment is available to hinder photoreversion of lignin-containing paper permanently. Suggested methods for stabilization include chemical modification (etherification and esterification), coating the paper product, addition of radical scavengers, excited state quenchers, or ultraviolet absorbing compounds.

Journal Article
TL;DR: In this paper, two types of vegetable fibres with different composition and properties (cellulose content and microfibrillar angle), sisal, and cotton linters pulps, were initially characterised in order to assess their reinforcing capability.
Abstract: In this work, nanofibrillated cellulose (NFC) has been evaluated as a potential reinforcement for cement mortar composites. Two types of vegetable fibres with different composition and properties (cellulose content and microfibrillar angle), sisal, and cotton linters pulps, were initially characterised in order to assess their reinforcing capability. Sisal pulp was found to be most suitable as reinforcement for the brittle cementitious matrix. Nanofibrillated cellulose was produced by the application of a high intensity refining process of the sisal pulp. It was found that 6 hours of refining time was required to obtain the desired nanofibrillation of the fibers. Cement mortar composites reinforced with both the sisal fibres and the nanofibrillated cellulose were prepared, and the mechanical properties were determined under flexural tests. The cement mortar composites reinforced with the nanofibrillated cellulose exhibited enhanced flexural properties, but lower values of fracture energy, than the ones reinforced with the conventional sisal fibres.

Journal Article
TL;DR: In this paper, three different ways of applying ultrasound for the production of nanocellulose from native cellulose were explored, and it was observed that cellulose nanofibrils produced by ultrasound treatment were slightly thinner compared to those produced using the mechanical method.
Abstract: In this study three different ways of applying ultrasound for the production of nanocellulose from native cellulose were explored. In the first option bleached hardwood kraft pulp was oxidized with the ultrasound (US) assisted TEMPO/NaBr/NaOCl-system (US-TEMPO-system) followed by mechanical separation of nanocellulose. The pulp oxidized by the US-TEMPO-system had higher carboxyls content and ca. 10% increase in nanocellulose yield when compared to the TEMPO-system without sono catalysis. In the second option ultrasound pretreated pulp was oxidized using the TEMPO-system. Although there was no gain in carboxyls content in this process versus the oxidation with TEMPO-system without ultrasound treatment, a higher degree of fibrillation was obtained after ultrasound treatment. In the third case the TEMPO oxidized pulp was subjected to mechanical and ultrasound treatments for nanocellulose production. Under similar treatment time the subsequent ultrasound treatment achieved higher nanocellulose yield than the subsequent mechanical treatment. However, in comparison, the ultrasound treated nanocellulose had lower Rheometer Stresstech viscosity. Furthermore, it was observed that cellulose nanofibrils produced by ultrasound treatment were slightly thinner compared to those produced using the mechanical method.

Journal ArticleDOI
TL;DR: In this article, a nanocrystalline cellulose (NCC) was prepared from bamboo pulp, which was first pretreated with sodium hydroxide, followed by hydrolysis with sulfuric acid.
Abstract: Nanocrystalline cellulose (NCC) has many potential applications because of its special properties. In this paper, NCC was prepared from bamboo pulp. Bamboo pulp was first pretreated with sodium hydroxide, followed by hydrolysis with sulfuric acid. The concentration of sulfuric acid and the hydrolysis time on the yield of NCC were studied. The results showed that sulfuric acid concentration had larger influence than the hydrolysis time on the yield of NCC. When the temperature was 50oC, the concentration of sulfuric acid was 48wt% and the reaction time was 30 minutes, a high quality of nanocrystalline cellulose was obtained; under these conditions, the length of the nanocrystalline cellulose ranged from 200 nm to 500 nm, the diameter was less than 20 nm, the yield was 15.67wt%, and the crystallinity was 71.98%, which is not only higher than those of cellulose nanocrystals prepared from some non-wood materials, but also higher than bamboo cellulose nanocrystals prepared by other methods.

Journal ArticleDOI
Abstract: The effect of biomass loading from 50 to 200 g/L on enzymatic hydrolysis was studied using switchgrass samples pretreated by dilute acid and hypochlorite-alkaline methods. It was confirmed that an increase of initial loading of the pretreated biomass leads to a decrease of enzymatic digestibility, probably due to difficulty of mass transfer of cellulolytic enzymes in the high-viscous substrate slurry and also because of an inhibiting effect of the formed sugars. An additional sharp problem connected with enzymatic hydrolysis at the high-solids loading is absorption and retention of liquid hydrolysate by residual non-hydrolyzed biomass that causes diminution of the available volume (Va) of the sugar solution and decreases productivity of the saccharification process. To optimize the high-solids enzymatic hydrolysis, the maximal amount of the formed sugars was determined Am = Cm x Va,m , where Cm is maximal concentration of the sugar solution and Va,m is maximal available volume. Such an approach makes it possible to find the optimal conditions for the hydrolysis: optimal biomass loading and hydrolysis time. After enzymatic hydrolysis at these optimal conditions, the low-lignified biomass pretreated by hypochlorite-alkaline method displayed much more available volume of sugar solution and higher digestibility characteristics than the cellolignin obtained by acidic pretreatment of the initial biomass sample.

Journal ArticleDOI
TL;DR: The infusible fibers resulted from the partial cleavage of the PEG moiety from the lignin fibers after treatment with 6 M hydrochloric acid at 100 °C for 2 h and were converted into CFs with a tensile strength of 450 MPa by carbonization at 1000 °C under a N2 stream.
Abstract: A thermally fusible softwood lignin was directly isolated by a solvolysis of cedar wood chips with a mixture of polyethylene glycol 400 (PEG 400) and sulfuric acid. Its fusibility was found to be due to a PEG moiety introduced into the lignin by the solvolysis. The lignin was easily formed into fibers by melt-spinning at temperatures ranging from 145 to 172 °C without any modification. The lignin fibers could be converted into infusible fibers as a precursor for carbon fibers (CFs) by conventional oxidative thermal stabilization processing in air or a stream of oxygen for 2 days. We found that the infusible fibers resulted from the partial cleavage of the PEG moiety from the lignin fibers after treatment with 6 M hydrochloric acid at 100 °C for 2 h. The infusible fibers were converted into CFs with a tensile strength of 450 MPa by carbonization at 1000 °C under a N2 stream.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the discoloration of European beech (Fagus sylvatica) and Scots pine (Pinus sylvestris) specimens treated with different chemicals and surface coated with different UV absorbers before being subjected to artificial weathering.
Abstract: The objective of this study was to evaluate the discoloration of European beech (Fagus sylvatica) and Scots pine (Pinus sylvestris) specimens treated with different chemicals and surface coated with different UV absorbers before being subjected to artificial weathering. The results showed that the influence of coatings containing UV absorbers (UV screeners micronized TiO2 and UVA of hydroxyphenyl-s-triazine types) were similar to each other. The UV screener TiO2 led to the least discoloration of the coated wood surface, closely followed by the UVA of hydroxyphenyl-s-triazines (HPT). The color stability was determined to be better for pine wood treated with micronized copper preservative coated with UV absorber, in comparison to when it was only coated with UV absorbers and then subjected to weathering. Microscopic observation revealed that the clear-coats penetration behavior was different in wood preservative-treated and in untreated wood of Scots pine, which has various extractives. However, the color stability and coating penetration was nearly the same in beech wood treated with preservatives and in untreated beech wood. We provide an explanation for why these effects occurred and discuss the implications of our findings for the development of weather-resistant wood materials.

Journal ArticleDOI
TL;DR: In this paper, the performance of SGW fibers as a reinforcing element of polypropylene composites was evaluated with and without coupling agent, and a new parameter called fiber tensile strength factor was defined and used as a baseline for the comparison of the properties of different composite materials.
Abstract: The behavior of stone groundwood / polypropylene injection-molded composites was evaluated with and without coupling agent. Stone groundwood (SGW) is a fibrous material commonly prepared in a high yield process and mainly used for papermaking applications. In this work, the use of SGW fibers was explored as a reinforcing element of polypropylene (PP) composites. The surface charge density of the composite components was evaluated, as well as the fiber’s length and diameter inside the composite material. Two mixing extrusion processes were evaluated, and the use of a kinetic mixer, instead of an internal mixer, resulted in longer mean fiber lengths of the reinforcing fibers. On the other hand, the accessibility of surface hydroxyl groups of stone groundwood fibers was improved by treating the fibers with 5% of sodium hydroxide, resulting in a noticeable increase of the tensile strength of the composites, for a similar percentage of coupling agent. A new parameter called Fiber Tensile Strength Factor is defined and used as a baseline for the comparison of the properties of the different composite materials. Finally the competitiveness of stone groundwood / polypropylene / polypropylene-co-maleic anhydride system, which compared favorably to sized glass-fiber / polypropylene GF/PP and glass-fiber / polypropylene / polypropylene-co-maleic anhydride composite formulations, was quantified by means of the fiber tensile strength factor.

Journal ArticleDOI
TL;DR: In this article, composites from mechanical pulp (MP) and polypropylene (PP) reinforced with softwood (Pinus radiata) fibers have been investigated and compared to fiberglass composites.
Abstract: Currently, acoustic isolation is one of the problems raised with building construction in Spain. The publication of the Basic Document for the protection against noise of the Technical Building Code has increased the demand of comfort for citizens. This has created the need to seek new composite materials that meet the new required acoustical building codes. In this paper we report the results of the newly developed composites that are able to improve the acoustic isolation of airborne noise. These composites were prepared from polypropylene (PP) reinforced with mechanical pulp fibers from softwood (Pinus radiata). Mechanical and acoustical properties of the composites from mechanical pulp (MP) and polypropylene (PP) have been investigated and compared to fiberglass (FG) composites. MP composites had lower tensile properties compared with FG composites, although these properties can be improved by incorporation of a coupling agent. The results of acoustical properties of MP composites were reported and compared with the conventional composites based on fiberglass and gypsum plasterboards. Finally, we suggest the application of MP composites as a light-weight building material to reduce acoustic transmitions.