scispace - formally typeset
Search or ask a question

Showing papers in "Brain Behavior and Immunity in 2022"


Journal ArticleDOI
TL;DR: In this paper , a meta-analysis of proportions was conducted to pool Freeman-Tukey double arcsine transformed proportions using the random-effects restricted maximum-likelihood model to quantify the proportion of individuals experiencing fatigue and cognitive impairment 12 or more weeks following COVID-19 diagnosis.
Abstract: COVID-19 is associated with clinically significant symptoms despite resolution of the acute infection (i.e., post-COVID-19 syndrome). Fatigue and cognitive impairment are amongst the most common and debilitating symptoms of post-COVID-19 syndrome.To quantify the proportion of individuals experiencing fatigue and cognitive impairment 12 or more weeks following COVID-19 diagnosis, and to characterize the inflammatory correlates and functional consequences of post-COVID-19 syndrome.Systematic searches were conducted without language restrictions from database inception to June 8, 2021 on PubMed/MEDLINE, The Cochrane Library, PsycInfo, Embase, Web of Science, Google/Google Scholar, and select reference lists.Primary research articles which evaluated individuals at least 12 weeks after confirmed COVID-19 diagnosis and specifically reported on fatigue, cognitive impairment, inflammatory parameters, and/or functional outcomes were selected.Two reviewers independently extracted published summary data and assessed methodological quality and risk of bias. A meta-analysis of proportions was conducted to pool Freeman-Tukey double arcsine transformed proportions using the random-effects restricted maximum-likelihood model.The co-primary outcomes were the proportions of individuals reporting fatigue and cognitive impairment, respectively, 12 or more weeks following COVID-19 infection. The secondary outcomes were inflammatory correlates and functional consequences associated with post-COVID-19 syndrome.The literature search yielded 10,979 studies, and 81 studies were selected for inclusion. The fatigue meta-analysis comprised 68 studies, the cognitive impairment meta-analysis comprised 43 studies, and 48 studies were included in the narrative synthesis. Meta-analysis revealed that the proportion of individuals experiencing fatigue 12 or more weeks following COVID-19 diagnosis was 0.32 (95% CI, 0.27, 0.37; p < 0.001; n = 25,268; I2 = 99.1%). The proportion of individuals exhibiting cognitive impairment was 0.22 (95% CI, 0.17, 0.28; p < 0.001; n = 13,232; I2 = 98.0). Moreover, narrative synthesis revealed elevations in proinflammatory markers and considerable functional impairment in a subset of individuals.A significant proportion of individuals experience persistent fatigue and/or cognitive impairment following resolution of acute COVID-19. The frequency and debilitating nature of the foregoing symptoms provides the impetus to characterize the underlying neurobiological substrates and how to best treat these phenomena.PROSPERO (CRD42021256965).

369 citations


Journal ArticleDOI
TL;DR: In this article , the authors compared the effect of vaccination on other acute and post-acute outcomes of COVID-19, including respiratory failure, ICU admission, intubation/ventilation, hypoxaemia, oxygen requirement, hypercoagulopathy/venous thromboembolism, seizures, psychotic disorder, and hair loss.
Abstract: Vaccination has proven effective against infection with SARS-CoV-2, as well as death and hospitalisation following COVID-19 illness. However, little is known about the effect of vaccination on other acute and post-acute outcomes of COVID-19. Data were obtained from the TriNetX electronic health records network (over 81 million patients mostly in the USA). Using a retrospective cohort study and time-to-event analysis, we compared the incidences of COVID-19 outcomes between individuals who received a COVID-19 vaccine (approved for use in the USA) at least 2 weeks before SARS-CoV-2 infection and propensity score-matched individuals unvaccinated for COVID-19 but who had received an influenza vaccine. Outcomes were ICD-10 codes representing documented COVID-19 sequelae in the 6 months after a confirmed SARS-CoV-2 infection (recorded between January 1 and August 31, 2021, i.e. before the emergence of the Omicron variant). Associations with the number of vaccine doses (1 vs. 2) and age (<60 vs. ≥ 60 years-old) were assessed. Among 10,024 vaccinated individuals with SARS-CoV-2 infection, 9479 were matched to unvaccinated controls. Receiving at least one COVID-19 vaccine dose was associated with a significantly lower risk of respiratory failure, ICU admission, intubation/ventilation, hypoxaemia, oxygen requirement, hypercoagulopathy/venous thromboembolism, seizures, psychotic disorder, and hair loss (each as composite endpoints with death to account for competing risks; HR 0.70-0.83, Bonferroni-corrected p < 0.05), but not other outcomes, including long-COVID features, renal disease, mood, anxiety, and sleep disorders. Receiving 2 vaccine doses was associated with lower risks for most outcomes. Associations between prior vaccination and outcomes of SARS-CoV-2 infection were marked in those <60 years-old, whereas no robust associations were observed in those ≥60 years-old. In summary, COVID-19 vaccination is associated with lower risk of several, but not all, COVID-19 sequelae in those with breakthrough SARS-CoV-2 infection. The findings may inform service planning, contribute to forecasting public health impacts of vaccination programmes, and highlight the need to identify additional interventions for COVID-19 sequelae.

87 citations


Journal ArticleDOI
TL;DR: In this article , a structural protein (S1) derived from SARS-CoV-2 functions as a pathogen-associated molecular pattern (PAMP) to induce neuroinflammatory processes independent of viral infection.
Abstract: SARS-CoV-2 infection produces neuroinflammation as well as neurological, cognitive (i.e., brain fog), and neuropsychiatric symptoms (e.g., depression, anxiety), which can persist for an extended period (6 months) after resolution of the infection. The neuroimmune mechanism(s) that produces SARS-CoV-2-induced neuroinflammation has not been characterized. Proposed mechanisms include peripheral cytokine signaling to the brain and/or direct viral infection of the CNS. Here, we explore the novel hypothesis that a structural protein (S1) derived from SARS-CoV-2 functions as a pathogen-associated molecular pattern (PAMP) to induce neuroinflammatory processes independent of viral infection. Prior evidence suggests that the S1 subunit of the SARS-CoV-2 spike protein is inflammatory in vitro and signals through the pattern recognition receptor TLR4. Therefore, we examined whether the S1 subunit is sufficient to drive 1) a behavioral sickness response, 2) a neuroinflammatory response, 3) direct activation of microglia in vitro, and 4) activation of transgenic human TLR2 and TLR4 HEK293 cells. Adult male Sprague-Dawley rats were injected intra-cisterna magna (ICM) with vehicle or S1. In-cage behavioral monitoring (8 h post-ICM) demonstrated that S1 reduced several behaviors, including total activity, self-grooming, and wall-rearing. S1 also increased social avoidance in the juvenile social exploration test (24 h post-ICM). S1 increased and/or modulated neuroimmune gene expression (Iba1, Cd11b, MhcIIα, Cd200r1, Gfap, Tlr2, Tlr4, Nlrp3, Il1b, Hmgb1) and protein levels (IFNγ, IL-1β, TNF, CXCL1, IL-2, IL-10), which varied across brain regions (hypothalamus, hippocampus, and frontal cortex) and time (24 h and 7d) post-S1 treatment. Direct exposure of microglia to S1 resulted in increased gene expression (Il1b, Il6, Tnf, Nlrp3) and protein levels (IL-1β, IL-6, TNF, CXCL1, IL-10). S1 also activated TLR2 and TLR4 receptor signaling in HEK293 transgenic cells. Taken together, these findings suggest that structural proteins derived from SARS-CoV-2 might function independently as PAMPs to induce neuroinflammatory processes via pattern recognition receptor engagement.

62 citations


Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors used Bifidobacterium breve CCFM1025 for managing major depression disorder (MDD) and unraveled the underlying mechanisms.
Abstract: Psychobiotics, as a novel class of probiotics mainly acting on the gut-brain axis, have shown promising prospects in treating psychiatric disorders. Bifidobacterium breve CCFM1025 was validated to have an antidepressant-like effect in mice. This study aims to assess its psychotropic potential in managing major depression disorder (MDD) and unravel the underlying mechanisms.Clinical Trial Registration: https://www.chictr.org.cn/index.aspx (identifier: NO. ChiCTR2100046321). Patients (n = 45) diagnosed with MDD were randomly assigned to the Placebo (n = 25) and CCFM1025 (n = 20) groups. The freeze-dried CCFM1025 in a dose of viable bacteria of 1010 CFU was given to MDD patients daily for four weeks, while the placebo group was given maltodextrin. Changes from baseline in psychometric and gastrointestinal symptoms were evaluated using Hamilton Depression Rating scale-24 Items (HDRS-24), Montgomery-Asberg Depression Rating Scale (MADRS), Brief Psychiatric Rating Scale (BPRS), and Gastrointestinal Symptom Rating Scale (GSRS). Serum measures were also determined, i.e., cortisol, TNF-α, and IL-β. Serotonin turnover in the circulation, gut microbiome composition, and tryptophan metabolites were further investigated for clarifying the probiotics' mechanisms of action.CCFM1025 showed a better antidepressant-like effect than placebo, based on the HDRS-24 (placebo: M = 6.44, SD = 5.44; CCFM1025: M = 10.40, SD = 6.85; t(43) = 2.163, P = 0.036, d = 0.640) and MADRS (placebo: M = 4.92, SD = 7.15; CCFM1025: M = 9.60, SD = 7.37; t(43) = 2.152, P = 0.037, d = 0.645) evaluation. The factor analysis of BPRS and GSRS suggested that patients' emotional and gastrointestinal problems may be affected by the serotonergic system. Specifically, CCFM1025 could significantly and to a larger extend reduce the serum serotonin turnover compared with the placebo (placebo: M = -0.01, SD = 0.41; CCFM1025: M = 0.27, SD = 0.40; t(43) = 2.267, P = 0.029, d = 0.681). It may be due to changes in gut microbiome and gut tryptophan metabolism under the probiotic treatment, such as changes in alpha diversity, tryptophan, and indoles derivatives.B. breve CCFM1025 is a promising candidate psychobiotic strain that attenuates depression and associated gastrointestinal disorders. The mechanisms may be relevant to the changes in the gut microbiome and tryptophan metabolism. These findings support the future clinical applications of psychobiotics in the treatment of psychiatric disorders.

55 citations


Journal ArticleDOI
TL;DR: In this article , Bacteroides species enriched in the gut microbiome from major depressive disorder patients differentially impact the susceptibility to depressive behaviors and an intensified depletion of cerebral serotonin concurred with the enhanced susceptibility to depression.
Abstract: Gut microbiome disturbances have been widely implicated in major depressive disorder (MDD), although the identity of causal microbial species and the underlying mechanisms are yet to be fully elucidated. Here we show that Bacteroides species enriched in the gut microbiome from MDD patients differentially impact the susceptibility to depressive behaviors. Transplantation of fecal microbiome from MDD patients into antibiotic-treated mice induced anxiety and despair-like behavior and impaired hippocampal neurogenesis. Colonization of Bacteroides fragilis, Bacteroides uniformis, and, to a lesser extent, Bacteroides caccae, but not Bacteroides ovatus, recapitulated the negative effects of MDD microbiome on behavior and neurogenesis. The varying impacts of Bacteroides species were partially explained by differential alternations of tryptophan pathway metabolites and neurotransmitters along the gut-brain axis. Notably, an intensified depletion of cerebral serotonin concurred with the enhanced susceptibility to depression. Together, these findings identify select Bacteroidetes species that contribute to depression susceptibility in mice by metabolic regulation along the gut-brain axis.

41 citations


Journal ArticleDOI
TL;DR: In this article , the kynurenine pathway (KP) metabolites are associated with metabolic disturbances in depression, but the relation between KP metabolites and depression-associated brain atrophy might not be as direct as previously hypothesized.
Abstract: Considerable data relate major depressive disorder (MDD) with aberrant immune system functioning. Pro-inflammatory cytokines facilitate metabolism of tryptophan along the kynurenine pathway (KP) putatively resulting in reduced neuroprotective and increased neurotoxic KP metabolites in MDD, in addition to modulating metabolic and immune function. This central nervous system hypothesis has, however, only been tested in the periphery. Here, we measured KP-metabolite levels in both plasma and cerebrospinal fluid (CSF) of depressed patients (n = 63/36 respectively) and healthy controls (n = 48/33). Further, we assessed the relation between KP abnormalities and brain-structure volumes, as well as body mass index (BMI), an index of metabolic disturbance associated with atypical depression. Plasma levels of picolinic acid (PIC), the kynurenic/quinolinic acid ratio (KYNA/QUIN), and PIC/QUIN were lower in MDD, but QUIN levels were increased. In the CSF, we found lower PIC in MDD. Confirming previous work, MDD patients had lower hippocampal, and amygdalar volumes. Hippocampal and amygdalar volumes were correlated positively with plasma KYNA/QUIN ratio in MDD patients. BMI was increased in the MDD group relative to the control group. Moreover, BMI was inversely correlated with plasma and CSF PIC and PIC/QUIN, and positively correlated with plasma QUIN levels in MDD. Our results partially confirm previous peripheral KP findings and extend them to the CSF in MDD. We present the novel finding that abnormalities in KP metabolites are related to metabolic disturbances in depression, but the relation between KP metabolites and depression-associated brain atrophy might not be as direct as previously hypothesized.

28 citations


Journal ArticleDOI
TL;DR: Worry fatigue is the feeling of extreme burden and burnout associated with too much worry unsolved as discussed by the authors , whereas worry fatigue can also result in the accumulated unknowns and uncertainties about COVID-19 may also lead to "worry fatigue" that could harm the public's vigilance towards the pandemic and adherence to preventive measures.
Abstract: In addition to worry, the accumulated unknowns and uncertainties about COVID-19 may also result in “worry fatigue” that could harm the public’s vigilance towards the pandemic and their adherence to preventive measures. Worry could be understood as future-oriented concerns and challenges that could result in negative outcomes, whereas worry fatigue is the feeling of extreme burden and burnout associated with too much worry unsolved. As the world embraces its second COVID-19 winter, along with the pandemic-compromised holiday season, the Omicron variant has been declared a variant of concern by the World Health Organization. However, the fluid and unpredictable nature of COVID-19 variants dictates that, instead of definitive answers that could ease people’s worry about Omicron, dividing debates and distracting discussions that could further exacerbate people’s worry fatigue might be the norm in the coming months. This means that, amid the ever-changing public health guidance, the forever-breaking news reports, and the always-debatable media analyses, government and health officials need to be more invested in addressing people’s potential worry and worry fatigue about the pandemic, to ensure the public’s rigorous cooperation and compliance with safety measures.

26 citations


Journal ArticleDOI
TL;DR: In this paper , the authors report that acute neuroinflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) results in cell-type-specific increases in inhibitory postsynaptic currents in the glutamatergic, but not the GABAergic, neurons of medial prefrontal cortex (mPFC), coinciding with excessive microglial activation.
Abstract: Neuroinflammation with excess microglial activation and synaptic dysfunction are early symptoms of most neurological diseases. However, how microglia-associated neuroinflammation regulates synaptic activity remains obscure. We report here that acute neuroinflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) results in cell-type-specific increases in inhibitory postsynaptic currents in the glutamatergic, but not the GABAergic, neurons of medial prefrontal cortex (mPFC), coinciding with excessive microglial activation. LPS causes upregulation in levels of GABAAR subunits, glutamine synthetase and vesicular GABA transporter, and downregulation in brain-derived neurotrophic factor (BDNF) and its receptor, pTrkB. Blockage of microglial activation by minocycline ameliorates LPS-induced abnormal expression of GABA signaling-related proteins and activity of synaptic and network. Moreover, minocycline prevents the mice from LPS-induced aberrant behavior, such as a reduction in total distance and time spent in the centre in the open field test; decreases in entries into the open arm of elevated-plus maze and in consumption of sucrose; increased immobility in the tail suspension test. Furthermore, upregulation of GABA signaling by tiagabine also prevents LPS-induced microglial activation and aberrant behavior. This study illustrates a mode of bidirectional constitutive signaling between the neural and immune compartments of the brain, and suggests that the mPFC is an important area for brain-immune system communication. Moreover, the present study highlights GABAergic signaling as a key therapeutic target for mitigating neuroinflammation-induced abnormal synaptic activity in the mPFC, together with the associated behavioral abnormalities.

25 citations


Journal ArticleDOI
TL;DR: In this article, the authors report that acute neuroinflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) results in cell-type-specific increases in inhibitory postsynaptic currents in the glutamatergic, but not the GABAergic, neurons of medial prefrontal cortex (mPFC), coinciding with excessive microglial activation.
Abstract: Neuroinflammation with excess microglial activation and synaptic dysfunction are early symptoms of most neurological diseases. However, how microglia-associated neuroinflammation regulates synaptic activity remains obscure. We report here that acute neuroinflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) results in cell-type-specific increases in inhibitory postsynaptic currents in the glutamatergic, but not the GABAergic, neurons of medial prefrontal cortex (mPFC), coinciding with excessive microglial activation. LPS causes upregulation in levels of GABAAR subunits, glutamine synthetase and vesicular GABA transporter, and downregulation in brain-derived neurotrophic factor (BDNF) and its receptor, pTrkB. Blockage of microglial activation by minocycline ameliorates LPS-induced abnormal expression of GABA signaling-related proteins and activity of synaptic and network. Moreover, minocycline prevents the mice from LPS-induced aberrant behavior, such as a reduction in total distance and time spent in the centre in the open field test; decreases in entries into the open arm of elevated-plus maze and in consumption of sucrose; increased immobility in the tail suspension test. Furthermore, upregulation of GABA signaling by tiagabine also prevents LPS-induced microglial activation and aberrant behavior. This study illustrates a mode of bidirectional constitutive signaling between the neural and immune compartments of the brain, and suggests that the mPFC is an important area for brain-immune system communication. Moreover, the present study highlights GABAergic signaling as a key therapeutic target for mitigating neuroinflammation-induced abnormal synaptic activity in the mPFC, together with the associated behavioral abnormalities.

25 citations


Journal ArticleDOI
TL;DR: In this paper , the role of bile acids in the regulation of brain apoptosis, oxidative stress and inflammation, in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders was investigated.
Abstract: Bile acids, mainly ursodeoxycholic acid (UDCA) and its conjugated species glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) have long been known to have anti-apoptotic, anti-oxidant and anti-inflammatory properties. Due to their beneficial actions, recent studies have started to investigate the effect of UDCA, GUDCA, TUDCA on the same mechanisms in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders, where increased cell apoptosis, oxidative stress and inflammation in the brain are often observed. A total of thirty-five pre-clinical studies were identified through PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the UDCA, GUDCA and TUDCA in the regulation of brain apoptosis, oxidative stress and inflammation, in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Findings show that UDCA reduces apoptosis, reactive oxygen species (ROS) and tumour necrosis factor (TNF)-α production in neurodegenerative models, and reduces nitric oxide (NO) and interleukin (IL)-1β production in neuropsychiatric models; GUDCA decreases lactate dehydrogenase, TNF-α and IL-1β production in neurological models, and also reduces cytochrome c peroxidase production in neurodegenerative models; TUDCA decreases apoptosis in neurological models, reduces ROS and IL-1β production in neurodegenerative models, and decreases apoptosis and TNF-α production, and increases glutathione production in neuropsychiatric models. In addition, findings suggest that all the three bile acids would be equally beneficial in models of Huntington's disease, whereas UDCA and TUDCA would be more beneficial in models of Parkinson’s disease and Alzheimer's disease, while GUDCA in models of bilirubin encephalopathy and TUDCA in models of depression. Overall, this review confirms the therapeutic potential of UDCA, GUDCA and TUDCA in neurological, neurodegenerative and neuropsychiatric disorders, proposing bile acids as potential alternative therapeutic approaches for patients suffering from these disorders.

25 citations


Journal ArticleDOI
Abstract: Bile acids, mainly ursodeoxycholic acid (UDCA) and its conjugated species glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) have long been known to have anti-apoptotic, anti-oxidant and anti-inflammatory properties. Due to their beneficial actions, recent studies have started to investigate the effect of UDCA, GUDCA, TUDCA on the same mechanisms in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders, where increased cell apoptosis, oxidative stress and inflammation in the brain are often observed. A total of thirty-five pre-clinical studies were identified through PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the UDCA, GUDCA and TUDCA in the regulation of brain apoptosis, oxidative stress and inflammation, in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Findings show that UDCA reduces apoptosis, reactive oxygen species (ROS) and tumour necrosis factor (TNF)-α production in neurodegenerative models, and reduces nitric oxide (NO) and interleukin (IL)-1β production in neuropsychiatric models; GUDCA decreases lactate dehydrogenase, TNF-α and IL-1β production in neurological models, and also reduces cytochrome c peroxidase production in neurodegenerative models; TUDCA decreases apoptosis in neurological models, reduces ROS and IL-1β production in neurodegenerative models, and decreases apoptosis and TNF-α production, and increases glutathione production in neuropsychiatric models. In addition, findings suggest that all the three bile acids would be equally beneficial in models of Huntington's disease, whereas UDCA and TUDCA would be more beneficial in models of Parkinson's disease and Alzheimer's disease, while GUDCA in models of bilirubin encephalopathy and TUDCA in models of depression. Overall, this review confirms the therapeutic potential of UDCA, GUDCA and TUDCA in neurological, neurodegenerative and neuropsychiatric disorders, proposing bile acids as potential alternative therapeutic approaches for patients suffering from these disorders.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper highlighted the alarming overlap between DD-prone communities and vulnerable populations and highlighted the future research directions that could help society better serve both underserved communities.
Abstract: One of the most daunting unintended consequences of the digital revolution is the digital divide (DD), a pervasive social and information inequality. It negatively affects all sectors of society, and exerts compounding influences on other social inequities. To further complicate the situation, the COVID-19 pandemic has been intensifying the scale of DD and deepening the scope of DD barriers with the increasing but imbalanced applications of digital technologies. For instance, while digital technologies can provide support to fulfill people's mental health needs, recurring evidence shows that DD-prone people are more likely to be excluded from critical services, activities, and resources to support their health concerns and challenges. So far, studies about the mental health consequences of DD amid COVID-19 are limited. Available evidence suggests that the general mental health impacts of COVID-19 include anxiety, depression, and suicidal behaviors, while the mental health consequences of DD due to COVID-19 are mainly stress, distress, and anxiety. To shed light on the research gap, based on the social inequality roots of DD and the nexus between DD barriers and factors of social inequalities, this study highlights the alarming overlap between DD-prone communities and vulnerable populations. Furthermore, we underscore the future research directions that could help society better serve both underserved communities.

Journal ArticleDOI
TL;DR: In this paper , the effect of 90 min of exercise consistently increased serum antibody to each vaccine four weeks post-immunization, and IFNα may partially contribute to the exercise-related benefit.
Abstract: Vaccination is an effective public health measure, yet vaccine efficacy varies across different populations. Adjuvants improve vaccine efficacy but often increase reactogenicity. An unconventional behavioral “adjuvant” is physical exercise at the time of vaccination. Here, in separate experiments, we examined the effect of 90-minute light- to moderate-intensity cycle ergometer or outdoor walk/jog aerobic exercise performed once after immunization on serum antibody response to three different vaccines (2009 pandemic influenza H1N1, seasonal influenza, and COVID-19). Exercise took place after influenza vaccination or after the first dose of Pfizer-BioNTech COVID-19 vaccine. A mouse model of influenza A immunization was used to examine the effect of exercise on antibody response and the role of IFNα as a potential mechanism by treating mice with anti-IFNα antibody. The results show that 90 min of exercise consistently increased serum antibody to each vaccine four weeks post-immunization, and IFNα may partially contribute to the exercise-related benefit. Exercise did not increase side effects after the COVID-19 vaccination. These findings suggest that adults who exercise regularly may increase antibody response to influenza or COVID-19 vaccine by performing a single session of light- to moderate-intensity exercise post-immunization.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the role of inflammasome activation and dysregulated innate immune responses in severe mental illnesses (SMI) using a large patient cohort (n = 1632, including 737 schizophrenia patients and 895 bipolar disorder patients).
Abstract: Background Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental illnesses (SMI) that are part of a psychosis continuum, and dysregulated innate immune responses have been suggested to be involved in their pathophysiology. However, disease-specific immune mechanisms in SMI are not known yet. Recently, dyslipidemia has been linked to systemic inflammasome activation, and elevated atherogenic lipid ratios have been shown to correlate with circulating levels of inflammatory biomarkers in SMI. It is, however, not yet known if increased systemic cholesterol load leads to inflammasome activation in these patients. Methods We tested the hypothesis that patients with SCZ and BD display higher circulating levels compared to healthy individuals of key members of the IL-18 system using a large patient cohort (n = 1632; including 737 SCZ and 895 BD), and healthy controls (CTRL; n = 1070). In addition, we assessed associations with coronary artery disease risk factors in SMI, focusing on relevant inflammasome-related, neuroendocrine, and lipid markers. Results We report higher baseline levels of circulating IL-18 system components (IL-18, IL-18BPA, IL-18R1), and increased expression of inflammasome-related genes (NLRP3 and NLRC4) in the blood of patients relative to CTRL. We demonstrate a cholesterol dyslipidemia pattern in psychotic disorders, and report correlations between levels of blood cholesterol types and the expression of inflammasome system elements in SMI. Conclusions Based on these results, we suggest a role for inflammasome activation/dysregulation in SMI. Our findings further the understanding of possible underlying inflammatory mechanisms and may expose important therapeutic targets in SMI.

Journal ArticleDOI
TL;DR: In this paper , the authors showed that intranasally delivered SARS-CoV-2 S RBD mostly binds to the non-sensory epithelium of the olfactory organ, and causes severe histopathology characterized by loss of cilia, hemorrhages and edema.
Abstract: Anosmia, loss of smell, is a prevalent symptom of SARS-CoV-2 infection. Anosmia may be explained by several mechanisms driven by infection of non-neuronal cells and damage in the nasal epithelium rather than direct infection of olfactory sensory neurons (OSNs). Previously, we showed that viral proteins are sufficient to cause neuroimmune responses in the teleost olfactory organ (OO). We hypothesize that SARS-CoV-2 spike (S) protein is sufficient to cause olfactory damage and olfactory dysfunction. Using an adult zebrafish model, we report that intranasally delivered SARS-CoV-2 S RBD mostly binds to the non-sensory epithelium of the olfactory organ and causes severe olfactory histopathology characterized by loss of cilia, hemorrhages and edema. Electrophysiological recordings reveal impaired olfactory function to both food and bile odorants in animals treated intranasally with SARS-CoV-2 S RBD. However, no loss of behavioral preference for food was detected in SARS-CoV-2 S RBD treated fish. Single cell RNA-Seq of the adult zebrafish olfactory organ indicated widespread loss of olfactory receptor expression and inflammatory responses in sustentacular, endothelial, and myeloid cell clusters along with reduced numbers of Tregs. Combined, our results demonstrate that intranasal SARS-CoV-2 S RBD is sufficient to cause structural and functional damage to the zebrafish olfactory system. These findings may have implications for intranasally delivered vaccines against SARS-CoV-2.

Journal ArticleDOI
TL;DR: In this paper , the role of Sesn2 in osteoarthritis (OA) pain and delineated the underlying molecular mechanisms in the L4-6 spinal cord was examined.
Abstract: Our previous study indicated that reactive oxygen species (ROS) are critically involved in chronic pain. Sestrin2 (Sesn2), a novel stress-inducible protein, is evidenced to reduce the generation of ROS. The study examined the role of Sesn2 in osteoarthritis (OA) pain and delineated the underlying molecular mechanisms.In the present study, we investigated the impact of Sesn2 on mitochondrial biogenesis in a rat model of OA pain. After adeno-associated viral (AAV)-Sesn2EGFP was injected for 14 days, OA was induced by intra-articular injection of monosodium iodoacetate (MIA). We assessed pain behaviors (weight-bearing asymmetry and paw withdrawal threshold) and explored possible mechanisms in the L4-6 spinal cord.Our results showed that overexpression of Sesn2 in the spinal cord alleviated pain behaviors in OA rats. Moreover, overexpression of Sesn2 increased the activity of AMP-activated protein kinase (AMPK) signaling and significantly restored mitochondrial biogenesis. Besides, Sesn2 overexpression inhibited the activation of astrocytes and microglia, and decreased the production of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the spinal cord of the OA pain rats. These effects were significantly reversed by an AMPK inhibitor.Collectively, these results suggest that Sesn2 overexpression ameliorates mechanical allodynia and weight-bearing asymmetry in OA rats via activation of AMPK/PGC-1α-mediated mitochondrial biogenesis in the spinal cord. Moreover, Sesn2 overexpression attenuates OA-induced neuroinflammation at least partly by activating AMPK signaling. Sesn2 may become an encouraging therapeutic strategy for OA pain relief and other disorders.

Journal ArticleDOI
TL;DR: In this article, the clinical data pertaining to peripheral blood inflammatory markers were summarized in random effects meta-analyses, and between-group standardized mean differences (SMD) was summarized in Random Effect Meta-analysis.
Abstract: People with type 2 diabetes mellitus (T2DM) are at increased risk of mild cognitive impairment and dementia. Systemic inflammation has been proposed as a common risk factor. This study aimed to summarize the clinical data pertaining to peripheral blood inflammatory markers. We identified original peer-reviewed articles reporting blood inflammatory marker concentrations in groups of people with a T2DM diagnosis who have cognitive impairment (CI; including mild cognitive impairment, Alzheimer’s disease, vascular cognitive impairment) vs. normal cognition (NC). Between-group standardized mean differences (SMD) were summarized in random effects meta-analyses. From 2108 records, data were combined quantitatively from 40 studies. Concentrations of interleukin-6 (IL-6; NCI/NNC=934/3154, SMD 0.74 95% confidence interval [0.07, 1.42], Z5=2.15, p=0.03; I2=98.08%), C-reactive protein (CRP; NCI/NNC=1610/4363, SMD 0.80 [0.50, 1.11], Z14=5.25, p

Journal ArticleDOI
TL;DR: In this paper , the clinical data pertaining to peripheral blood inflammatory markers were summarized in random effects meta-analyses and between-group standardized mean differences (SMD) was summarized in this paper .
Abstract: People with type 2 diabetes mellitus (T2DM) are at increased risk of mild cognitive impairment and dementia. Systemic inflammation has been proposed as a common risk factor. This study aimed to summarize the clinical data pertaining to peripheral blood inflammatory markers. We identified original peer-reviewed articles reporting blood inflammatory marker concentrations in groups of people with a T2DM diagnosis who have cognitive impairment (CI; including mild cognitive impairment, Alzheimer’s disease, vascular cognitive impairment) vs. normal cognition (NC). Between-group standardized mean differences (SMD) were summarized in random effects meta-analyses. From 2108 records, data were combined quantitatively from 40 studies. Concentrations of interleukin-6 (IL-6; NCI/NNC = 934/3154, SMD 0.74 95% confidence interval [0.07, 1.42], Z5 = 2.15, p = 0.03; I2 = 98.08%), C-reactive protein (CRP; NCI/NNC = 1610/4363, SMD 0.80 [0.50, 1.11], Z14 = 5.25, p < 0.01; I2 = 94.59%), soluble vascular cell adhesion molecule-1 (sVCAM-1; NCI/NNC = 104/1063, SMD 1.64 95% confidence interval [0.21, 3.07], Z2 = 2.25, p = 0.02; I2 = 95.19%), and advanced glycation end products (AGEs; NCI/NNC = 227/317, SMD 0.84 95% confidence interval [0.41, 1.27], Z2 = 3.82, p < 0.01; I2 = 81.07%) were higher among CI groups compared to NC. Brain derived neurotropic factor (BDNF) concentrations were significantly lower in CI compared to NC (NCI/NNC = 848/2063, SMD −0.67 95% confidence interval [-0.99, −0.35], Z3 = -4.09, p < 0.01; I2 = 89.20%). Cognitive impairment among people with T2DM was associated with systemic inflammation and lower BDNF concentrations. These inflammatory characteristics support an increased inflammatory-vascular interaction associated with cognitive impairment in T2DM. PROSPERO (CRD42020188625).

Journal ArticleDOI
TL;DR: In this article , the functional relevance of α-synuclein-specific immune responses in Parkinson's disease in a mouse model was addressed, where an Adeno-associated vector 1/2 serotype (AAV1/2) expressing human mutated A53T-α-Synuclein was stereotactically injected into the substantia nigra (SN) of either wildtype C57BL/6 or Recombination-activating gene 1 (RAG1)-/- mice.
Abstract: Antigen-specific neuroinflammation and neurodegeneration are characteristic for neuroimmunological diseases. In Parkinson's disease (PD) pathogenesis, α-synuclein is a known culprit. Evidence for α-synuclein-specific T cell responses was recently obtained in PD. Still, a causative link between these α-synuclein responses and dopaminergic neurodegeneration had been lacking. We thus addressed the functional relevance of α-synuclein-specific immune responses in PD in a mouse model.We utilized a mouse model of PD in which an Adeno-associated Vector 1/2 serotype (AAV1/2) expressing human mutated A53T-α-Synuclein was stereotactically injected into the substantia nigra (SN) of either wildtype C57BL/6 or Recombination-activating gene 1 (RAG1)-/- mice. Brain, spleen, and lymph node tissues from different time points following injection were then analyzed via FACS, cytokine bead assay, immunohistochemistry and RNA-sequencing to determine the role of T cells and inflammation in this model. Bone marrow transfer from either CD4+/CD8-, CD4-/CD8+, or CD4+/CD8+ (JHD-/-) mice into the RAG-1-/- mice was also employed. In addition to the in vivo studies, a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay was utilized.AAV-based overexpression of pathogenic human A53T-α-synuclein in dopaminergic neurons of the SN stimulated T cell infiltration. RNA-sequencing of immune cells from PD mouse brains confirmed a pro-inflammatory gene profile. T cell responses were directed against A53T-α-synuclein-peptides in the vicinity of position 53 (68-78) and surrounding the pathogenically relevant S129 (120-134). T cells were required for α-synuclein-induced neurodegeneration in vivo and in vitro, while B cell deficiency did not protect from dopaminergic neurodegeneration.Using T cell and/or B cell deficient mice and a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay, we confirmed in vivo and in vitro that pathogenic α-synuclein peptide-specific T cell responses can cause dopaminergic neurodegeneration and thereby contribute to PD-like pathology.

Journal ArticleDOI
TL;DR: In this paper , the authors explored the associations between gut microbiota and cognitive development during infancy, and their link with maternal obesity, using 16S rRNA marker gene sequencing of first-pass meconium samples and of faecal samples collected at age 3, 6, 12, 24, 36 months, and its relationship with maternal gestational obesity or diabetes, and with cognitive development.
Abstract: Maternal gestational obesity is a risk factor for offspring's neurodevelopment and later neuro-cognitive disorders. Altered gut microbiota composition has been found in patients with neurocognitive disorders, and in relation to maternal metabolic health. We explored the associations between gut microbiota and cognitive development during infancy, and their link with maternal obesity. In groups of children from the Pisa birth Cohort (PISAC), we analysed faecal microbiota composition by 16S rRNA marker gene sequencing of first-pass meconium samples and of faecal samples collected at age 3, 6, 12, 24, 36 months, and its relationship with maternal gestational obesity or diabetes, and with cognitive development, as measured from 6 to 60 months of age by the Griffith's Mental Development Scales. Gut microbiota composition in the first phases of life is dominated by Bifidobacteria (Actinobacteria phylum), with contribution of Escherichia/Shigella and Klebsiella genera (Proteobacteria phylum), whereas Firmicutes become more dominant at 36 months of age. Maternal overweight leads to lower abundance of Bifidobacterium, Blautia and Ruminococcus, and lower practical reasoning scores in the offspring at the age of 36 months. In the whole population, microbiota in the first-pass meconium samples shows much higher alpha diversity compared to later samples, and its composition, particularly Bifidobacterium and Veillonella abundances, correlates with practical reasoning scores at 60 months of age. Maternal overweight correlates with bacterial colonization and with the development of reasoning skills at pre-school age. Associations between neonatal gut colonization and later cognitive function provide new perspectives of primary (antenatal) prevention of neurodevelopmental disorders.

Journal ArticleDOI
kge4am1
TL;DR: In this article , a combination of unsupervised principal component analysis and hierarchical clustering was used to categorize inflammatory subtypes from their cytokine data (17 FES High, 30 FES Low, and 33 healthy controls (HCs)).
Abstract: Peripheral inflammation is implicated in schizophrenia, however, not all individuals demonstrate inflammatory alterations. Recent studies identified inflammatory subtypes in chronic psychosis with high inflammation having worse cognitive performance and displaying neuroanatomical enlargement compared to low inflammation subtypes. It is unclear if inflammatory subtypes exist earlier in the disease course, thus, we aim to identify inflammatory subtypes in antipsychotic naïve First-Episode Schizophrenia (FES). 12 peripheral inflammatory markers, clinical, cognitive, and neuroanatomical measures were collected from a naturalistic study of antipsychotic-naïve FES patients. A combination of unsupervised principal component analysis and hierarchical clustering was used to categorize inflammatory subtypes from their cytokine data (17 FES High, 30 FES Low, and 33 healthy controls (HCs)). Linear regression analysis was used to assess subtype differences. Neuroanatomical correlations with clinical and cognitive measures were performed using partial Spearman correlations. Graph theoretical analyses were performed to assess global and local network properties across inflammatory subtypes. The FES High group made up 36% of the FES group and demonstrated significantly greater levels of IL1β, IL6, IL8, and TNFα compared to FES Low, and higher levels of IL1β and IL8 compared to HCs. FES High had greater right parahippocampal, caudal anterior cingulate, and bank superior sulcus thicknesses compared to FES Low. Compared to HCs, FES Low showed smaller bilateral amygdala volumes and widespread cortical thickness. FES High and FES Low groups demonstrated less efficient topological organization compared to HCs. Individual cytokines and/or inflammatory signatures were positively associated with cognition and symptom measures. Inflammatory subtypes are present in antipsychotic-naïve FES and are associated with inflammation-mediated cortical expansion. These findings support our previous findings in chronic psychosis and point towards a connection between inflammation and blood–brain barrier disruption. Thus, identifying inflammatory subtypes may provide a novel therapeutic avenue for biomarker-guided treatment involving anti-inflammatory medications.

Journal ArticleDOI
TL;DR: In this article , the authors used three clinical rating scales, Melancholic, and Anxious distress, and Immunometabolic (IMD) dimensions were characterized in 158 patients who participated in the Predictors of Remission to Individual and Combined Treatments (PReDICT) study.
Abstract: Major depressive disorder (MDD) is a highly heterogenous disease, both in terms of clinical profiles and pathobiological alterations. Recently, immunometabolic dysregulations were shown to be correlated with atypical, energy-related symptoms but less so with the Melancholic or Anxious distress symptom dimensions of depression in The Netherlands Study of Depression and Anxiety (NESDA) study. In this study, we aimed to replicate these immunometabolic associations and to characterize the metabolomic correlates of each of the three MDD dimensions.Using three clinical rating scales, Melancholic, and Anxious distress, and Immunometabolic (IMD) dimensions were characterized in 158 patients who participated in the Predictors of Remission to Individual and Combined Treatments (PReDICT) study and from whom plasma and serum samples were available. The NESDA-defined inflammatory index, a composite measure of interleukin-6 and C-reactive protein, was measured from pre-treatment plasma samples and a metabolomic profile was defined using serum samples analyzed on three metabolomics platforms targeting fatty acids and complex lipids, amino acids, acylcarnitines, and gut microbiome-derived metabolites among other metabolites of central metabolism.The IMD clinical dimension and the inflammatory index were positively correlated (r = 0.19, p = 0.019) after controlling for age, sex, and body mass index, whereas the Melancholic and Anxious distress dimensions were not, replicating the previous NESDA findings. The three symptom dimensions had distinct metabolomic signatures using both univariate and set enrichment statistics. IMD severity correlated mainly with gut-derived metabolites and a few acylcarnitines and long chain saturated free fatty acids. Melancholia severity was significantly correlated with several phosphatidylcholines, primarily the ether-linked variety, lysophosphatidylcholines, as well as several amino acids. Anxious distress severity correlated with several medium and long chain free fatty acids, both saturated and polyunsaturated ones, sphingomyelins, as well as several amino acids and bile acids.The IMD dimension of depression appears reliably associated with markers of inflammation. Metabolomics provides powerful tools to inform about depression heterogeneity and molecular mechanisms related to clinical dimensions in MDD, which include a link to gut microbiome and lipids implicated in membrane structure and function.

Journal ArticleDOI
TL;DR: In this article , Gut microbiota alterations might affect the development of Alzheimer's disease through microbiota-derived metabolites, such as indole, indole-3-acetic acid and indole3-propionic acid.
Abstract: Gut microbiota alterations might affect the development of Alzheimer's disease (AD) through microbiota-derived metabolites. For example, microbiota-derived Indoles via tryptophan metabolism prevented Aβ accumulation and Tau hyperphosphorylation, restored synaptic plasticity, and then promoted the cognitive and behavioral ability of APP/PS1 mice. The imbalanced compositions of Indoles-producing bacteria with tryptophan deficiency were found in male APP/PS1 mice, but the molecular mechanisms remained unclear. Our current study revealed that Indoles (including indole, indole-3-acetic acid and indole-3-propionic acid) upregulated the production of aryl hydrocarbon receptor (AhR), inhibited the activation of the NF-κB signal pathway as well as the formation of the NLRP3 inflammasome, reduced the release of inflammatory cytokines, including TNF-α, IL-6, IL-1β and IL-18, alleviating the inflammatory response of APP/PS1 mice. These findings demonstrated the roles of Indoles-producing bacteria in activating the AhR pathway to regulate neuroinflammation of AD through gut microbiota-derived Indoles, which implied a novel way for AD treatment.

Journal ArticleDOI
TL;DR: In this article , the omega-3 unsaturated fatty acids (n-3 PUFAs) had been linked to slowing cognitive decline due to their potential anti-inflammatory effects, and different regiments of pure DHA, pure EPA and their combination on various associated symptoms of dementia, including a mild form of cognitive impairment (MCI) and Alzheimer's disease (AD), have never been studied.
Abstract: Increased serum levels of pro-inflammatory biomarkers are consistently associated with cognitive decline. The omega-3 unsaturated fatty acids (n-3 PUFAs) had been linked to slowing cognitive decline due to their potential anti-inflammatory effects. To our knowledge, the different regiments of pure DHA, pure EPA, and their combination on various associated symptoms of dementia, including a mild form of cognitive impairment (MCI) and Alzheimer's disease (AD), have never been studied.This multisite, randomized, double-blind, placebo-controlled trial was conducted at two veteran's retirement centers and one medical center in central Taiwan between 2013 and 2015. 163 MCI or AD patients were randomly assigned to placebo (n = 40), docosahexaenoic acid (DHA, 0.7 g/day, n = 41), eicosapentaenoic acid (EPA, 1.6 g/day, n = 40), or EPA (0.8 g/day) + DHA (0.35 g/day) (n = 42) group for 24 months. The results were measured as the cognitive and functional abilities, biochemical, and inflammatory cytokines profiles. Chi-square tests, two-sample t-test, ANOVA, and linear mixedeffects models were conducted with p < 0.05.131 (80%) participants had completed the trial with all cognitive, functional, and mood status assessments. The statistically significant difference between the placebo and treatment groups was not determined, concerning the changes in cognitive, functional, and mood status scores, the biochemical profiles, and inflammatory cytokines levels. However, EPA was found to reduce the C-C motif ligands 4 (CCL4) level (p < 0.001). Additionally, EPA could reduce the constructional praxis (p < 0.05) and spoken language ability scores (p < 0.01), and DHA also reduced the spoken language ability score (p < 0.05).Overall, n-3 PUFAs supplements did not reduce cognitive, functional, and depressive symptom outcomes, but spoken language ability and constructional praxis subitems of ADAS-cog. These findings show that attention to clinical heterogeneity in dementia is crucial when studying nutrients interventions, such as n-3 PUFAs. In addition, with small effect size CCL4 is a better indicator than other inflammatory cytokines for EPA treatment response.

Journal ArticleDOI
TL;DR: The debate around Long Covid has so far shown resistance to accept parallels between long Covid and a set of existing conditions which have historically been subject to stigma, and as such, these dynamics of stigma ought to be dismantled in order to facilitate the development of effective clinical resources for all such implicated conditions.
Abstract: The debate around Long Covid has so far shown resistance to accept parallels between Long Covid and a set of existing conditions which have historically been subject to stigma. This resistance risks endorsing the stigma associated with such existing conditions, and as such, these dynamics of stigma ought to be dismantled in order to facilitate the development of effective clinical resources for all such implicated conditions. As well as affecting proceedings at the structural level, I discuss how the aforementioned problems also risk affecting patients at the personal level by motivating the reconfiguration and restriction of patient illness narratives. The problems I identify therefore risk affecting both collective and individual understanding of Long Covid.

Journal ArticleDOI
TL;DR: In this paper, the omega-3 unsaturated fatty acids (n-3 PUFAs) had been linked to slowing cognitive decline due to their potential anti-inflammatory effects.
Abstract: Background Increased serum levels of pro-inflammatory biomarkers are consistently associated with cognitive decline. The omega-3 unsaturated fatty acids (n-3 PUFAs) had been linked to slowing cognitive decline due to their potential anti-inflammatory effects. To our knowledge, the different regiments of pure DHA, pure EPA, and their combination on various associated symptoms of dementia, including a mild form of cognitive impairment (MCI) and Alzheimer’s disease (AD), have never been studied. Methods This multisite, randomized, double-blind, placebo-controlled trial was conducted at two veteran’s retirement centers and one medical center in central Taiwan between 2013 and 2015. 163 MCI or AD patients were randomly assigned to placebo (n = 40), docosahexaenoic acid (DHA, 0.7 g/day, n = 41), eicosapentaenoic acid (EPA, 1.6 g/day, n = 40), or EPA (0.8 g/day) + DHA (0.35 g/day) (n = 42) group for 24 months. The results were measured as the cognitive and functional abilities, biochemical, and inflammatory cytokines profiles. Chi-square tests, two-sample t-test, ANOVA, and linear mixedeffects models were conducted with p Results 131 (80%) participants had completed the trial with all cognitive, functional, and mood status assessments. The statistically significant difference between the placebo and treatment groups was not determined, concerning the changes in cognitive, functional, and mood status scores, the biochemical profiles, and inflammatory cytokines levels. However, EPA was found to reduce the C–C motif ligands 4 (CCL4) level (p Conclusion Overall, n-3 PUFAs supplements did not reduce cognitive, functional, and depressive symptom outcomes, but spoken language ability and constructional praxis subitems of ADAS-cog. These findings show that attention to clinical heterogeneity in dementia is crucial when studying nutrients interventions, such as n-3 PUFAs. In addition, with small effect size CCL4 is a better indicator than other inflammatory cytokines for EPA treatment response.

Journal ArticleDOI
TL;DR: In this article , the authors used a combination of multimodal molecular brain imaging (simultaneous positron emission tomography/magnetic resonance spectroscopy), behavioral measurements, imaging transcriptomics and serum testing to uncover links between pandemic-related stressors and neuroinflammation.
Abstract: While COVID-19 research has seen an explosion in the literature, the impact of pandemic-related societal and lifestyle disruptions on brain health among the uninfected remains underexplored. However, a global increase in the prevalence of fatigue, brain fog, depression and other "sickness behavior"-like symptoms implicates a possible dysregulation in neuroimmune mechanisms even among those never infected by the virus. We compared fifty-seven 'Pre-Pandemic' and fifteen 'Pandemic' datasets from individuals originally enrolled as control subjects for various completed, or ongoing, research studies available in our records, with a confirmed negative test for SARS-CoV-2 antibodies. We used a combination of multimodal molecular brain imaging (simultaneous positron emission tomography / magnetic resonance spectroscopy), behavioral measurements, imaging transcriptomics and serum testing to uncover links between pandemic-related stressors and neuroinflammation. Healthy individuals examined after the enforcement of 2020 lockdown/stay-at-home measures demonstrated elevated brain levels of two independent neuroinflammatory markers (the 18 kDa translocator protein, TSPO, and myoinositol) compared to pre-lockdown subjects. The serum levels of two inflammatory markers (interleukin-16 and monocyte chemoattractant protein-1) were also elevated, although these effects did not reach statistical significance after correcting for multiple comparisons. Subjects endorsing higher symptom burden showed higher TSPO signal in the hippocampus (mood alteration, mental fatigue), intraparietal sulcus and precuneus (physical fatigue), compared to those reporting little/no symptoms. Post-lockdown TSPO signal changes were spatially aligned with the constitutive expression of several genes involved in immune/neuroimmune functions. This work implicates neuroimmune activation as a possible mechanism underlying the non-virally-mediated symptoms experienced by many during the COVID-19 pandemic. Future studies will be needed to corroborate and further interpret these preliminary findings.

Journal ArticleDOI
TL;DR: In this paper , a cross-sectional multi-color flow cytometry study on 78 sex-balanced individuals with sporadic Parkinson's disease, 28 controls, and longitudinal samples from seven patients and one control were compared between groups and correlated with standardized clinical scores.
Abstract: Alpha-synuclein pathology is associated with immune activation and neurodegeneration in Parkinson's disease. The immune activation involves not only microglia but also peripheral immune cells, such as mononuclear phagocytes found in blood and infiltrated in the brain. Understanding peripheral immune involvement is essential for developing immunomodulatory treatment. Therefore, we aimed to study circulating mononuclear phagocytes in early- and late-stage Parkinson's disease, defined by disease duration of less or more than five years, respectively, and analyze their association with clinical phenotypes. We performed a cross-sectional multi-color flow cytometry study on 78 sex-balanced individuals with sporadic Parkinson's disease, 28 controls, and longitudinal samples from seven patients and one control. Cell frequencies and surface marker expressions on natural killer cells, monocyte subtypes, and dendritic cells were compared between groups and correlated with standardized clinical scores. We found elevated frequencies and surface levels of migration- (CCR2, CD11b) and phagocytic- (CD163) markers, particularly on classical and intermediate monocytes in early Parkinson's disease. HLA-DR expression was increased in advanced stages of the disease, whereas TLR4 expression was decreased in women with Parkinson's Disease. The disease-associated immune changes of CCR2 and CD11b correlated with worse cognition. Increased TLR2 expression was related to worse motor symptoms. In conclusion, our data highlights the TLR2 relevance in the symptomatic motor presentation of the disease and a role for peripheral CD163+ and migration-competent monocytes in Parkinson's disease cognitive defects. Our study suggests that the peripheral immune system is dynamically altered in Parkinson's disease stages and directly related to both symptoms and the sex bias of the disease.

Journal ArticleDOI
TL;DR: In this paper , peripubertal stress combined with differential corticosterone (CORT)-stress responsiveness (CSR) influences depressive-like behaviors and brain inflammatory markers in male rats in adulthood, and how these alterations relate to microglia activation and miR-342 expression.
Abstract: Neuroinflammation is increasingly recognized as playing a critical role in depression. Early-life stress exposure and constitutive differences in glucocorticoid responsiveness to stressors are two key risk factors for depression, but their impacts on the inflammatory status of the brain is still uncertain. Moreover, there is a need to identify specific molecules involved in these processes with the potential to be used as alternative therapeutic targets in inflammation-related depression. Here, we studied how peripubertal stress (PPS) combined with differential corticosterone (CORT)-stress responsiveness (CSR) influences depressive-like behaviors and brain inflammatory markers in male rats in adulthood, and how these alterations relate to microglia activation and miR-342 expression. We found that high-CORT stress-responsive (H-CSR) male rats that underwent PPS exhibited increased anhedonia and passive coping responses in adulthood. Also, animals exposed to PPS showed increased hippocampal TNF-α expression, which positively correlated with passive coping responses. In addition, PPS caused long-term effects on hippocampal microglia, particularly in H-CSR rats, with increased hippocampal IBA-1 expression and morphological alterations compatible with a higher degree of activation. H-CSR animals also showed upregulation of hippocampal miR-342, a mediator of TNF-α-driven microglial activation, and its expression was positively correlated with TNF-α expression, microglial activation and passive coping responses. Our findings indicate that individuals with constitutive H-CSR are particularly sensitive to developing protracted depression-like behaviors following PPS exposure. In addition, they show neuro-immunological alterations in adulthood, such as increased hippocampal TNF-α expression, microglial activation and miR-342 expression. Our work highlights miR-342 as a potential therapeutic target in inflammation-related depression.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated changes in the synaptic transmission and plasticity together with behaviorally relevant network activities from the hippocampus of antibiotic-treated mice and found that antibiotic-induced dysbiosis of the gut microbiome and subsequent alteration of the immune cell function are associated with reduced synaptic transmission in the hippocampus.
Abstract: Antibiotics are widely applied for the treatment of bacterial infections, but their long-term use may lead to gut flora dysbiosis and detrimental effects on brain physiology, behavior as well as cognitive performance. Still, a striking lack of knowledge exists concerning electrophysiological correlates of antibiotic-induced changes in gut microbiota and behavior. Here, we investigated changes in the synaptic transmission and plasticity together with behaviorally-relevant network activities from the hippocampus of antibiotic-treated mice. Prolonged antibiotic treatment led to a reduction of myeloid cell pools in bone marrow, circulation and those surveilling the brain. Circulating Ly6Chi inflammatory monocytes adopted a proinflammatory phenotype with increased expression of CD40 and MHC II. In the central nervous system, microglia displayed a subtle activated phenotype with elevated CD40 and MHC II expression, increased IL-6 and TNF production as well as with an increased number of Iba1 + cells in the hippocampal CA3 and CA1 subregions. Concomitantly, we detected a substantial reduction in the synaptic transmission in the hippocampal CA1 after antibiotic treatment. In line, carbachol-induced cholinergic gamma oscillation were reduced upon antibiotic treatment while the incidence of hippocampal sharp waves was elevated. These alterations were associated with the global changes in the expression of neurotrophin nerve growth factor and inducible nitric oxide synthase, both of which have been shown to influence cholinergic system in the hippocampus. Overall, our study demonstrates that antibiotic-induced dysbiosis of the gut microbiome and subsequent alteration of the immune cell function are associated with reduced synaptic transmission and gamma oscillations in the hippocampus, a brain region that is critically involved in mediation of innate and cognitive behavior.