scispace - formally typeset
Search or ask a question

Showing papers in "Cell Biology and Immunology of Leukocyte Function in 2022"


Journal ArticleDOI
TL;DR: In this paper , the authors identified 1370 clinical trials (FDA = 1129, EMA = 241) involving liquid-biopsy analysis in cancer and highlighted those where it has been useful for patient stratification, treatment follow-up or development of novel approaches for early diagnosis.
Abstract: Cell-free DNA (cfDNA) analysis represents a promising method for the diagnosis, treatment selection and clinical follow-up of cancer patients. Although its general methodological feasibility and usefulness has been demonstrated, several issues related to standardisation and technical validation must be addressed for its routine clinical application in cancer. In this regard, most cfDNA clinical applications are still limited to clinical trials, proving its value in several settings. In this paper, we review the current clinical trials involving cfDNA/ctDNA analysis and highlight those where it has been useful for patient stratification, treatment follow-up or development of novel approaches for early diagnosis. Our query included clinical trials, including the terms 'cfDNA', 'ctDNA', 'liquid biopsy' AND 'cancer OR neoplasm' in the FDA and EMA public databases. We identified 1370 clinical trials (FDA = 1129, EMA = 241) involving liquid-biopsy analysis in cancer. These clinical trials show promising results for the early detection of cancer and confirm cfDNA as a tool for real-time monitoring of acquired therapy resistance, accurate disease-progression surveillance and improvement of treatment, situations that result in a better quality of life and extended overall survival for cancer patients.

48 citations


Journal ArticleDOI
TL;DR: In this article , the authors consider whether cancer cachexia is primarily a manifestation of systemic inflammation with the consequent implications for future treatment, and they find that nutritional interventions have continued to be ineffective.
Abstract: Cancer cachexia has long been perceived as a nutritional syndrome. However, nutritional interventions have continued to be ineffective. With the recent recognition of the importance of systemic inflammation in the definition of this syndrome and treatment, has the time come to consider whether this syndrome is primarily a manifestation of systemic inflammation with the consequent implications for future treatment?

30 citations


Journal ArticleDOI
TL;DR: In this paper , chronic diseases, including obesity and diabetes, establish the cancer-inducing niche (CIN) that drives the undifferentiated/progenitor cells into CSCs, which then develop malignant tumours in vivo.
Abstract: The growth of cancer tissue is thought to be considered driven by a small subpopulation of cells, so-called cancer stem cells (CSCs). CSCs are located at the apex of a hierarchy in a cancer tissue with self-renewal, differentiation and tumorigenic potential that produce the progeny in the tissue. Although CSCs are generally believed to play a critical role in the growth, metastasis, and recurrence of cancers, the origin of CSCs remains to be reconsidered. We hypothesise that, chronic diseases, including obesity and diabetes, establish the cancer-inducing niche (CIN) that drives the undifferentiated/progenitor cells into CSCs, which then develop malignant tumours in vivo. In this context, a CIN could be traced to chronic inflammation that involves long-lasting tissue damage and repair after being exposed to factors such as cytokines and growth factors. This must be distinguished from the cancer microenvironment, which is responsible for cancer maintenance. The concept of a CIN is most important for cancer prevention as well as cancer therapy.

29 citations


Journal ArticleDOI
TL;DR: In this article , the determinants for a successful response to antibodies that bind PD-1 or its ligand PD-L1 are discussed, dividing them into markers found in the tumour biopsy and those in non-tumour samples.
Abstract: Abstract The binding of T cell immune checkpoint proteins programmed death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) to their ligands allows immune evasion by tumours. The development of therapeutic antibodies, termed checkpoint inhibitors, that bind these molecules or their ligands, has provided a means to release this brake on the host anti-tumour immune response. However, these drugs are costly, are associated with potentially severe side effects, and only benefit a small subset of patients. It is therefore important to identify biomarkers that discriminate between responders and non-responders. This review discusses the determinants for a successful response to antibodies that bind PD-1 or its ligand PD-L1, dividing them into markers found in the tumour biopsy and those in non-tumour samples. It provides an update on the established predictive biomarkers (tumour PD-L1 expression, tumour mismatch repair deficiency and tumour mutational burden) and assesses the evidence for new potential biomarkers.

29 citations


Journal ArticleDOI
TL;DR: In this paper , the suitability of multiple non-coding RNA types as blood-based cancer biomarkers and examined the impact of recent technological breakthroughs on the development of non-invasive molecular biomarkers in cancer.
Abstract: Although non-coding RNAs have long been considered as non-functional "junk" RNAs, accumulating evidence in the past decade indicates that they play a critical role in pathogenesis of various cancers. In addition to their biological significance, the recognition that their expression levels are frequently dysregulated in multiple cancers have fueled the interest for exploiting their clinical potential as cancer biomarkers. In particular, microRNAs (miRNAs), a subclass of small non-coding RNAs that epigenetically modulate gene-transcription, have become one of the most well-studied substrates for the development of liquid biopsy biomarkers for cancer patients. The emergence of high-throughput sequencing technologies has enabled comprehensive molecular characterisation of various non-coding RNA expression profiles in multiple cancers. Furthermore, technological advances for quantifying lowly expressed RNAs in the circulation have facilitated robust identification of previously unrecognised and undetectable biomarkers in cancer patients. Here we summarise the latest progress on the utilisation of non-coding RNAs as non-invasive cancer biomarkers. We evaluated the suitability of multiple non-coding RNA types as blood-based cancer biomarkers and examined the impact of recent technological breakthroughs on the development of non-invasive molecular biomarkers in cancer.

28 citations


Journal ArticleDOI
TL;DR: In this article , the authors summarized the main clinical applications of liquid biopsy in advanced non-small cell lung cancer, underlining both its potential and limitations from a clinically driven perspective.
Abstract: Abstract The possibility to analyse the tumour genetic material shed in the blood is undoubtedly one of the main achievements of translational research in the latest years. In the modern clinical management of advanced non-small cell lung cancer, molecular characterisation plays an essential role. In parallel, immunotherapy is widely employed, but reliable predictive markers are not available yet. Liquid biopsy has the potential to face the two issues and to increase its role in advanced NSCLC in the next future. The aim of this review is to summarise the main clinical applications of liquid biopsy in advanced non-small cell lung cancer, underlining both its potential and limitations from a clinically driven perspective.

28 citations


Journal ArticleDOI
TL;DR: A review of the potential of cannabinoids as inhibitors of tumour growth and spread as demonstrated in preclinical studies is provided in this paper , where the authors provide an up-to-date overview.
Abstract: Abstract Drugs that target the endocannabinoid system are of interest as pharmacological options to combat cancer and to improve the life quality of cancer patients. From this perspective, cannabinoid compounds have been successfully tested as a systemic therapeutic option in a number of preclinical models over the past decades. As a result of these efforts, a large body of data suggests that the anticancer effects of cannabinoids are exerted at multiple levels of tumour progression via different signal transduction mechanisms. Accordingly, there is considerable evidence for cannabinoid-mediated inhibition of tumour cell proliferation, tumour invasion and metastasis, angiogenesis and chemoresistance, as well as induction of apoptosis and autophagy. Further studies showed that cannabinoids could be potential combination partners for established chemotherapeutic agents or other therapeutic interventions in cancer treatment. Research in recent years has yielded several compounds that exert promising effects on tumour cells and tissues in addition to the psychoactive Δ 9 -tetrahydrocannabinol, such as the non-psychoactive phytocannabinoid cannabidiol and inhibitors of endocannabinoid degradation. This review provides an up-to-date overview of the potential of cannabinoids as inhibitors of tumour growth and spread as demonstrated in preclinical studies.

27 citations


Journal ArticleDOI
TL;DR: In this article , a single-centre prospective cohort study was conducted to investigate ctDNA in patients with p16-negative head and neck squamous cell carcinoma (HNSCC) who received curative-intent primary surgical treatment.
Abstract: Head and neck squamous cell carcinoma (HNSCC) remain a substantial burden to global health. Cell-free circulating tumour DNA (ctDNA) is an emerging biomarker but has not been studied sufficiently in HNSCC.We conducted a single-centre prospective cohort study to investigate ctDNA in patients with p16-negative HNSCC who received curative-intent primary surgical treatment. Whole-exome sequencing was performed on formalin-fixed paraffin-embedded (FFPE) tumour tissue. We utilised RaDaRTM, a highly sensitive personalised assay using deep sequencing for tumour-specific variants, to analyse serial pre- and post-operative plasma samples for evidence of minimal residual disease and recurrence.In 17 patients analysed, personalised panels were designed to detect 34 to 52 somatic variants. Data show ctDNA detection in baseline samples taken prior to surgery in 17 of 17 patients. In post-surgery samples, ctDNA could be detected at levels as low as 0.0006% variant allele frequency. In all cases with clinical recurrence to date, ctDNA was detected prior to progression, with lead times ranging from 108 to 253 days.This study illustrates the potential of ctDNA as a biomarker for detecting minimal residual disease and recurrence in HNSCC and demonstrates the feasibility of personalised ctDNA assays for the detection of disease prior to clinical recurrence.

24 citations


Journal ArticleDOI
TL;DR: In this paper , a large-scale analysis of metastasis-competent circulating tumour cells (CTCs) is presented, showing that only a small subgroup of CTCs will survive during the harsh journey in the blood and colonise distant sites.
Abstract: Metastasis formation is the main cause of cancer-related death in patients with solid tumours. At the beginning of this process, cancer cells escape from the primary tumour to the blood circulation where they become circulating tumour cells (CTCs). Only a small subgroup of CTCs will survive during the harsh journey in the blood and colonise distant sites. The in-depth analysis of these metastasis-competent CTCs is very challenging because of their extremely low concentration in peripheral blood. So far, only few groups managed to expand in vitro and in vivo CTCs to be used as models for large-scale descriptive and functional analyses of CTCs. These models have shown already the high variability and complexity of the metastatic cascade in patients with cancer, and open a new avenue for the development of new diagnostic and therapeutic approaches.

23 citations


Journal ArticleDOI
TL;DR: In this paper , a systematic reanalysis of public miR-profile datasets was performed to identify tissue-derived miRs prognostic of biochemical recurrence (BCR) in patients undergoing radical prostatectomy.
Abstract: Abstract Background Reliable prognostic biomarkers to distinguish indolent from aggressive prostate cancer (PCa) are lacking. Many studies investigated microRNAs (miRs) as PCa prognostic biomarkers, often reporting inconsistent findings. We present a systematic review of these; also systematic reanalysis of public miR-profile datasets to identify tissue-derived miRs prognostic of biochemical recurrence (BCR) in patients undergoing radical prostatectomy. Methods Independent PubMed searches were performed for relevant articles from January 2007 to December 2019. For the review, 128 studies were included. Pooled-hazard-ratios (HRs) for miRs in multiple studies were calculated using a random-effects model (REM). For the reanalysis, five studies were included and Cox proportional-hazard models, testing miR association with BCR, performed for miRs profiled in all. Results Systematic review identified 120 miRs as prognostic. Five (let-7b-5p, miR-145-5p, miR152-3p, miR-195-5p, miR-224-5p) were consistently associated with progression in multiple cohorts/studies. In the reanalysis, ten (let-7a-5p, miR-148a-3p, miR-203a-3p, miR-26b-5p, miR30a-3p, miR-30c-5p, miR-30e-3p, miR-374a-5p, miR-425-3p, miR-582-5p) were significantly prognostic of BCR. Of these, miR-148a-3p (HR = 0.80/95% CI = 0.68-0.94) and miR-582-5p (HR = 0.73/95% CI = 0.61-0.87) were also reported in prior publication(s) in the review. Conclusions Fifteen miRs were consistently associated with disease progression in multiple publications or datasets. Further research into their biological roles is warranted to support investigations into their performance as prognostic PCa biomarkers.

22 citations


Journal ArticleDOI
TL;DR: In this article , a systematic reanalysis of public miR-profile datasets was performed to identify tissue-derived miRs prognostic of biochemical recurrence (BCR) in patients undergoing radical prostatectomy.
Abstract: Abstract Background Reliable prognostic biomarkers to distinguish indolent from aggressive prostate cancer (PCa) are lacking. Many studies investigated microRNAs (miRs) as PCa prognostic biomarkers, often reporting inconsistent findings. We present a systematic review of these; also systematic reanalysis of public miR-profile datasets to identify tissue-derived miRs prognostic of biochemical recurrence (BCR) in patients undergoing radical prostatectomy. Methods Independent PubMed searches were performed for relevant articles from January 2007 to December 2019. For the review, 128 studies were included. Pooled-hazard-ratios (HRs) for miRs in multiple studies were calculated using a random-effects model (REM). For the reanalysis, five studies were included and Cox proportional-hazard models, testing miR association with BCR, performed for miRs profiled in all. Results Systematic review identified 120 miRs as prognostic. Five (let-7b-5p, miR-145-5p, miR152-3p, miR-195-5p, miR-224-5p) were consistently associated with progression in multiple cohorts/studies. In the reanalysis, ten (let-7a-5p, miR-148a-3p, miR-203a-3p, miR-26b-5p, miR30a-3p, miR-30c-5p, miR-30e-3p, miR-374a-5p, miR-425-3p, miR-582-5p) were significantly prognostic of BCR. Of these, miR-148a-3p (HR = 0.80/95% CI = 0.68-0.94) and miR-582-5p (HR = 0.73/95% CI = 0.61-0.87) were also reported in prior publication(s) in the review. Conclusions Fifteen miRs were consistently associated with disease progression in multiple publications or datasets. Further research into their biological roles is warranted to support investigations into their performance as prognostic PCa biomarkers.

Journal ArticleDOI
TL;DR: In this paper , the authors summarized the available evidence on ctDNA applicability in CRC and reviewed ongoing clinical trials assessing how liquid biopsy can be used interventionally to guide therapeutic choice in localised, locally advanced and metastatic CRC.
Abstract: Colorectal cancer (CRC) is one of the most prevalent and deadly cancers worldwide. Despite recent improvements in treatment and prevention, most of the current therapeutic options are weighted by side effects impacting patients' quality of life. Better patient selection towards systemic treatments represents an unmet clinical need. The recent multidisciplinary and molecular advancements in the treatment of CRC patients demand the identification of efficient biomarkers allowing to personalise patient care. Currently, core tumour biopsy specimens represent the gold-standard biological tissue to identify such biomarkers. However, technical feasibility, tumour heterogeneity and cancer evolution are major limitations of this single-snapshot approach. Genotyping circulating tumour DNA (ctDNA) has been addressed as potentially overcoming such limitations. Indeed, ctDNA has been retrospectively demonstrated capable of identifying minimal residual disease post-surgery and post-adjuvant treatment, as well as spotting druggable molecular alterations for tailoring treatments in metastatic disease. In this review, we summarise the available evidence on ctDNA applicability in CRC. Then, we review ongoing clinical trials assessing how liquid biopsy can be used interventionally to guide therapeutic choice in localised, locally advanced and metastatic CRC. Finally, we discuss how its widespread could transform CRC patients' management, dissecting its limitations while suggesting improvement strategies.

Journal ArticleDOI
TL;DR: In this paper , the authors estimate the number of breast cancers whose detection may be delayed because of the COVID-19 pandemic, and the potential impact on cancer deaths over 10 years.
Abstract: Population breast screening services in England were suspended in March 2020 due to the COVID-19 pandemic. Here, we estimate the number of breast cancers whose detection may be delayed because of the suspension, and the potential impact on cancer deaths over 10 years.We estimated the number and length of screening delays from observed NHS Breast Screening System data. We then estimated additional breast cancer deaths from three routes: asymptomatic tumours progressing to symptomatically diagnosed disease, invasive tumours which remain screen-detected but at a later date, and ductal carcinoma in situ (DCIS) progressing to invasive disease by detection. We took progression rates, prognostic characteristics, and survival rates from published sources.We estimated that 1,489,237 women had screening delayed by around 2-7 months between July 2020 and June 2021, leaving 745,277 outstanding screens. Depending on how quickly this backlog is cleared, around 2500-4100 cancers would shift from screen-detected to symptomatic cancers, resulting in 148-452 additional breast cancer deaths. There would be an additional 164-222 screen-detected tumour deaths, and 71-97 deaths from DCIS that progresses to invasive cancer.An estimated 148-687 additional breast cancer deaths may occur as a result of the pandemic-related disruptions. The impact depends on how quickly screening services catch up with delays.

Journal ArticleDOI
TL;DR: In this article , the authors discuss current and future clinical applications of circulating tumour DNA (ctDNA) primarily in non-small cell lung cancer in addition to other solid tumours.
Abstract: In the current era of precision medicine, the identification of genomic alterations has revolutionised the management of patients with solid tumours. Recent advances in the detection and characterisation of circulating tumour DNA (ctDNA) have enabled the integration of liquid biopsy into clinical practice for molecular profiling. ctDNA has also emerged as a promising biomarker for prognostication, monitoring disease response, detection of minimal residual disease and early diagnosis. In this Review, we discuss current and future clinical applications of ctDNA primarily in non-small cell lung cancer in addition to other solid tumours.

Journal ArticleDOI
TL;DR: In this article , a rapid review was conducted to determine whether other cancers are also increasing in younger age groups, as this may have important implications for prioritising patients for investigation and referral.
Abstract: Abstract Many cancer referral guidelines use patient’s age as a key criterium to decide who should be referred urgently. A recent rise in the incidence of colorectal cancer in younger adults has been described in high-income countries worldwide. Information on other cancers is more limited. The aim of this rapid review was to determine whether other cancers are also increasing in younger age groups, as this may have important implications for prioritising patients for investigation and referral. We searched MEDLINE, Embase and Web of Science for studies describing age-related incidence trends for colorectal, bladder, lung, oesophagus, pancreas, stomach, breast, ovarian, uterine, kidney and laryngeal cancer and myeloma. ‘Younger’ patients were defined based on NICE guidelines for cancer referral. Ninety-eight studies met the inclusion criteria. Findings show that the incidence of colorectal, breast, kidney, pancreas, uterine cancer is increasing in younger age groups, whilst the incidence of lung, laryngeal and bladder cancer is decreasing. Data for oesophageal, stomach, ovarian cancer and myeloma were inconclusive. Overall, this review provides evidence that some cancers are increasingly being diagnosed in younger age groups, although the mechanisms remain unclear. Cancer investigation and referral guidelines may need updating in light of these trends.

Journal ArticleDOI
TL;DR: A comprehensive literature search of MEDLINE and EMBASE databases was performed to identify eligible studies as discussed by the authors , including observational studies exploring the associations between microbial biomarkers and colorectal neoplasia and also included prediction studies that constructed models using microbial markers to predict CRC and adenomas.
Abstract: Abstract Background Substantial evidence indicates that dysbiosis of the gut microbial community is associated with colorectal neoplasia. This review aims to systematically summarise the microbial markers associated with colorectal neoplasia and to assess their predictive performance. Methods A comprehensive literature search of MEDLINE and EMBASE databases was performed to identify eligible studies. Observational studies exploring the associations between microbial biomarkers and colorectal neoplasia were included. We also included prediction studies that constructed models using microbial markers to predict CRC and adenomas. Risk of bias for included observational and prediction studies was assessed. Results Forty-five studies were included to assess the associations between microbial markers and colorectal neoplasia. Nine faecal microbiotas (i.e., Fusobacterium, Enterococcus, Porphyromonas, Salmonella, Pseudomonas, Peptostreptococcus , Actinomyces, Bifidobacterium and Roseburia ), two oral pathogens (i.e., Treponema denticola and Prevotella intermedia ) and serum antibody levels response to Streptococcus gallolyticus subspecies gallolyticus were found to be consistently associated with colorectal neoplasia. Thirty studies reported prediction models using microbial markers, and 83.3% of these models had acceptable-to-good discrimination (AUROC > 0.75). The results of predictive performance were promising, but most of the studies were limited to small number of cases (range: 9–485 cases) and lack of independent external validation (76.7%). Conclusions This review provides insight into the evidence supporting the association between different types of microbial species and their predictive value for colorectal neoplasia. Prediction models developed from case-control studies require further external validation in high-quality prospective studies. Further studies should assess the feasibility and impact of incorporating microbial biomarkers in CRC screening programme.

Journal ArticleDOI
TL;DR: The first consensus guidelines for scoring the histopathological growth patterns (HGPs) of liver metastases were established in 2017 as mentioned in this paper , and numerous studies have applied these guidelines, have further substantiated the potential clinical value of the HGPs in patients with liver metastasis from various tumour types and are starting to shed light on the biology of the distinct HGPs.
Abstract: The first consensus guidelines for scoring the histopathological growth patterns (HGPs) of liver metastases were established in 2017. Since then, numerous studies have applied these guidelines, have further substantiated the potential clinical value of the HGPs in patients with liver metastases from various tumour types and are starting to shed light on the biology of the distinct HGPs. In the present guidelines, we give an overview of these studies, discuss novel strategies for predicting the HGPs of liver metastases, such as deep-learning algorithms for whole-slide histopathology images and medical imaging, and highlight liver metastasis animal models that exhibit features of the different HGPs. Based on a pooled analysis of large cohorts of patients with liver-metastatic colorectal cancer, we propose a new cut-off to categorise patients according to the HGPs. An up-to-date standard method for HGP assessment within liver metastases is also presented with the aim of incorporating HGPs into the decision-making processes surrounding the treatment of patients with liver-metastatic cancer. Finally, we propose hypotheses on the cellular and molecular mechanisms that drive the biology of the different HGPs, opening some exciting preclinical and clinical research perspectives.

Journal ArticleDOI
TL;DR: In this paper , the authors identify priority areas for future research and policy implications, including improved understanding of the potential dual harms of ultra-processed foods on the environment and cancer risk, and the prevention of cancers related to the consumption of UPFs could be tackled using different strategies, including behaviour change interventions among consumers as well as bolder public health policies needed to improve food environments.
Abstract: Ultra-processed foods (UPFs) have become increasingly dominant globally, contributing to as much as 60% of total daily energy intake in some settings. Epidemiological evidence suggests this worldwide shift in food processing may partly be responsible for the global obesity epidemic and chronic disease burden. However, prospective studies examining the association between UPF consumption and cancer outcomes are limited. Available evidence suggests that UPFs may increase cancer risk via their obesogenic properties as well as through exposure to potentially carcinogenic compounds such as certain food additives and neoformed processing contaminants. We identify priority areas for future research and policy implications, including improved understanding of the potential dual harms of UPFs on the environment and cancer risk. The prevention of cancers related to the consumption of UPFs could be tackled using different strategies, including behaviour change interventions among consumers as well as bolder public health policies needed to improve food environments.

Journal ArticleDOI
TL;DR: Plumbagin showed higher blood-brain barrier penetration ability than that of lapachol and shikonin and elicited significant growth inhibitory effects in vitro and in vivo as discussed by the authors .
Abstract: Ferroptosis has attracted increasing interest in cancer therapy. Emerging evidences suggest that naturally occurring naphthoquinones exhibit potent anti-glioma effects via various mechanisms. The anti-glioma effects of plumbagin were evaluated by in vitro and in vivo experiments. Anti-glioma mechanism of plumbagin was studied by proteomics, flow cytometry, MDA assay, western blot, and RT-PCR. Gene knockdown/overexpression, molecular docking, PharmMappper database, and coimmunoprecipitation were used to study the targets of plumbagin. Plumbagin showed higher blood–brain barrier penetration ability than that of lapachol and shikonin and elicited significant growth inhibitory effects in vitro and in vivo. Ferroptosis was the main mechanism of plumbagin-induced cell death. Mechanistically, plumbagin significantly downregulated the protein and mRNA levels of xCT and decreased GPX4 protein levels. NAD(P)H quinone dehydrogenase 1 (NQO1) was revealed as a plumbagin predictive target using PharmMappper database and molecular docking. Plumbagin enhanced NQO1 activity and decreased xCT expression, resulting in NQO1-dependent cell death. It also induced GPX4 degradation via the lysosome pathway and caused GPX4-dependent cell death. Plumbagin inhibited in vitro and in vivo glioma growth via targeting NQO1/GPX4-mediated ferroptosis, which might be developed as a novel ferroptosis inducer or anti-glioma candidate.

Journal ArticleDOI
TL;DR: In this paper , a review describes CTC biology, molecular heterogeneity within CTCs and the involvement of EMT in CTC dynamics, and describes the single-cell multi-omics technologies that have provided insights into the molecular features within therapy resistant and metastasis-prone CTC populations.
Abstract: Over the past decade, cancer diagnosis has expanded to include liquid biopsies in addition to tissue biopsies. Liquid biopsies can result in earlier and more accurate diagnosis and more effective monitoring of disease progression than tissue biopsies as samples can be collected frequently. Because of these advantages, liquid biopsies are now used extensively in clinical care. Liquid biopsy samples are analysed for circulating tumour cells (CTCs), cell-free DNA, RNA, proteins and exosomes. CTCs originate from the tumour, play crucial roles in metastasis and carry information on tumour heterogeneity. Multiple single-cell omics approaches allow the characterisation of the molecular makeup of CTCs. It has become evident that CTCs are robust biomarkers for predicting therapy response, clinical development of metastasis and disease progression. This review describes CTC biology, molecular heterogeneity within CTCs and the involvement of EMT in CTC dynamics. In addition, we describe the single-cell multi-omics technologies that have provided insights into the molecular features within therapy-resistant and metastasis-prone CTC populations. Functional studies coupled with integrated multi-omics analyses have the potential to identify therapies that can intervene the functions of CTCs.

Journal ArticleDOI
TL;DR: In this paper , the prognostic impact of the molecular classification, age, stage, and adjuvant CTRT in a large cohort of high-risk endometrial cancer (EC) was confirmed.
Abstract: Risk-assessment of endometrial cancer (EC) is based on clinicopathological factors and molecular subgroup. It is unclear whether adding hormone receptor expression, L1CAM expression or CTNNB1 status yields prognostic refinement.Paraffin-embedded tumour samples of women with high-risk EC (HR-EC) from the PORTEC-3 trial (n = 424), and a Dutch prospective clinical cohort called MST (n = 256), were used. All cases were molecularly classified. Expression of L1CAM, ER and PR were analysed by whole-slide immunohistochemistry and CTNNB1 mutations were assessed with a next-generation sequencing. Kaplan-Meier method, log-rank tests and Cox's proportional hazard models were used for survival analysis.In total, 648 HR-EC were included. No independent prognostic value of ER, PR, L1CAM, and CTNNB1 was found, while age, stage, and adjuvant chemotherapy had an independent impact on risk of recurrence. Subgroup-analysis showed that only in NSMP HR-EC, ER-positivity was independently associated with a reduced risk of recurrence (HR 0.33, 95%CI 0.15-0.75).We confirmed the prognostic impact of the molecular classification, age, stage, and adjuvant CTRT in a large cohort of high-risk EC. ER-positivity is a strong favourable prognostic factor in NSMP HR-EC and identifies a homogeneous subgroup of NSMP tumours. Assessment of ER status in high-risk NSMP EC is feasible in clinical practice and could improve risk stratification and treatment.

Journal ArticleDOI
TL;DR: In this article , the authors identified the mechanism(s) underlying colorectal metastases (PM) resistance to oxaliplatin and developed strategies to overcome such resistance and developed a biobank consisting of 35 primary tumour regions and 59 paired PM from 12 patients.
Abstract: Peritoneal metastases (PM) in colorectal cancer (CRC) are associated with therapy resistance and poor survival. Oxaliplatin monotherapy is widely applied in the intraperitoneal treatment of PM, but fails to yield clinical benefit. We aimed to identify the mechanism(s) underlying PM resistance to oxaliplatin and to develop strategies overcoming such resistance.We generated a biobank consisting of 35 primary tumour regions and 59 paired PM from 12 patients. All samples were analysed by RNA sequencing. We also generated a series of PM-derived organoid (PMDO) cultures and used these to design and test strategies to overcome resistance to oxaliplatin.PM displayed various hallmarks of aggressive CRC biology. The vast majority of PM and paired primary tumours belonged to the Consensus Molecular Subtype 4 (CMS4). PMDO cultures were resistant to oxaliplatin and expressed high levels of glutamate-cysteine ligase (GCLC) causing detoxification of oxaliplatin through glutathione synthesis. Genetic or pharmacological targeting of GCLC sensitised PMDOs to a 1-h exposure to oxaliplatin, through increased platinum-DNA adduct formation.These results link oxaliplatin resistance of colorectal PM to their CMS4 status and high reducing capacity. Inhibiting the reducing capacity of PM may be an effective strategy to overcome PM resistance to oxaliplatin.

Journal ArticleDOI
TL;DR: The role of Artificial Intelligence and Machine Learning (ML) in cancer research offers several advantages, primarily scaling up the information processing and increasing the accuracy of the clinical decision-making as mentioned in this paper .
Abstract: The role of Artificial Intelligence and Machine Learning in cancer research offers several advantages, primarily scaling up the information processing and increasing the accuracy of the clinical decision-making. The key enabling tools currently in use in Precision, Digital and Translational Medicine, here named as ‘Intelligent Systems’ (IS), leverage unprecedented data volumes and aim to model their underlying heterogeneous influences and variables correlated with patients’ outcomes. As functionality and performance of IS are associated with complex diagnosis and therapy decisions, a rich spectrum of patterns and features detected in high-dimensional data may be critical for inference purposes. Many challenges are also present in such discovery task. First, the generation of interpretable model results from a mix of structured and unstructured input information. Second, the design, and implementation of automated clinical decision processes for drawing disease trajectories and patient profiles. Ultimately, the clinical impacts depend on the data effectively subjected to steps such as harmonisation, integration, validation, etc. The aim of this work is to discuss the transformative value of IS applied to multimodal data acquired through various interrelated cancer domains (high-throughput genomics, experimental biology, medical image processing, radiomics, patient electronic records, etc.).

Journal ArticleDOI
TL;DR: In this paper , the authors reported the molecular aberrations from the largest cohort of patients with mesothelioma and suggested that molecular profiling can identify new treatment options for patients.
Abstract: Abstract Background Malignant pleural and peritoneal mesotheliomas are rare malignancies with unacceptable poor prognoses and limited treatment options. The genomic landscape is mainly characterised by the loss of tumour suppressor genes and mutations in DNA repair genes. Currently, data from next-generation sequencing (NGS) of mesothelioma tumours is restricted to a limited number of cases; moreover, data comparing molecular features of mesothelioma from the pleural and peritoneal origin with NGS are lacking. Methods We analysed 1113 pleural mesothelioma and 355 peritoneal mesothelioma samples. All tumours were sequenced with the FoundationOne® or FoundationOne®CDx assay for detection of substitutions, insertion–deletions, copy-number alterations and selected rearrangements in at least 324 cancer genes. Results This analysis revealed alterations in 19 genes with an overall prevalence of at least 2%. Alterations in BAP1, CDKN2A, CDKN2B, NF2, MTAP, TP53 and SETD2 occurred with a prevalence of at least 10%. Peritoneal, compared to pleural mesothelioma, was characterised by a lower prevalence of alterations in CDKN2A, CDKN2B and MTAP . Moreover, we could define four distinct subgroups according to alterations in BAP1 and CDKN2A/B . Alterations in Hedgehog pathway-related genes ( PTCH1/2 and SUFU ) and Hippo pathway-related gene ( NF2) as well as KRAS, EGFR, PDGFRA/B, ERBB2 and FGFR3 were detected in both cohorts. Conclusion Here, we report the molecular aberrations from the largest cohort of patients with mesothelioma. This analysis identified a proportion of patients with targetable alterations and suggests that molecular profiling can identify new treatment options for patients with mesothelioma.

Journal ArticleDOI
TL;DR: In this paper , the authors performed the largest comprehensive, multi-center study to date involving diverse ethnic groups, for the identification of circulating miRNAs for breast cancer screening, and two-fold cross-validation was used for building and optimising breast cancer-associated miRNA panels.
Abstract: Abstract Background Mammography is widely used for breast cancer screening but suffers from a high false-positive rate. Here, we perform the largest comprehensive, multi-center study to date involving diverse ethnic groups, for the identification of circulating miRNAs for breast cancer screening. Methods This study had a discovery phase ( n = 289) and two validation phases ( n = 374 and n = 379). Quantitative PCR profiling of 324 miRNAs was performed on serum samples from breast cancer (all stages) and healthy subjects to identify miRNA biomarkers. Two-fold cross-validation was used for building and optimising breast cancer-associated miRNA panels. An optimal panel was validated in cohorts with Caucasian and Asian samples. Diagnostic ability was evaluated using area under the curve (AUC) analysis. Results The study identified and validated 30 miRNAs dysregulated in breast cancer. An optimised eight-miRNA panel showed consistent performance in all cohorts and was successfully validated with AUC, accuracy, sensitivity, and specificity of 0.915, 82.3%, 72.2% and 91.5%, respectively. The prediction model detected breast cancer in both Caucasian and Asian populations with AUCs ranging from 0.880 to 0.973, including pre-malignant lesions (stage 0; AUC of 0.831) and early-stage (stages I–II) cancers (AUC of 0.916). Conclusions Our panel can potentially be used for breast cancer screening, in conjunction with mammography.

Journal ArticleDOI
TL;DR: In the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, this paper measured serum levels of 92 preselected proteins for 91 women who had blood sampled ≤18 months prior to ovarian cancer diagnosis, and 182 matched controls and evaluated the discriminatory performance of the proteins as potential early diagnostic biomarkers of ovarian cancer.
Abstract: CA125 is the best available yet insufficiently sensitive biomarker for early detection of ovarian cancer. There is a need to identify novel biomarkers, which individually or in combination with CA125 can achieve adequate sensitivity and specificity for the detection of earlier-stage ovarian cancer.In the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, we measured serum levels of 92 preselected proteins for 91 women who had blood sampled ≤18 months prior to ovarian cancer diagnosis, and 182 matched controls. We evaluated the discriminatory performance of the proteins as potential early diagnostic biomarkers of ovarian cancer.Nine of the 92 markers; CA125, HE4, FOLR1, KLK11, WISP1, MDK, CXCL13, MSLN and ADAM8 showed an area under the ROC curve (AUC) of ≥0.70 for discriminating between women diagnosed with ovarian cancer and women who remained cancer-free. All, except ADAM8, had shown at least equal discrimination in previous case-control comparisons. The discrimination of the biomarkers, however, was low for the lag-time of >9-18 months and paired combinations of CA125 with any of the 8 markers did not improve discrimination compared to CA125 alone.Using pre-diagnostic serum samples, this study identified markers with good discrimination for the lag-time of 0-9 months. However, the discrimination was low in blood samples collected more than 9 months prior to diagnosis, and none of the markers showed major improvement in discrimination when added to CA125.

Journal ArticleDOI
TL;DR: Plumbagin showed higher blood-brain barrier penetration ability than that of lapachol and shikonin and elicited significant growth inhibitory effects in vitro and in vivo as discussed by the authors .
Abstract: Ferroptosis has attracted increasing interest in cancer therapy. Emerging evidences suggest that naturally occurring naphthoquinones exhibit potent anti-glioma effects via various mechanisms. The anti-glioma effects of plumbagin were evaluated by in vitro and in vivo experiments. Anti-glioma mechanism of plumbagin was studied by proteomics, flow cytometry, MDA assay, western blot, and RT-PCR. Gene knockdown/overexpression, molecular docking, PharmMappper database, and coimmunoprecipitation were used to study the targets of plumbagin. Plumbagin showed higher blood–brain barrier penetration ability than that of lapachol and shikonin and elicited significant growth inhibitory effects in vitro and in vivo. Ferroptosis was the main mechanism of plumbagin-induced cell death. Mechanistically, plumbagin significantly downregulated the protein and mRNA levels of xCT and decreased GPX4 protein levels. NAD(P)H quinone dehydrogenase 1 (NQO1) was revealed as a plumbagin predictive target using PharmMappper database and molecular docking. Plumbagin enhanced NQO1 activity and decreased xCT expression, resulting in NQO1-dependent cell death. It also induced GPX4 degradation via the lysosome pathway and caused GPX4-dependent cell death. Plumbagin inhibited in vitro and in vivo glioma growth via targeting NQO1/GPX4-mediated ferroptosis, which might be developed as a novel ferroptosis inducer or anti-glioma candidate.

Journal ArticleDOI
TL;DR: In this paper , the authors assessed the prognostic significance of tumour-infiltrating lymphocytes (TILs) in oropharyngeal squamous cell carcinoma (OPSCC).
Abstract: Abstract Background The evaluation of immune response can aid in prediction of cancer behaviour. Here, we assessed the prognostic significance of tumour-infiltrating lymphocytes (TILs) in oropharyngeal squamous cell carcinoma (OPSCC). Methods A total of 182 patients treated for OPSCC were included in this study. Assessment of TILs was conducted on tumour sections stained with standard haematoxylin and eosin (HE) staining. We used the scoring criteria proposed by the International Immuno-Oncology Biomarker Working Group. Results The multivariable analysis showed that TILs associated with disease-specific survival with a hazard ratio (HR) of 2.13 (95% CI 1.14–3.96; P = 0.017). Similarly, TILs associated significantly with overall survival with HR of 1.87 (95% CI 1.11–3.13; P = 0.018). In a sub-analysis of HPV-positive and HPV-negative cases separately, TILs showed a significant prognostic value in both groups ( P < 0.05). Conclusion The evaluation of TILs as proposed by the International Immuno-Oncology Biomarker Working Group is a simple and promising method in prediction of survival of OPSCC. It is easily applicable and after further validation can be implemented in the routine pathological report as a basic immune parameter.

Journal ArticleDOI
TL;DR: In this article , the authors used multivariate Cox regression analysis and meta-analyses to identify prognostic genes for high grade serous ovarian cancer (HGSOC) and found that tumour immunogenicity was the most prominent factor associated with improved clinical outcomes and response to chemotherapy of HGSOC.
Abstract: Immunotherapy has revolutionised the field of cancer therapy and immunology, but has demonstrated limited therapeutic efficacy in high-grade serous ovarian cancer (HGSOC).Multi-omics data of 495 TCGA HGSOC tumours and RNA-seq data of 1708 HGSOC tumours were analyzed. Multivariate Cox regression analysis and meta-analyses were used to identify prognostic genes. The immune microenvironment was characterised using the ssGSEA methods for 28 immune cell types. Immunohistochemistry staining of tumour tissues of 14 patients was used to validate the key findings further.A total of 1142 genes were identified as favourable prognostic genes, which are prevailing in immune-related pathways and the infiltration of most immune subpopulations was observed to be associated with a favourable prognosis suggesting that tumour immunogenicity was the most prominent factor associated with improved clinical outcomes and response to chemotherapy of HGSOC. We identified multiple genomic and transcriptomic determinants of immunogenicity, including the copy loss of chromosome 4q and deficiencies of the homologous recombination pathway. Finally, an immunological subtype characterised by increased infiltration of activated CD8 T cells and decreased Tregs was associated with favourable prognosis and improved therapeutic efficacy.Our study characterised the immunogenomic landscape and refined the immunological classifications of HGSOC. This may improve the selection of patients with HGSOC who are suitable candidates for immunotherapy.

Journal ArticleDOI
TL;DR: NAXIVA as mentioned in this paper was a single-arm, multi-centre, Phase 2 study that assessed the response of venous tumor thrombus (VTT) to axitinib, a potent tyrosine kinase inhibitor.
Abstract: Surgery for renal cell carcinoma (RCC) with venous tumour thrombus (VTT) extension into the renal vein (RV) and/or inferior vena cava (IVC) has high peri-surgical morbidity/mortality. NAXIVA assessed the response of VTT to axitinib, a potent tyrosine kinase inhibitor.NAXIVA was a single-arm, multi-centre, Phase 2 study. In total, 20 patients with resectable clear cell RCC and VTT received upto 8 weeks of pre-surgical axitinib. The primary endpoint was percentage of evaluable patients with VTT improvement by Mayo level on MRI. Secondary endpoints were percentage change in surgical approach and VTT length, response rate (RECISTv1.1) and surgical morbidity.In all, 35% (7/20) patients with VTT had a reduction in Mayo level with axitinib: 37.5% (6/16) with IVC VTT and 25% (1/4) with RV-only VTT. No patients had an increase in Mayo level. In total, 75% (15/20) of patients had a reduction in VTT length. Overall, 41.2% (7/17) of patients who underwent surgery had less invasive surgery than originally planned. Non-responders exhibited lower baseline microvessel density (CD31), higher Ki67 and exhausted or regulatory T-cell phenotype.NAXIVA provides the first Level II evidence that axitinib downstages VTT in a significant proportion of patients leading to reduction in the extent of surgery.NCT03494816.