scispace - formally typeset
Search or ask a question

Showing papers in "BMC Biochemistry in 2002"


Journal ArticleDOI
TL;DR: The putative catalytic nature of the MPN+ motif makes it a good candidate for a pivotal enzymatic function, possibly a proteasome-associated deubiquitinating activity and a CSN-associated Nedd8/Rub1-removing activity.
Abstract: Background Three macromolecular assemblages, the lid complex of the proteasome, the COP9-Signalosome (CSN) and the eIF3 complex, all consist of multiple proteins harboring MPN and PCI domains. Up to now, no specific function for any of these proteins has been defined, nor has the importance of these motifs been elucidated. In particular Rpn11, a lid subunit, serves as the paradigm for MPN-containing proteins as it is highly conserved and important for proteasome function.

228 citations


Journal ArticleDOI
TL;DR: It is demonstrated that Src preferentially associates with KDR/Flk-1 rather than Flt-1 in human umbilical vein endothelial cells (HUVECs), and that VEGF stimulation resulted in an increase of Src activity associated with activated KDR/.
Abstract: Background The cytoplasmic tyrosine kinase, Src, has been found to play a crucial role in VEGF (vascular endothelial growth factor) – dependent vascular permeability involved in angiogenesis. The two main VEGFRs present on vascular endothelial cells are KDR/Flk-1 (kinase insert domain-containing receptor/fetal liver kinase-1) and Flt-1 (Fms-like tyrosine kinase-1). However, to date, it has not been determined which VEGF receptor (VEGFR) is involved in binding to and activating Src kinase following VEGF stimulation of the receptors.

105 citations


Journal ArticleDOI
TL;DR: It is demonstrated, through a microarray approach, that HIV-1 Tat is able to regulate many cellular genes that are involved in cell signaling, translation and ultimately control the host proliferative and differentiation signals.
Abstract: Background Expression profiling holds great promise for rapid host genome functional analysis. It is plausible that host expression profiling in an infection could serve as a universal phenotype in virally infected cells. Here, we describe the effect of one of the most critical viral activators, Tat, in HIV-1 infected and Tat expressing cells. We utilized microarray analysis from uninfected, latently HIV-1 infected cells, as well as cells that express Tat, to decipher some of the cellular changes associated with this viral activator.

86 citations


Journal ArticleDOI
TL;DR: The involvement of the two terminal α-helices of profilin in ligand binding imposes important structural constraints upon the functions of this region, suggesting a model in which the competitive interactions between PI(4,5)-P2 and actin and PI( 4,5-P2) and poly(L-proline) regulate profILin functions.
Abstract: Profilin is a small cytoskeletal protein which interacts with actin, proline-rich proteins and phosphatidylinositol 4,5-bisphosphate (PI(4,5)-P2). Crystallography, NMR and mutagenesis of vertebrate profilins have revealed the amino acid residues that are responsible for the interactions with actin and poly(L-proline) peptides. Although Arg88 of human profilin I was shown to be involved in PI(4,5)-P2-binding, it was suggested that carboxy terminal basic residues may be involved as well. Using site directed mutagenesis we have refined the PI(4,5)-P2 binding site of human profilin I. For each mutant we assessed the stability and studied the interactions with actin, a proline-rich peptide and PI(4,5)-P2 micelles. We identified at least two PI(4,5)-P2-binding regions in human profilin I. As expected, one region comprises Arg88 and overlaps with the actin binding site. The second region involves Arg136 in the carboxy terminal helix and neighbours the poly(L-proline) binding site. In addition, we show that adding a small protein tag to the carboxy terminus of profilin strongly reduces binding to poly(L-proline), suggesting local conformational changes of the carboxy terminal α-helix may have dramatic effects on ligand binding. The involvement of the two terminal α-helices of profilin in ligand binding imposes important structural constraints upon the functions of this region. Our data suggest a model in which the competitive interactions between PI(4,5)-P2 and actin and PI(4,5)-P2 and poly(L-proline) regulate profilin functions.

83 citations


Journal ArticleDOI
TL;DR: The capacity of the Trichoderma harzianum protease to hydrolyze the cell wall of C. perniciosa indicates that this enzyme may be actually involved in the antagonistic process between the two fungi, and strongly suggest that hydrolytic enzyme over-producing transgenic fungi may show superior biocontrol capacity.
Abstract: Several Trichoderma strains have been reported to be effective in controlling plant diseases, and the action of fungal hydrolytic enzymes has been considered as the main mechanism involved in the antagonistic process. However, although Trichoderma strains were found to impair development of Crinipellis perniciosa, the causal agent of cocoa plant witches' broom disease, no fungal strain is available for effective control of this disease. We have then undertaken a program of construction of hydrolytic enzyme-overproducing Trichoderma strains aiming improvement of the fungal antagonistic capacity. The protease of an indian Trichoderma isolate showing antagonistic activity against C. perniciosa was purified to homogeneity and characterized for its kinetic properties and action on the phytopathogen cell wall. A protease produced by the Trichoderma harzianum isolate 1051 was purified to homogeneity by precipitation with ammonium sulfate followed by hydrophobic chromatography. The molecular mass of this protease as determined by SDS-polyacrylamide gel electrophoresis was about 18.8 kDa. Its N-terminal amino acid sequence shares no homology with any other protease. The purified enzyme substantially affected the cell wall of the phytopathogen C. perniciosa. Western-blotting analysis showed that the enzyme was present in the culture supernatant 24 h after the Trichoderma started to grow in casein-containing liquid medium. The capacity of the Trichoderma harzianum protease to hydrolyze the cell wall of C. perniciosa indicates that this enzyme may be actually involved in the antagonistic process between the two fungi. This fact strongly suggest that hydrolytic enzyme over-producing transgenic fungi may show superior biocontrol capacity.

75 citations


Journal ArticleDOI
TL;DR: A novel point in asCP sequence (position 165) mutations at which can result in red fluorescence appearance is located and could be applied onto other CPs to generate red and far-red fluorescent mutants.
Abstract: Background Within the family of green fluorescent protein (GFP) homologs, one can mark two main groups, specifically, fluorescent proteins (FPs) and non-fluorescent or chromoproteins (CPs). Structural background of differences between FPs and CPs are poorly understood to date.

63 citations


Journal ArticleDOI
TL;DR: It is shown thatpolypurine TFOs bind highly specifically to polypurine stretches in double stranded DNA, which is a prerequisite for biotechnical applications of triple helices to mediate sequence specific recognition of DNA.
Abstract: Background A third DNA strand can bind into the major groove of a homopurine duplex DNA to form a DNA triple helix. Sequence specific triplex formation can be applied for gene targeting, gene silencing and mutagenesis.

53 citations


Journal ArticleDOI
TL;DR: The data presented herein indicate that Ser224, Ile164, Phe158, Tyr228, and Asn233 are not essential for tight binding of substrate to metallo-β-lactamase L1 and Km values are not reliable for showing substrate binding, and there is no correlation between substrate binding and the amount of reaction intermediate formed during the reaction.
Abstract: The metallo-β-lactamases are Zn(II)-containing enzymes that hydrolyze the β-lactam bond in penicillins, cephalosporins, and carbapenems and are involved in bacterial antibiotic resistance. There are at least 20 distinct organisms that produce a metallo-β-lactamase, and these enzymes have been extensively studied using X-ray crystallographic, computational, kinetic, and inhibition studies; however, much is still unknown about how substrates bind and the catalytic mechanism. In an effort to probe substrate binding to metallo-β-lactamase L1 from Stenotrophomonas maltophilia, nine site-directed mutants of L1 were prepared and characterized using metal analyses, CD spectroscopy, and pre-steady state and steady state kinetics. Site-directed mutations were generated of amino acids previously predicted to be important in substrate binding. Steady-state kinetic studies using the mutant enzymes and 9 different substrates demonstrated varying Km and kcat values for the different enzymes and substrates and that no direct correlation between Km and the effect of the mutation on substrate binding could be drawn. Stopped-flow fluorescence studies using nitrocefin as the substrate showed that only the S224D and Y228A mutants exhibited weaker nitrocefin binding. The data presented herein indicate that Ser224, Ile164, Phe158, Tyr228, and Asn233 are not essential for tight binding of substrate to metallo-β-lactamase L1. The results in this work also show that Km values are not reliable for showing substrate binding, and there is no correlation between substrate binding and the amount of reaction intermediate formed during the reaction. This work represents the first experimental testing of one of the computational models of the metallo-β-lactamases.

49 citations


Journal ArticleDOI
TL;DR: The data suggest that distinct homo- and heterooligomeric assemblies of Pop1p and Pop2p generate combinatorial diversity of SCFPop function in fission yeast, and individual SC FPop1p-Pop2p complexes bearing ubiquitin ligase activity may target unknown nuclear and cytoplasmic substrates.
Abstract: Background SCF ubiquitin ligases share the core subunits cullin 1, SKP1, and HRT1/RBX1/ROC1, which associate with different F-box proteins. F-box proteins bind substrates following their phosphorylation upon stimulation of various signaling pathways. Ubiquitin-mediated destruction of the fission yeast cyclin-dependent kinase inhibitor Rum1p depends on two heterooligomerizing F-box proteins, Pop1p and Pop2p. Both proteins interact with the cullin Pcu1p when overexpressed, but it is unknown whether this reflects their co-assembly into bona fide SCF complexes.

43 citations


Journal ArticleDOI
TL;DR: The results suggest that the ability of cPLA2 to hydrolyze membrane phospholipid is reduced by inhibition of the MEK1/ERK pathway and that the reduction in activity is independent of c PLA2 phosphorylation and translocation to membrane.
Abstract: The 85-kDa cytosolic phospholipase A2 (cPLA2) mediates arachidonic acid (AA) release in MDCK cells. Although calcium and mitogen-activated protein kinases regulate cPLA2, the correlation of cPLA2 translocation and phosphorylation with MAPK activation and AA release is unclear. MEK1 inhibition by U0126 inhibited AA release in response to ATP and ionomycin. This directly correlated with inhibition of ERK activation but not with phosphorylation of cPLA2 on Ser505, which was only partially inhibited by ERK inhibition. Inhibition of AA release by U0126 was still observed when stoichiometric phosphorylation of cPLA2 on Ser505 was maintained by activating p38 with anisomycin. Translocation kinetics of wild-type cPLA2 and cPLA2 containing S505A or S727A mutations to Golgi were similar in response to ATP and ionomycin and were not affected by U0126. These results suggest that the ability of cPLA2 to hydrolyze membrane phospholipid is reduced by inhibition of the MEK1/ERK pathway and that the reduction in activity is independent of cPLA2 phosphorylation and translocation to membrane. The results also demonstrate that cPLA2 mutated at the phosphorylation sites Ser505 and Ser727 translocated with similar kinetic as wild-type cPLA2.

43 citations


Journal ArticleDOI
TL;DR: It is proposed that during relaxation of negatively supercoiled DNA, Top67 by itself can position the active site tyrosine near the junction of double-stranded and single-strander DNA for cleavage.
Abstract: Background Escherichia coli DNA topoisomerase I binds three Zn(II) with three tetracysteine motifs which, together with the 14 kDa C-terminal region, form a 30 kDa DNA binding domain (ZD domain). The 67 kDa N-terminal domain (Top67) has the active site tyrosine for DNA cleavage but cannot relax negatively supercoiled DNA. We analyzed the role of the ZD domain in the enzyme mechanism.

Journal ArticleDOI
TL;DR: The RA CK1 I nteraction D omain on PDE4D5, that the authors here call RAID1, is proposed to form an amphipathic helical structure that may interact with the C-terminal β-propeller blades of RACK1 in a manner akin to the interaction of the helical G-γ signal transducing protein with the β- Propeller protein, G-β.
Abstract: Background The cyclic AMP specific phosphodiesterase, PDE4D5 interacts with the β-propeller protein RACK1 to form a signaling scaffold complex in cells. Two-hybrid analysis of truncation and mutant constructs of the unique N-terminal region of the cAMP-specific phosphodiesterase, PDE4D5 were used to define a domain conferring interaction with the signaling scaffold protein, RACK1.

Journal ArticleDOI
TL;DR: These two gene products are characterised as the closely related Nudix hydrolases, hAps1 and hAPS2, and reinforce the concept that Ap5A and Ap6A act as intracellular messengers.
Abstract: The human genome contains at least 18 genes for Nudix hydrolase enzymes. Many have similar functions to one another. In order to understand their roles in cell physiology, these proteins must be characterised. We have characterised two novel human gene products, hAps1, encoded by the NUDT11 gene, and hAps2, encoded by the NUDT10 gene. These cytoplasmic proteins are members of the DIPP subfamily of Nudix hydrolases, and differ from each other by a single amino acid. Both metabolise diadenosine-polyphosphates and, weakly, diphosphoinositol polyphosphates. An apparent polymorphism of hAps1 has also been identified, which leads to the point mutation S39N. This has also been characterised. The favoured nucleotides were diadenosine 5',5"'-pentaphosphate (kcat/Km = 11, 8 and 16 × 103M-1s-1 respectively for hAps1, hAps1-39N and hAps2) and diadenosine 5',5"'-hexaphosphate (kcat/Km = 13, 14 and 11 × 103M-1s-1 respectively for hAps1, hAps1-39N and hAps2). Both hAps1 and hAps2 had pH optima of 8.5 and an absolute requirement for divalent cations, with manganese (II) being favoured. Magnesium was not able to activate the enzymes. Therefore, these enzymes could be acutely regulated by manganese fluxes within the cell. Recent gene duplication has generated the two Nudix genes, NUDT11 and NUDT10. We have characterised their gene products as the closely related Nudix hydrolases, hAps1 and hAps2. These two gene products complement the activity of previously described members of the DIPP family, and reinforce the concept that Ap5A and Ap6A act as intracellular messengers.

Journal ArticleDOI
TL;DR: A general model in which the expression of MLCL AT activity is regulated in concert with the biosynthesis and level of cardiolipin in the heart is proposed.
Abstract: Background Monolysocardiolipin acyltransferase (MLCL AT) catalyzes the acylation of monolysocardiolipin to cardiolipin in mammalian tissues. We previously reported that cardiac cardiolipin levels, MLCL AT and cardiolipin synthase activities were all elevated in rats made hyperthyroid by thyroxine treatment. In this study, we examined if cardiac mitochondrial MLCL AT activity was dependent upon the biosynthesis and level of cardiolipin in the heart. Rat heart mitochondrial MLCL AT activity was determined under conditions in which the levels of cardiac cardiolipin and cardiolipin synthase activity were either reduced or unaltered using four different disease models in the rat. In addition, these parameters were examined in a murine model of cardiac cell differentiation.

Journal ArticleDOI
TL;DR: Data provides support for the hypothesis that the putative E-loop region of the 5-HT3R is present in a loop structure, and supports the idea that this binding loop is comprised of a hairpin turn and may form a portion of the ligand-binding site in this ion channel family.
Abstract: Background The serotonin type 3 receptor (5-HT3R) is a member of a superfamily of ligand gated ion channels. All members of this family share a large degree of sequence homology and presumably significant structural similarity. A large number of studies have explored the structure-function relationships of members of this family, particularly the nicotinic and GABA receptors. This information can be utilized to gain additional insights into specific structural and functional features of other receptors in this family.

Journal ArticleDOI
TL;DR: Calmodulin is bound to IQ1, IQ2, and IQ3 of myosin-1c when Ca2+ is low, and the calmodulin bound to one of these IQ domains is only weakly associated.
Abstract: Bullfrog myosin-1c contains three previously recognized calmodulin-binding IQ domains (IQ1, IQ2, and IQ3) in its neck region; we identified a fourth IQ domain (IQ4), located immediately adjacent to IQ3. How calmodulin binds to these IQ domains is the subject of this report. In the presence of EGTA, calmodulin bound to synthetic peptides corresponding to IQ1, IQ2, and IQ3 with Kd values of 2–4 μM at normal ionic strength; the interaction with an IQ4 peptide was much weaker. Ca2+ substantially weakened the calmodulin-peptide affinity for all of the IQ peptides except IQ3. To reveal how calmodulin bound to the linearly arranged IQ domains of the myosin-1c neck, we used hydrodynamic measurements to determine the stoichiometry of complexes of calmodulin and myosin-1c. Purified myosin-1c and T701-Myo1c (a myosin-1c fragment with all four IQ domains and the C-terminal tail) each bound 2–3 calmodulin molecules. At a physiologically relevant temperature (25°C) and under low-Ca2+ conditions, T701-Myo1c bound two calmodulins in the absence and three calmodulins in the presence of 5 μM free calmodulin. Ca2+ dissociated nearly all calmodulins from T701-Myo1c at 25°C; one calmodulin was retained if 5 μM free calmodulin was present. We inferred from these data that at 25°C and normal cellular concentrations of calmodulin, calmodulin is bound to IQ1, IQ2, and IQ3 of myosin-1c when Ca2+ is low. The calmodulin bound to one of these IQ domains, probably IQ2, is only weakly associated. Upon Ca2+ elevation, all calmodulin except that bound to IQ3 should dissociate.

Journal ArticleDOI
TL;DR: Findings suggest the first evidence of the novel role of NO as a modulator of insulin binding and the involvement of NO in the aetiology of diabetes mellitus.
Abstract: Background Nitric oxide (NO) and oxygen free-radicals play an important part in the destruction of beta-cells in auto- immune diabetes although the precise mechanism of interaction is still not known. This study was designed to examine any possible diabetogenic effect of NO by investigating any differences in cellular binding of insulin to its receptor on the cell membranes of erythrocytes and mononuclear leucocytes of dogs treated with the NO donor, S-nitroso-N-acetylpenicillamine (SNAP) and controls treated with captopril.

Journal ArticleDOI
TL;DR: It seems that stabilization resulting from the cysteine to valine mutation originates from a decrease of thiol-disulfide interchanges and from an increase in the hydrophobicity of the buried side chain.
Abstract: Background: Acetylcholinesterase is irreversibly inhibited by organophosphate and carbamate insecticides allowing its use for residue detection with biosensors Drosophila acetylcholinesterase is the most sensitive enzyme known and has been improved by in vitro mutagenesis However, it is not sufficiently stable for extensive utilization It is a homodimer in which both subunits contain 8 cysteine residues Six are involved in conserved intramolecular disulfide bridges and one is involved in an interchain disulfide bridge The 8 th cysteine is not conserved and is present at position 290 as a free thiol pointing toward the center of the protein Results: The free cysteine has been mutated to valine and the resulting protein has been assayed for stability using various denaturing agents: temperature, urea, acetonitrile, freezing, proteases and spontaneous-denaturation at room temperature It was found that the C290V mutation rendered the protein 11 to 27 fold more stable depending on the denaturing agent Conclusion: It seems that stabilization resulting from the cysteine to valine mutation originates from a decrease of thiol-disulfide interchanges and from an increase in the hydrophobicity of the buried side chain

Journal ArticleDOI
TL;DR: The data presented herein indicates that any perturbation in the β7-β8 loop of the p51 subunit of HIV-1 RT affects the dimerization process resulting in substantial loss of DNA binding ability and catalytic function of the enzyme.
Abstract: Background HIV-1 RT is a heterodimeric enzyme, comprising of the p66 and p51 subunits. Earlier, we have shown that the β7-β8 loop of p51 is a key structural element for RT dimerization (Pandey et al., Biochemistry 40: 9505, 2001). Deletion or alanine substitution of four amino acid residues of this loop in the p51 subunit severely impaired DNA binding and catalytic activities of the enzyme. To further examine the role of this loop in HIV-1 RT, we have increased its size such that the six amino acids loop sequences are repeated in tandem and examined its impact on the dimerization process and catalytic function of the enzyme.

Journal ArticleDOI
TL;DR: The presence of related sequences with potential PTS1 or PTS2 peroxisomal targeting signals in other organisms suggests a conserved peroxISomal function for the CoA diphosphatase members of this group of Nudix hydrolases.
Abstract: Background The number of Nudix hydrolase family members varies widely among different organisms. In order to understand the reasons for the particular spectrum possessed by a given organism, the substrate specificity and function of different family members must be established.

Journal ArticleDOI
TL;DR: It is suggested that ASP-2 processing as well as activity are influenced by pH, and hence the cellular localisation of the protein may have profound effects on the production of Aβ.
Abstract: Background One of the signatures of Alzheimer's disease is the accumulation of aggregated amyloid protein, Aβ, in the brain. Aβ arises from cleavage of the Amyloid Precursor protein by β and γ secretases, which present attractive candidates for therapeutic targeting. Two β-secretase candidates, ASP-1 and ASP-2, were identified as aspartic proteases, both of which cleave the amyloid precursor at the β-site. These are produced as immature transmembrane proteins containing a pro-segment.

Journal ArticleDOI
TL;DR: In murine tissues, the expression of both L-threonine dehydrogenase and 2-amino-3-ketobutyrate coenzyme A ligase mRNAs were highest in the liver and were also present in brain, heart, kidney, liver, lung, skeletal muscle, spleen and testis.
Abstract: Background In mammals, L-threonine is an indispensable amino acid. The conversion of L-threonine to glycine occurs through a two-step biochemical pathway involving the enzymes L-threonine 3-dehydrogenase and 2-amino-3-ketobutyrate coenzyme A ligase. The L-threonine 3-dehydrogenase enzyme has been purified and characterised, but the L-threonine 3-dehydrogenase gene has not previously been identified in mammals.

Journal ArticleDOI
TL;DR: The present study strongly supports the validity of the aqueous solubility of bilirubin diacid derived from partition data, and, therefore, the corresponding high pKa values.
Abstract: Aqueous pK a values of unconjugated bilirubin are important determinants of its solubility and transport. Published pK a data on an analog, mesobilirubin-XIIIα, studied by 13C-NMR in buffered solutions containing 27 and 64 vol% (C2H3)2SO because of low aqueous solubility of mesobilirubin, were extrapolated to obtain pK a values in water of 4.2 and 4.9. Previous chloroform-water partition data on bilirubin diacid led to higher estimates of its pK a , 8.12 and 8.44, and its aqueous solubility. A thermodynamic analysis, using this solubility and a published solubility in DMSO, suggested that the systems used to measure 13C-NMR shifts were highly supersaturated. This expectation was assessed by measuring the residual concentrations of bilirubin in the supernatants of comparable DMSO-buffer systems, after mild centrifugation to remove microprecipitates. Extensive sedimentation was observed from numerous systems, many of which appeared optically clear. The very low supernatant concentrations at the lowest pH values (4.1-5.9) were compatible with the above thermodynamic analysis. Extensive sedimentation and low supernatant concentrations occurred also at pH as high as 7.2. The present study strongly supports the validity of the aqueous solubility of bilirubin diacid derived from partition data, and, therefore, the corresponding high pK a values. Many of the mesobilirubin systems in the 13C-NMR studies were probably supersaturated, contained microsuspensions, and were not true solutions. This, and previously documented errors in pH determinations that caused serious errors in pK a values of the many soluble reference acids and mesobilirubin, raise doubts regarding the low pK a estimates for mesobilirubin from the 13C-NMR studies.

Journal ArticleDOI
TL;DR: Both eIF2B and p70 S6 kinase play important roles in the regulation of protein synthesis during the early onset of T cell activation and a new finding was that the p38 MAPK α/β pathway was involved in theregulation of overall protein synthesis in primary T cells.
Abstract: Activation of human resting T lymphocytes results in an immediate increase in protein synthesis. The increase in protein synthesis after 16–24 h has been linked to the increased protein levels of translation initiation factors. However, the regulation of protein synthesis during the early onset of T cell activation has not been studied in great detail. We studied the regulation of protein synthesis after 1 h of activation using αCD3 antibody to stimulate the T cell receptor and αCD28 antibody to provide the co-stimulus. Activation of the T cells with both antibodies led to a sustained increase in the rate of protein synthesis. The activities and/or phosphorylation states of several translation factors were studied during the first hour of stimulation with αCD3 and αCD28 to explore the mechanism underlying the activation of protein synthesis. The initial increase in protein synthesis was accompanied by activation of the guanine nucleotide exchange factor, eukaryotic initiation factor (eIF) 2B, and of p70 S6 kinase and by dephosphorylation of eukaryotic elongation factor (eEF) 2. Similar signal transduction pathways, as assessed using signal transduction inhibitors, are involved in the regulation of protein synthesis, eIF2B activity and p70 S6 kinase activity. A new finding was that the p38 MAPK α/β pathway was involved in the regulation of overall protein synthesis in primary T cells. Unexpectedly, no changes were detected in the phosphorylation state of the cap-binding protein eIF4E and the eIF4E-binding protein 4E-BP1, or the formation of the cap-binding complex eIF4F. Both eIF2B and p70 S6 kinase play important roles in the regulation of protein synthesis during the early onset of T cell activation.

Journal ArticleDOI
TL;DR: A high affinity component of ThDP uptake by mitochondria was identified with the apparent affinity constant less than the estimates of the cytosolic concentration of free ThDP, indicating that the high affinity uptake is physiologically significant and may represent the main mechanism for supplying phosphorylated thiamine for mitochondrial enzymes.
Abstract: Background Thiamine diphosphate (ThDP) is the active form of thiamine, and it serves as a cofactor for several enzymes, both cytosolic and mitochondrial Isolated mitochondria have been shown to take up thiamine yet thiamine diphosphokinase is cytosolic and not present in mitochondria Previous reports indicate that ThDP can also be taken up by rat mitochondria, but the kinetic constants associated with such uptake seemed not to be physiologically relevant

Journal ArticleDOI
TL;DR: These results suggest that activation of PKG mediates the drop in sGC subunit mRNA levels, and that NO down-regulates sGC activity by decreasing sub unit mRNA levels through a cGMP-dependent mechanism, and by reducing β1 subunit stability.
Abstract: Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO) when the latter is produced at low concentrations This enzyme exists mainly as a heterodimer consisting of one α and one β subunit and converts GTP to the second intracellular messenger cGMP In turn, cGMP plays a key role in regulating several physiological processes in the nervous system The aim of the present study was to explore the effects of a NO donor on sGC activity and its protein and subunit mRNA levels in a neural cell model Continuous exposure of bovine adrenal chromaffin cells in culture to the nitric oxide donor, diethylenetriamine NONOate (DETA/NO), resulted in a lower capacity of the cells to synthesize cGMP in response to a subsequent NO stimulus This effect was not prevented by an increase of intracellular reduced glutathione level DETA/NO treatment decreased sGC subunit mRNA and β1 subunit protein levels Both sGC activity and β1 subunit levels decreased more rapidly in chromaffin cells exposed to NO than in cells exposed to the protein synthesis inhibitor, cycloheximide, suggesting that NO decreases β1 subunit stability The presence of cGMP-dependent protein kinase (PKG) inhibitors effectively prevented the DETA/NO-induced down regulation of sGC subunit mRNA and partially inhibited the reduction in β1 subunits These results suggest that activation of PKG mediates the drop in sGC subunit mRNA levels, and that NO down-regulates sGC activity by decreasing subunit mRNA levels through a cGMP-dependent mechanism, and by reducing β1 subunit stability

Journal ArticleDOI
TL;DR: A tentative model of the lerisetron binding pocket of the 5-HT3ASR is proposed, according to which the N-benzyl group interacts in a weak interaction with R91 while the benzimidazole group interacts with W89.
Abstract: Background Lerisetron, a competitive serotonin type 3 receptor (5-HT3R) antagonist, contains five functional groups capable of interacting with amino acids in the 5-HT3R binding site. Site directed mutagenesis studies of the 5-HT3AR have revealed several amino acids that are thought to form part of the binding domain of this receptor. The specific functional groups on the ligand that interact with these amino acids are, however, unknown. Using synthetic analogs of lerisetron as molecular probes in combination with site directed mutagenesis, we have identified some of these interactions and have proposed a model of the lerisetron binding site.

Journal ArticleDOI
TL;DR: The observed phosphorylation kinetics suggest that hisactophilin regulation is involved in long-term osmoprotection and thatosphorylation occurs in parallel with inactivation of the dynamic actin cytoskeleton.
Abstract: Dictyostelium cells exhibit an unusual stress response as they protect themselves against hyperosmotic stress. Cytoskeletal proteins are recruited from the cytosolic pool to the cell cortex, thereby reinforcing it. In order to gain more insight into the osmoprotective mechanisms of this amoeba, we used 1-D and 2-D gel electrophoresis to identify new proteins that are translocated during osmotic shock. We identified hisactophilin as one of the proteins that are enriched in the cytoskeletal fraction during osmotic shock. In mutants lacking hisactophilin, viability is reduced under hyperosmotic stress conditions. In wild type cells, serine phosphorylation of hisactophilin was specifically induced by hypertonicity, but not when other stress conditions were imposed on cells. The phosphorylation kinetics reveals a slow accumulation of phosphorylated hisactophilin from 20–60 min after onset of the hyperosmotic shock condition. In the present study, we identified hisactophilin as an essential protein for the osmoprotection of Dictyostelium cells. The observed phosphorylation kinetics suggest that hisactophilin regulation is involved in long-term osmoprotection and that phosphorylation occurs in parallel with inactivation of the dynamic actin cytoskeleton.

Journal ArticleDOI
TL;DR: Observations show that disruption of the structure of the R domain of CFTR can inhibit maturation of the protein and that the predicted PEST sequence plays no significant role in the degradation ofCFTR.
Abstract: Background Endoplasmic reticulum retention of misfolded cystic fibrosis transmembrane conductance regulator (CFTR) mutants and their rapid degradation is the major cause of cystic fibrosis (CF). An important goal is to understand the mechanism of how the misfolded proteins are recognized, retained, and targeted for degradation.

Journal ArticleDOI
TL;DR: Over-expression of the placental isozyme compared with the tissue-nonspecific form in neutrophils of mother with a trisomy 21 fetus may explain why the characteristics of the alkaline phosphatase in these cells is different from normal.
Abstract: In humans, there are four alkaline phosphatases, and each form exibits a characteristic pattern of tissue distribution. The availability of an easy method to reveal their activity has resulted in large amount of data reporting correlations between variations in activity and illnesses. For example, alkaline phosphatase from neutrophils of mothers pregnent with a trisomy 21 fetus (Down's syndrome) displays significant differences both in its biochemical and immunological properties, and in its affinity for some specific inhibitors. To analyse these differences, the biochemical characteristics of two isozymes (non specific and placental alkaline phosphatases) were expressed in baculovirus infected cells. Comparative analysis of the two proteins allowed us to estimate the kinetic constants of denaturation and sensitivity to two inhibitors (L-p-bromotetramisole and thiophosphate), allowing better discrimination between the two enzymes. These parameters were then used to estimate the ratio of the two isoenzymes in neutrophils of pregnant mothers with or without a trisomy 21 fetus. It appeared that the placental isozyme represented 13% of the total activity of neutrophils of non pregnant women. This proportion did not significantly increase with normal pregnancy. By contrast, in pregnancies with trisomy 21 fetus, the proportion reached 60–80% of activity. Over-expression of the placental isozyme compared with the tissue-nonspecific form in neutrophils of mother with a trisomy 21 fetus may explain why the characteristics of the alkaline phosphatase in these cells is different from normal. Application of this knowledge could improve the potential of using alkaline phosphatase measurements to screen for Down's syndrome.