scispace - formally typeset
Search or ask a question

Showing papers in "Chemical Reviews in 2008"


Journal ArticleDOI
TL;DR: Practical Interests of Magnetic NuclearRelaxation for the Characterization of Superparamagnetic Colloid, and Use of Nanoparticles as Contrast Agents forMRI20825.
Abstract: 1. Introduction 20642. Synthesis of Magnetic Nanoparticles 20662.1. Classical Synthesis by Coprecipitation 20662.2. Reactions in Constrained Environments 20682.3. Hydrothermal and High-TemperatureReactions20692.4. Sol-Gel Reactions 20702.5. Polyol Methods 20712.6. Flow Injection Syntheses 20712.7. Electrochemical Methods 20712.8. Aerosol/Vapor Methods 20712.9. Sonolysis 20723. Stabilization of Magnetic Particles 20723.1. Monomeric Stabilizers 20723.1.1. Carboxylates 20733.1.2. Phosphates 20733.2. Inorganic Materials 20733.2.1. Silica 20733.2.2. Gold 20743.3. Polymer Stabilizers 20743.3.1. Dextran 20743.3.2. Polyethylene Glycol (PEG) 20753.3.3. Polyvinyl Alcohol (PVA) 20753.3.4. Alginate 20753.3.5. Chitosan 20753.3.6. Other Polymers 20753.4. Other Strategies for Stabilization 20764. Methods of Vectorization of the Particles 20765. Structural and Physicochemical Characterization 20785.1. Size, Polydispersity, Shape, and SurfaceCharacterization20795.2. Structure of Ferro- or FerrimagneticNanoparticles20805.2.1. Ferro- and Ferrimagnetic Nanoparticles 20805.3. Use of Nanoparticles as Contrast Agents forMRI20825.3.1. High Anisotropy Model 20845.3.2. Small Crystal and Low Anisotropy EnergyLimit20855.3.3. Practical Interests of Magnetic NuclearRelaxation for the Characterization ofSuperparamagnetic Colloid20855.3.4. Relaxation of Agglomerated Systems 20856. Applications 20866.1. MRI: Cellular Labeling, Molecular Imaging(Inflammation, Apoptose, etc.)20866.2.

5,915 citations


Journal ArticleDOI
TL;DR: The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier.
Abstract: The Huisgen 1,3-dipolar cycloaddition reaction of organic azides and alkynes has gained considerable attention in recent years due to the introduction in 2001 of Cu(1) catalysis by Tornoe and Meldal, leading to a major improvement in both rate and regioselectivity of the reaction, as realized independently by the Meldal and the Sharpless laboratories. The great success of the Cu(1) catalyzed reaction is rooted in the fact that it is a virtually quantitative, very robust, insensitive, general, and orthogonal ligation reaction, suitable for even biomolecular ligation and in vivo tagging or as a polymerization reaction for synthesis of long linear polymers. The triazole formed is essentially chemically inert to reactive conditions, e.g. oxidation, reduction, and hydrolysis, and has an intermediate polarity with a dipolar moment of ∼5 D. The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier. In order to understand the reaction in detail, it therefore seems important to spend a moment to consider the structural and mechanistic aspects of the catalysis. The reaction is quite insensitive to reaction conditions as long as Cu(1) is present and may be performed in an aqueous or organic environment both in solution and on solid support.

3,855 citations


Journal ArticleDOI
TL;DR: This work presents a meta-analysis of the literature on food quality and safety analysis and its applications in the context of veterinary drugs and drugs and drug-Induced Antibodies, which focuses on the role of canine coronavirus in the veterinary industry.
Abstract: 5.1. Detection Formats 475 5.2. Food Quality and Safety Analysis 477 5.2.1. Pathogens 477 5.2.2. Toxins 479 5.2.3. Veterinary Drugs 479 5.2.4. Vitamins 480 5.2.5. Hormones 480 5.2.6. Diagnostic Antibodies 480 5.2.7. Allergens 481 5.2.8. Proteins 481 5.2.9. Chemical Contaminants 481 5.3. Medical Diagnostics 481 5.3.1. Cancer Markers 481 5.3.2. Antibodies against Viral Pathogens 482 5.3.3. Drugs and Drug-Induced Antibodies 483 5.3.4. Hormones 483 5.3.5. Allergy Markers 483 5.3.6. Heart Attack Markers 484 5.3.7. Other Molecular Biomarkers 484 5.4. Environmental Monitoring 484 5.4.1. Pesticides 484 5.4.2. 2,4,6-Trinitrotoluene (TNT) 485 5.4.3. Aromatic Hydrocarbons 485 5.4.4. Heavy Metals 485 5.4.5. Phenols 485 5.4.6. Polychlorinated Biphenyls 487 5.4.7. Dioxins 487 5.5. Summary 488 6. Conclusions 489 7. Abbreviations 489 8. Acknowledgment 489 9. References 489

3,698 citations


Journal ArticleDOI
TL;DR: Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.5.2.
Abstract: 5.1. Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.1. Cu−Ag 866 5.1.2. Cu−Au 867 5.1.3. Ag−Au 870 5.1.4. Cu−Ag−Au 872 5.2. Nanoalloys of Group 10 (Ni, Pd, Pt) 872 5.2.1. Ni−Pd 872 * To whom correspondence should be addressed. Phone: +39010 3536214. Fax:+39010 311066. E-mail: ferrando@fisica.unige.it. † Universita di Genova. ‡ Argonne National Laboratory. § University of Birmingham. | As of October 1, 2007, Chemical Sciences and Engineering Division. Volume 108, Number 3

3,114 citations


Journal ArticleDOI
TL;DR: The major factors that play a role in the development of clinically accurate in-vivo glucose sensors include issues related to biocompatibility, miniaturization, long-term stability of the enzyme and transducer, oxygen deficit, short stabilization times, in- vivo calibration, baseline drift, safety, and convenience.
Abstract: First-generation glucose biosensors relied on the use of the natural oxygen cosubstrate and the production and detection of hydrogen peroxide and were much simpler, especially when miniaturized sensors are concerned. More sophisticated bioelectronic systems for enhancing the electrical response, based on patterned monolayer or multilayer assemblies and organized enzyme networks on solid electrodes, have been developed for contacting GOx with the electrode support. Electrochemical biosensors are well suited for satisfying the needs of personal (home) glucose testing, and the majority of personal blood glucose meters are based on disposable (screen-printed) enzyme electrode test strips, which are mass produced by the thick film (screen-printing) microfabrication technology. In the counter and an additional “baseline” working electrode, various membranes (mesh) are incorporated into the test strips along with surfactants, to provide a uniform sample coverage. Such devices offer considerable promise for obtaining the desired clinical information in a simpler, user-friendly, faster, and cheaper manner compared to traditional assays. Continuous ex-vivo monitoring of blood glucose was proposed in 1974 and the majority of glucose sensors used for in-vivo applications are based on the GOx-catalyzed oxidation of glucose by oxygen. The major factors that play a role in the development of clinically accurate in-vivo glucose sensors include issues related to biocompatibility, miniaturization, long-term stability of the enzyme and transducer, oxygen deficit, short stabilization times, in-vivo calibration, baseline drift, safety, and convenience.

2,924 citations


Journal ArticleDOI
TL;DR: This work has shown that coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface can be associated with surface plasmons, which have potential applications in miniaturized optical devices, sensors, and photonic circuits.
Abstract: Surface plasmons (SPs) are coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface. The growing field of research on such light -metal interactions is known as ‘plasmonics’. 1-3 This branch of research has attracted much attention due to its potential applications in miniaturized optical devices, sensors, and photonic circuits as well as in medical diagnostics and therapeutics. 4-8

2,284 citations


Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the physical and chemical properties of Boron-Doped Diamond for Electrochemistry as well as a mechanistic analysis of the properties of the diamond itself and some of its applications.
Abstract: 3.6.1. Polishing and Cleaning 2663 3.6.2. Vacuum and Heat Treatments 2664 3.6.3. Carbon Electrode Activation 2665 3.7. Summary and Generalizations 2666 4. Advanced Carbon Electrode Materials 2666 4.1. Microfabricated Carbon Thin Films 2666 4.2. Boron-Doped Diamond for Electrochemistry 2668 4.3. Fibers and Nanotubes 2669 4.4. Carbon Composite Electrodes 2674 5. Carbon Surface Modification 2675 5.1. Diazonium Ion Reduction 2675 5.2. Thermal and Photochemical Modifications 2679 5.3. Amine and Carboxylate Oxidation 2680 5.4. Modification by “Click” Chemistry 2681 6. Synopsis and Outlook 2681 7. Acknowledgments 2682 8. References 2682

2,240 citations


Journal ArticleDOI
TL;DR: The Hg(II) Detector simplifies the experimental setup by enabling a single amplifier to be switched between the Oligonucleotide-Based and DNAzyme-Based detectors.
Abstract: 9.2. Protein-Based Hg(II) Detectors 3467 9.3. Oligonucleotide-Based Hg(II) Detector 3467 9.4. DNAzyme-Based Hg(II) Detectors 3469 9.5. Antibody-Based Hg(II) Detector 3469 10. Mercury Detectors Based on Materials 3469 10.1. Soluble and Fluorescent Polymers 3469 10.2. Membranes, Films, and Fibers 3471 10.3. Micelles 3473 10.4. Nanoparticles 3473 11. Perspectives 3474 12. Addendum 3475 12.1. Small Molecules 3475 12.2. Biomolecules 3477 12.3. Materials 3477 13. List of Abbreviations 3477 14. Acknowledgments 3478 15. References 3478

2,139 citations



Journal ArticleDOI
TL;DR: Characterization and Properties 3928 8.2.1.
Abstract: 5. In Situ Polymerization 3907 5.1. General Polymerization 3907 5.2. Photopolymerization 3910 5.3. Surface-Initiated Polymerization 3912 5.4. Other Methods 3913 6. Colloidal Nanocomposites 3913 6.1. Sol-Gel Process 3914 6.2. In Situ Polymerization 3916 6.2.1. Emulsion Polymerization 3917 6.2.2. Emulsifier-Free Emulsion Polymerization 3919 6.2.3. Miniemulsion Polymerization 3920 6.2.4. Dispersion Polymerization 3921 6.2.5. Other Polymerization Methods 3923 6.2.6. Conducting Nanocomposites 3924 6.3. Self Assembly 3926 7. Other Preparative Methods 3926 8. Characterization and Properties 3928 8.1. Chemical Structure 3928 8.2. Microstructure and Morphology 3929 8.3. Mechanical Properties 3933 8.3.1. Tensile, Impact, and Flexural Properties 3933 8.3.2. Hardness 3936 8.3.3. Fracture Toughness 3937 8.3.4. Friction and Wear Properties 3937 8.4. Thermal Properties 3938 8.5. Flame-Retardant Properties 3941 8.6. Optical Properties 3942 8.7. Gas Transport Properties 3943 8.8. Rheological Properties 3945 8.9. Electrical Properties 3945 8.10. Other Characterization Techniques 3946 9. Applications 3947 9.1. Coatings 3947 9.2. Proton Exchange Membranes 3948 9.3. Pervaporation Membranes 3948 9.4. Encapsulation of Organic Light-Emitting Devices 3948

1,915 citations


Journal ArticleDOI
TL;DR: Nonlinear Optical Characterizations of Multiphoton Active Materials 1282 5.2.1.
Abstract: 4. Survey of Novel Multiphoton Active Materials 1257 4.1. Multiphoton Absorbing Systems 1257 4.2. Organic Molecules 1257 4.3. Organic Liquids and Liquid Crystals 1259 4.4. Conjugated Polymers 1259 4.4.1. Polydiacetylenes 1261 4.4.2. Polyphenylenevinylenes (PPVs) 1261 4.4.3. Polythiophenes 1263 4.4.4. Other Conjugated Polymers 1265 4.4.5. Dendrimers 1265 4.4.6. Hyperbranched Polymers 1267 4.5. Fullerenes 1267 4.6. Coordination and Organometallic Compounds 1271 4.6.1. Metal Dithiolenes 1271 4.6.2. Pyridine-Based Multidentate Ligands 1272 4.6.3. Other Transition-Metal Complexes 1273 4.6.4. Lanthanide Complexes 1275 4.6.5. Ferrocene Derivatives 1275 4.6.6. Alkynylruthenium Complexes 1279 4.6.7. Platinum Acetylides 1279 4.7. Porphyrins and Metallophophyrins 1279 4.8. Nanoparticles 1281 4.9. Biomolecules and Derivatives 1282 5. Nonlinear Optical Characterizations of Multiphoton Active Materials 1282

Journal ArticleDOI
TL;DR: The brain is a singular organ of unique biological complexity that serves as the command center for cognitive and motor function and has requirements for the highest concentrations of metal ions in the body and the highest per-weight consumption of body oxygen.
Abstract: The brain is a singular organ of unique biological complexity that serves as the command center for cognitive and motor function. As such, this specialized system also possesses a unique chemical composition and reactivity at the molecular level. In this regard, two vital distinguishing features of the brain are its requirements for the highest concentrations of metal ions in the body and the highest per-weight consumption of body oxygen. In humans, the brain accounts for only 2% of total body mass but consumes 20% of the oxygen that is taken in through respiration. As a consequence of high oxygen demand and cell complexity, distinctly high metal levels pervade all regions of the brain and central nervous system. Structural roles for metal ions in the brain and the body include the stabilization of biomolecules in static (e.g., Mg2+ for nucleic acid folds, Zn2+ in zinc-finger transcription factors) or dynamic (e.g., Na+ and K+ in ion channels, Ca2+ in neuronal cell signaling) modes, and catalytic roles for brain metal ions are also numerous and often of special demand.

Journal ArticleDOI
TL;DR: The recent confirmation that there is at least one world rich in organic molecules on which rivers and perhaps shallow seas or bogs are filled with nonaqueous fluidsthe liquid hydrocarbons of Titan now bring some focus, even urgency, to the question of whether water is indeed a matrix of life.
Abstract: When Szent-Gyorgyi called water the “matrix of life”,1 he was echoing an old sentiment. Paracelsus in the 16th century said that “water was the matrix of the world and of all its creatures.”2 But Paracelsus’s notion of a matrixsan active substance imbued with fecund, life-giving propertiess was quite different from the picture that, until very recently, molecular biologists have tended to hold of water’s role in the chemistry of life. Although acknowledging that liquid water has some unusual and important physical and chemical propertiessits potency as a solvent, its ability to form hydrogen bonds, its amphoteric naturesbiologists have regarded it essentially as the backdrop on which life’s molecular components are arrayed. It used to be common practice, for example, to perform computer simulations of biomolecules in a vacuum. Partly this was because the computational intensity of simulating a polypeptide chain was challenging even without accounting for solvent molecules too, but it also reflected the prevailing notion that water does little more than temper or moderate the basic physicochemical interactions responsible for molecular biology. What Gerstein and Levitt said 9 years ago remains true today: “When scientists publish models of biological molecules in journals, they usually draw their models in bright colors and place them against a plain, black background”.3 Curiously, this neglect of water as an active component of the cell went hand in hand with the assumption that life could not exist without it. That was basically an empirical conclusion derived from our experience of life on Earth: environments without liquid water cannot sustain life, and special strategies are needed to cope with situations in which, because of extremes of either heat or cold, the liquid is scarce.4-6 The recent confirmation that there is at least one world rich in organic molecules on which rivers and perhaps shallow seas or bogs are filled with nonaqueous fluidsthe liquid hydrocarbons of Titan7smight now bring some focus, even urgency, to the question of whether water is indeed a * E-mail: p.ball@nature.com. Philip Ball is a science writer and a consultant editor for Nature, where he worked as an editor for physical sciences for more than 10 years. He holds a Ph.D. in physics from the University of Bristol, where he worked on the statistical mechanics of phase transitions in the liquid state. His book H2O: A Biography of Water (Weidenfeld & Nicolson, 1999) was a survey of the current state of knowledge about the behavior of water in situations ranging from planetary geomorphology to cell biology. He frequently writes about aspects of water science for both the popular and the technical media.

Journal ArticleDOI
TL;DR: Using R-Hydroxy Stannanes as a Model for a Methylenation Reaction and Conclusions and Future Prospects are presented.
Abstract: 6.4. Polyynes 3123 6.5. Using R-Hydroxy Stannanes 3124 6.6. Using the Hurtley Reaction 3124 6.7. Using a Methylenation Reaction 3125 7. Conclusions and Future Prospects 3125 8. Uncommon Abbreviations 3125 9. Acknowledgments 3125 10. Note Added in Proof 3125 11. References 3126 * Authorstowhomcorrespondenceshouldbeaddressed(evano@chimie.uvsq.fr, nicolas.blanchard@uha.fr). † Université de Versailles Saint Quentin en Yvelines. ‡ Université de Haute-Alsace. Chem. Rev. 2008, 108, 3054–3131 3054

Journal ArticleDOI
TL;DR: The ways in which selectivity can be controlled in homogeneous Au catalysis are enumerated, in the hope that lessons to guide catalyst selection and the design of new catalysts may be distilled from a thorough evaluation of ligand, counterion, and oxidation state effects as they influence chemo-, regio-, and stereoselectivity in homogeneity AuCatalysis.
Abstract: 1.1. Context and Meta-Review Despite the ubiquity of metallic gold (Au) in popular culture, its deployment in homogeneous catalysis has only recently undergone widespread investigation. In the past decade, and especially since 2004, great progress has been made in developing efficient and selective Au-catalyzed transformations, as evidenced by the prodigious number of reviews available on various aspects of this growing field. Hashmi has written a series of comprehensive reviews outlining the progression of Au-catalyzed reaction development,1 and a number of more focused reviews provide further insight into particular aspects of Au catalysis. A brief meta-review of the available range of perspectives published on Au catalysis helps to put this Chemical Reviews article in context. The vast majority of reactions developed with homogeneous Au catalysts have exploited the propensity of Au to activate carbon-carbon π-bonds as electrophiles. Gold has come to be regarded as an exceedingly mild, relatively carbophilic Lewis acid, and the broad array of newly developed reactions proceeding by activation of unsaturated carbon-carbon bonds has been expertly reviewed.2 Further reviews and highlights on Au catalysis focus on particular classes of synthetic reactions. An excellent comprehensive review of Au-catalyzed enyne cycloisomerizations is available.3 Even more focused highlights on hydroarylation of alkynes,4 hydroamination of C-C multiple bonds,5 and reactions of oxo-alkynes6 and propargylic esters7 provide valuable perspectives on progress and future directions in the development of homogeneous Au catalysis. Most of the reviews on Au catalysis emphasize broad or specific advances in synthetic utility. Recently, we have invoked relativistic effects to provide a framework for understanding the observed reactivity of Au catalysts, in order to complement empirical advancements.8 In this Chemical Reviews article, we attempt to enumerate the ways in which selectivity can be controlled in homogeneous Au catalysis. It is our hope that lessons to guide catalyst selection and the design of new catalysts may be distilled from a thorough evaluation of ligand, counterion, and oxidation state effects as they influence chemo-, regio-, and stereoselectivity in homogeneous Au catalysis.

Journal ArticleDOI
TL;DR: The proposed involvement of cyclopropyl metal carbenes of type 4 in the electrophilic activation of enynes by transition metals was first substantiated in reactions catalyzed by Pd(II), in which the initially formed cycloprostyl palladiumCarbenes undergo [4 + 2] cycloaddition with the double bond of the conjugate enyne.
Abstract: Gold salts and complexes have emerged in the past few years as the most powerful catalysts for electrophilic activation of alkynes toward a variety of nucleophiles under homogeneous conditions. In a simplified form, nucleophilic attack on the [AuL]-activated alkyne proceeds via π complexes 1 to give trans-alkenyl gold complexes of type 2 as intermediates (Scheme 1). This type of coordination is also a common theme in gold-catalyzed cycloisomerizations of enynes, in which the alkene function acts as the nucleophile. In the reaction of enynes with complexes of other transition metals, an Alder-ene cycloisomerization can take place by simultaneous coordination of the alkyne and the alkene to the metal followed by an oxidative cyclometalation. In contrast, this process does not occur for gold(I) since oxidative addition processes are not facile for this metal. 6 In addition, the [AuL] fragment, which is isolobal to H and HgL, adopts a linear coordination and binds to either the alkene or the alkyne. Thus, cycloisomerizations of enynes catalyzed by gold proceed by an initial coordination of the metal to the alkyne, and as illustrated in Scheme 2, the resulting complex 3 reacts with the alkene by either the 5-exo-dig or 6-endo-dig pathway to form the exoor endocyclopropyl gold carbene 4 or 5, respectively, as has been established with other electrophilic transition-metal complexes or halides MXn as catalysts. The proposed involvement of cyclopropyl metal carbenes of type 4 in the electrophilic activation of enynes by transition metals was first substantiated in reactions catalyzed by Pd(II), in which the initially formed cyclopropyl palladium carbenes undergo [4 + 2] cycloaddition with the double bond of the conjugate enyne. Strong evidence for the existence of cyclopropyl metal carbenes as intermediates was also obtained in the reaction of enynes bearing additional double bonds at the alkenyl chain with Ru(II) and Pt(II) catalysts. In these reactions, the cyclopropyl metal carbenes are trapped intramolecularly by the terminal alkene to give tetracycles containing two cyclopropanes. Gold(I) complexes usually surpass the reactivity shown by Pt(II) and other electrophilic metal salts and complexes for the activation of enynes. They are highly reactive yet uniquely selective Lewis acids that have a high affinity for π bonds. This high π-acidity is linked to relativistic effects, which reach a maximum in the periodic table with gold. However, on occasion, the stronger Lewis acidity of gold complexes can be detrimental in terms of selectivity and because of their low tolerance to certain functional groups. In these instances, the less-strongly Lewis acidic Pt(II) complexes could be the catalysts of choice. * To whom correspondence should be addressed. E-mail: aechavarren@ iciq.es. † Additional affiliation: Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. Scheme 1 Chem. Rev. 2008, 108, 3326–3350 3326

Journal ArticleDOI
TL;DR: ECL has now become a very powerful analytical technique and been widely used in the areas of immunoassay, food and water testing, and biowarfare agent detection and has also been successfully exploited as a detector of flow injection analysis (FIA), high-performance liquid chromatography (HPLC), capillary electrophoresis, and micro total analysis (μTAS).
Abstract: Electrogenerated chemiluminescence (also called electrochemiluminescence and abbreviated ECL) is the process whereby species generated at electrodes undergo high-energy electron-transfer reactions to form excited states that emit light. The first detailed ECL studies were described by Hercules and Bard et al. in the mid-1960s, although reports concerning light emission during electrolysis date back to the 1920s by Harvey. After about 40 years study, ECL has now become a very powerful analytical technique and been widely used in the areas of, for example, immunoassay, food and water testing, and biowarfare agent detection. ECL has also been successfully exploited as a detector of flow injection analysis (FIA), high-performance liquid chromatography (HPLC), capillary electrophoresis, and micro total analysis (μTAS). Figure 1 illustrates a time line of various events in the development of ECL. A literature survey using SciFinder Scholar reveals that more than 2000 journal articles, book chapters, and patents on various topics of ECL have been published. The overall number of publications, as shown in Figure 2, has increased exponentially over the past 20 years, of which 40–50% were biorelated. Similar amounts of ECL papers could be also found from the Thomson ISI Web of Science as well as † Telephone (601) 266 4716; fax (601) 266 6075; e-mail wujian.miao@ usm.edu. Wujian Miao received his undergraduate diploma in chemistry from Nantong University (Nantong, China) in 1982, his M.Sc. degree in analytical chemistry from Zhongshan University (Guangzhou, China, with Jinyuan Mo) in 1991, and his Ph.D. degree in electrochemistry from Monash University (Melbourne, Australia, with Alan M. Bond) in 2000. He then served as a Research Scientist in CSIRO (Melbourne, Australia), followed by a postdoctoral fellowship at the University of Texas at Austin with Allen J. Bard in 2001. Since 2004 he has served as an assistant professor of chemistry at the University of Southern Mississippi.

Journal ArticleDOI
TL;DR: Thanks to gold-based catalysts, various organic transformations have been accessible under facile conditions with both high yields and chemoselectivity.
Abstract: Thanks to its unusual stability, metallic gold has been used for thousands of years in jewelry, currency, chinaware, and so forth. However, gold had not become the chemists’ “precious metal” until very recently. In the past few years, reports on gold-catalyzed organic transformations have increased substantially. Thanks to gold-based catalysts, various organic transformations have been accessible under facile conditions with both high yields and chemoselectivity.

Journal ArticleDOI
TL;DR: Hydroamination of Alkenes and Alkynes under Microwave Irradiation and Nitromercuration Reactions 3878 9.8.4.5.
Abstract: 8.4.5. Nitromercuration Reactions 3878 9. Hydroamination of Alkenes and Alkynes under Microwave Irradiation 3878 * To whom correspondence should be addressed. Phone: +49 241 8

Journal ArticleDOI
TL;DR: The present review summarizes the data that appeared in the literature following publication of previous reviews in 1996 and 2002 and is organized according to the classes of organic polyvalent iodine compounds with emphasis on their synthetic application.
Abstract: Starting from the early 1990’s, the chemistry of polyvalent iodine organic compounds has experienced an explosive development. This surging interest in iodine compounds is mainly due to the very useful oxidizing properties of polyvalent organic iodine reagents, combined with their benign environmental character and commercial availability. Iodine(III) and iodine(V) derivatives are now routinely used in organic synthesis as reagents for various selective oxidative transformations of complex organic molecules. Several areas of hypervalent organoiodine chemistry have recently attracted especially active interest and research activity. These areas, in particular, include the synthetic applications of 2-iodoxybenzoic acid (IBX) and similar oxidizing reagents based on the iodine(V) derivatives, the development and synthetic use of polymer-supported and recyclable polyvalent iodine reagents, the catalytic applications of organoiodine compounds, and structural studies of complexes and supramolecular assemblies of polyvalent iodine compounds. The chemistry of polyvalent iodine has previously been covered in four books1–4 and several comprehensive review papers.5–17 Numerous reviews on specific classes of polyvalent iodine compounds and their synthetic applications have recently been published.18–61 Most notable are the specialized reviews on [hydroxy(tosyloxy)iodo]benzene,41 the chemistry and synthetic applications of iodonium salts,29,36,38,42,43,46,47,54,55 the chemistry of iodonium ylides,56–58 the chemistry of iminoiodanes,28 hypervalent iodine fluorides,27 electrophilic perfluoroalkylations,44 perfluoroorgano hypervalent iodine compounds,61 the chemistry of benziodoxoles,24,45 polymer-supported hypervalent iodine reagents,30 hypervalent iodine-mediated ring contraction reactions,21 application of hypervalent iodine in the synthesis of heterocycles,25,40 application of hypervalent iodine in the oxidation of phenolic compounds,32,34,50–53,60 oxidation of carbonyl compounds with organohypervalent iodine reagents,37 application of hypervalent iodine in (hetero)biaryl coupling reactions,31 phosphorolytic reactivity of o-iodosylcarboxylates,33 coordination of hypervalent iodine,19 transition metal catalyzed reactions of hypervalent iodine compounds,18 radical reactions of hypervalent iodine,35,39 stereoselective reactions of hypervalent iodine electrophiles,48 catalytic applications of organoiodine compounds,20,49 and synthetic applications of pentavalent iodine reagents.22,23,26,59 The main purpose of the present review is to summarize the data that appeared in the literature following publication of our previous reviews in 1996 and 2002. In addition, a brief introductory discussion of the most important earlier works is provided in each section. The review is organized according to the classes of organic polyvalent iodine compounds with emphasis on their synthetic application. Literature coverage is through July 2008.

Journal ArticleDOI
TL;DR: The results show clear trends in gold-Catalyzed C-H Bond Functionalization and Selective Reductions, and catalytic Hydrogenation of Alkenes and 1,3-Dienes, as well as in other areas of science.
Abstract: 2.7. Hydroxylation Reactions of Allenes 3282 2.8. Hydroamination Reactions of Allenes 3284 2.9. Hydrothiolation of Allenes 3284 2.10. Hydroalxoxylation of Alkenes and 1,3-Dienes 3286 2.11. Hydroamination of Alkenes and 1,3-Dienes 3287 2.12. Hydrothiolation of Conjugated Olefins 3289 3. Activation of Carbonyl/Imine Groups and Alcohols 3289 3.1. Condensation Reactions 3289 3.2. Addition Reactions 3291 3.3. Aldol Reactions 3294 3.4. Hydroand Carbosilylation Reactions 3295 3.5. Nucleophilic Substitution Reactions of Alcohols 3297 4. Gold-Catalyzed C-H Bond Functionalization 3297 4.1. Csp3-H Bond Functionalization 3298 4.2. Csp2-H Bond Functionalization 3299 4.3. Csp-H Bond Functionalization 3304 5. Gold-Catalyzed Selective Reductions 3305 5.1. Catalytic Hydrogenation of Alkenes 3306 5.2. Selective Reductions of R, -Unsaturated Carbonyl Groups and 1,3-Dienes 3306

Journal ArticleDOI
TL;DR: This chapter should acquaint the reader with the fundamentals of the electrochemistry of glucose and provide a perspective of the evolution of the Electrochemical glucose assays and monitors helping diabetic people, who constitute about 5 % of the world’s population.
Abstract: Over 7,000 peer reviewed articles have been published on electrochemical glucose assays and sensors over recent years. Their number makes a full review of the literature, or even of the most recent advances, impossible. Nevertheless, this chapter should acquaint the reader with the fundamentals of the electrochemistry of glucose and provide a perspective of the evolution of the electrochemical glucose assays and monitors helping diabetic people, who constitute about 5 % of the world’s population. Because of the large number of diabetic people, no assay is performed more frequently than that of glucose. Most of these assays are electrochemical. The reader interested also in nonelectrochemical assays used in, or proposed for, the management of diabetes is referred to a 2007 excellent review of Kondepati and Heise [1].

Journal ArticleDOI
TL;DR: This research presents a meta-analysis of 126 existing and new technologies in the gas chromatography field, and some new technologies that are being developed, as well as suggestions for further studies.
Abstract: 2.2. New Approaches 707 2.2.1. Optical Sensor Systems 707 2.2.2. Mass Spectrometry 708 2.2.3. Ion Mobility Spectrometry 708 2.2.4. Gas Chromatography 709 2.2.5. Infrared Spectroscopy 709 2.2.6. Use of Substance-Class-Specific Sensors 709 2.3. Combined Technologies 710 3. Companies 710 4. Application Areas 710 4.1. Food and Beverage 712 4.2. Environmental Monitoring 715 4.3. Disease Diagnosis 716 5. Research and Development Trends 718 5.1. Sample Handling 719 5.2. Filters and Analyte Gas Separation 719 5.3. Data Evaluation 720 6. Conclusion 721 7. References 722

Journal ArticleDOI
TL;DR: A comparison of Silicification in Diatoms and Bioinspired Routes to Controlling Crystal Morphologies shows the importance of knowing the carrier and removal status of the substance before and during silicification.
Abstract: 2.3. Amorphous Minerals 4354 3. Biological Routes to Controlling Morphology 4354 3.1. General Mechanisms 4356 3.1.1. Soluble and Insoluble Organic Molecules 4356 3.1.2. Control over Crystal Polymorph 4357 3.1.3. Control over Crystal Orientation 4359 3.2. Single-Crystal Biominerals 4359 3.2.1. Organic and Inorganic Soluble Additives 4360 3.2.2. Templating of Single-Crystal Morphologies 4361 3.3. Polycrystalline Biominerals 4366 3.3.1. Nacre Formation in Mollusks 4366 3.3.2. ForaminiferasA Biogenic Mesocrystal 4368 3.4. Amorphous Biominerals 4370 3.4.1. Silicification in Diatoms 4370 3.4.2. In Vitro Studies of Silicification in Diatoms 4371 4. Bioinspired Routes to Controlling Crystal Morphologies 4371

Journal ArticleDOI
TL;DR: This exhibition celebrates the centenary of the establishment of the University of Lyon with a celebration of the 100th anniversary of the birth of Jean-Bertrand Aristide Dejerine.
Abstract: Laboratoire de Génie Enzymatique et Biomoléculaire, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France, UMR5246, Centre National de La Recherche Scientifque, Villeurbanne F-69622, France, Université de Lyon, Lyon F-69622, France, Université Lyon 1, Lyon F-69622, France, Institut National des Sciences Appliquées de Lyon, EÄ cole d’Ingénieurs, Villeurbanne F-69621, France, and EÄ cole Supérieure Chimie Physique EÄ lectronique de Lyon, Villeurbanne F-69616, France

Journal ArticleDOI
TL;DR: A review.
Abstract: A review. Physicochem. properties of ionic liqs. are discussed. Chem. and electrochem. reactivity in ionic liqs. is described including electrode reactions, electrode reaction kinetics, electrosynthesis, etc.

Journal ArticleDOI
TL;DR: Photochemical Electron-Transfer Reactions with a Catalytic Sensitizer 1068 6.1.1 Photochemical Extrusion of Small Molecules 1067 6.2.2 Photochemical Rearrangings 1061 4.4.3.
Abstract: 2.3. [4 + 4] Cycloadditions 1058 2.4. Photocycloadditions of Aromatic Compounds 1058 2.4.1. Benzene Derivatives 1058 2.4.2. Condensed Aromatic Compounds 1060 3. Photochemical Rearrangements 1061 4. Cyclizations 1064 4.1. Pericyclizations 1064 4.2. Norrish−Yang Reaction 1066 5. Photochemical Extrusion of Small Molecules 1067 6. Photochemical Electron Transfer 1068 6.1. Photochemical Electron-Transfer Reactions with a Catalytic Sensitizer 1068

Journal ArticleDOI
TL;DR: This review focuses on calcium phosphate-based bone substitute materials that are used (or can be used) for teeth or bone replacement, bone repair, augmentation, or regeneration and will also include some properties of bone (e.g., interconnected porosity, biodegradability, bioactivity, osteoconductivity) that are being mimicked in the manufacture of calcium phosphates.
Abstract: This review focuses on calcium phosphate-based bone substitute materials that are used (or can be used) for teeth or bone replacement, bone repair, augmentation, or regeneration. This review will also include some properties of bone (e.g., interconnected porosity, biodegradability, bioactivity, osteoconductivity) that are being mimicked in the manufacture of calcium phosphate-based biomaterials and some of the reported factors and strategies that can make the calcium phosphate-based biomaterials acquire osteoinductive properties. Archaeological findings showed that attempts to replace missing teeth date back to the prehistoric period. The materials used then included shells, corals, ivory (from elephant tusks), metals, and human (from corpses) and animal bones. Because of the practice of cremation in many societies, not much is known about prehistoric materials used to replace bones lost to accident or disease. Presently, autografts (bones obtained from another anatomic site in the same subject) remain the gold standard for bone repair, substitution, and augmentation followed by allografts (bones from another subject, such as processed cadaver bones). Autografts and allografts while having the important advantage of being osteogenic or osteoinductive (i.e., inducing bone formation), suffer from several disadvantages. With autografts the drawbacks include additional expense and trauma to the patient, possibility of donor site morbidity, and limited availability. In the case of allografts, in addition to limited supply and high cost, potential viral transmission and immunogenicity are of serious concern. Because of the high cost and limited availability of autografts and allografts, there is a great need to develop synthetic alternative biomaterials for bone replacement, repair, and augmentation. Current commercial substitute materials to replace or repair teeth and bones include metals, polymers (natural or synthetic), corals, human bones (processed cadaver bones), animal bones (processed cow bones), corals and coral derived, synthetic ceramics (calcium phosphates, calcium sulfates, calcium carbonate, bioactive glasses), and composites. It is interesting to note that several of the materials used in prehistoric times are similar to the materials used presently (e.g., coral and coral derived, animal bone derived, metals). Generally, depending on the ability to stimulate bone tissue, materials for tooth or bone repair or replacement are classified as bioinert or bioactive. Bioinert materials do not stimulate bone formation but instead stimulate formation of fibrous tissue and therefore do not directly bond to bone and thus form a weak biomaterial-bone interface. Bioactive materials stimulate bone tissue formation and therefore directly bond with bone and thus form a uniquely strong biomaterial-bone interface. Bioinert materials include metals (e.g., titanium or titanium alloys, stainless steel, cobalt-chromium, Co-Cr, alloys), some synthetic polymers (e.g., PEEK, Teflon-type), and some ceramics (e.g., alumina, * To whom correspondence should be addressed. Phone: (212) 998-9580. Fax: (212) 995-4244. E-mail: rzl1@nyu.edu. Racquel Zapanta LeGeros received her Ph.D. degree from New York University. She is currently a Professor and Associate Chair of the Department of Biomaterials and Biomimetics at New York University College of Dentistry. Her pioneering work was on substitution in the apatite structure and effect on properties. Her research interests includes biologic and synthetic apatites and related calcium phosphates, calcium phosphatebased biomaterials in the form of granules, scaffolds, cements, and coatings, and implant surface modifications. Her current research is on the development of calcium phosphate-based biomaterial for prevention of bone loss induced by diseases (e.g., osteoporosis), therapy (e.g., radiation), condition (e.g., mineral deficiency, immobility), and recovery of bone loss. She is married to Dr. John P. LeGeros and mother of Bernard, David, Katherine, and Alessandra. Chem. Rev. 2008, 108, 4742–4753 4742


Journal ArticleDOI
TL;DR: This review of “nanoelectrochemistry” involves a necessary arbitrariness of defining what “nano” means, and attention will be biased toward metal nanoparticles having dimensions of only a small number of nanometers, because it is in the 10 nm and lower size range where many significant recent advances have been made.
Abstract: Nanois a big prefix-word. Much of contemporary chemistry focuses on small scale structures, and indeed, molecular science is intrinsically on the nanometer scale. Selecting material for this review of “nanoelectrochemistry” involved a necessary arbitrariness of defining what “nano” means. Here, it refers to a dimensional scale of electrodes and electrochemical events, as opposed to time or volume or mass. Still, most of molecular chemistry fits within the 1-1000 nm range of dimensions, as does a substantial body of charged or conducting substances, e.g., microand nanoparticles, colloids, emulsions, and aerosols. The topology of conducting substances can have nanoscopic dimensions, with mesoporous materials such as areogels and xerogels being contemporary examples. These are important topics, as are nanoparticle applications in bioanalysis, catalysis, and electrocatalysis, and nanomaterials such as fullerenes, carbon nanotubes and networks, semiconductor nanoparticles, and arrays of nanoelectrodes and nanopores. With apologies to those topics, I have chosen to whittle the scenery down to the electrochemistry of nanoparticles, and single nanoelectrodes and nanopores. Within these, attention will be biased toward metal nanoparticles having dimensions of only a small number of nanometers, because it is in the 10 nm and lower size range where many significant recent advances have been made. Similarly, I will focus mainly on single nanoelectrodes and nanopores, as opposed to arrays thereof. The literature cited here is predominantly not over a decade old; a lot has happened, and quickly. I hope the reader will find it an interesting decade. What has promoted the rapid advances in the 1-10 nm range of dimensions? For nanoparticles, progress has been stimulated by synthetic innovations; for single nanoelectrodes and single nanopores, similarly by advances in methods of fabrication. Further, while making something that is really small can be special, it does not push science forward unless one can demonstrate its size and shape and chemical composition. So some substantial attention will be given to developments in fabrication and characterization. Knowing what you have prompts the more interesting and burning questions of how do its properties (of any kind, spectroscopic, electron transfer, etc). depend on its size, on the dimensions of other substances and structures that it interacts with (as in a nanopore), on the particular geometry of the small size, and of course on the extent that the chemist and electrochemist can tailor the composition and/or surface of the small particle/electrode/pore object to further expand its range of properties and usefulness. The authors cited in this report are leaving the first trackssto some extent tentative trackssin the scientific sand in these areas of nanoscience.