scispace - formally typeset
Search or ask a question

Showing papers in "Comprehensive Reviews in Food Science and Food Safety in 2017"


Journal ArticleDOI
TL;DR: These techniques are proving to be promising for the extraction of thermolabile phenolic compounds due to their advantages over conventional, time-consuming, and laborious extraction techniques, such as reduced solvent use and time and energy consumption and higher recovery rates with lower operational costs.
Abstract: Polyphenols as phytochemicals have gained significant importance owing to several associated health benefits with regard to lifestyle diseases and oxidative stress. To date, the development of a single standard method for efficient and rapid extraction of polyphenols from plant matrices has remained a challenge due to the inherent limitations of various conventional extraction methods. The exploitation of polyphenols as bioactive compounds at various commercial levels has motivated scientists to explore more eco-friendly, efficient, and cost-effective extraction techniques, based on a green extraction approach. The current review aims to provide updated technical information about extraction mechanisms, their advantages and disadvantages, and factors affecting efficiencies, and also presents a comparative overview of applications of the following modern green extraction techniques-supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction, and pressurized hot water extraction-as alternatives to conventional extraction methods for polyphenol extraction. These techniques are proving to be promising for the extraction of thermolabile phenolic compounds due to their advantages over conventional, time-consuming, and laborious extraction techniques, such as reduced solvent use and time and energy consumption and higher recovery rates with lower operational costs. The growing interest in plant-derived polyphenols prompts continual search for green and economically feasible modern extraction techniques. Modern green extraction techniques represent promising approaches by virtue of overcoming current limitations to the exploitation of polyphenols as bioactive compounds to explore their wide-reaching applications on an industrial scale and in emerging global markets. Future research is needed in order to remove the technical barriers to scale-up the processes for industrial needs by increasing our understanding and improving the design of modern extraction operations.

447 citations


Journal ArticleDOI
TL;DR: This text reviews the chronological development pathway of films based on fruit and vegetable purees, pomaces, and extracts with an emphasis on the role that each film component plays in the resulting materials, whose production methods are examined from a technical standpoint and essential properties are compiled and contrasted.
Abstract: Food packaging materials are traditionally expected to contain foodstuffs and protect them from deteriorating agents. Although petroleum-derived polymers have been widely used for this purpose, the rising concern with their nonrenewable and/or nonbiodegradable nature paves the route for the development of greener alternatives, including polysaccharides and polypeptides. The use of these food-grade biomacromolecules, in addition to fruits and vegetables, provides edible packaging with suitable physical-mechanical properties as well as unique sensory and nutritional characteristics. This text reviews the chronological development pathway of films based on fruit and vegetable purees, pomaces, and extracts. Recent advances are extensively reviewed with an emphasis on the role that each film component plays in the resulting materials, whose production methods are examined from a technical standpoint and essential properties are compiled and contrasted to their conventional, synthetic counterparts. Finally, this comprehensive review discusses advantages and limitations of edible films based on fruits and vegetables.

318 citations


Journal ArticleDOI
TL;DR: This review summarizes the most recent studies and patents aimed at enhancing anthocyanin stability in food systems, and the stabilizing methods include additions of copigment compounds, such as polymers, phenolic compounds, and metals.
Abstract: The production of natural food pigments continues to grow worldwide. The global market is expected to grow at a compound annual growth rate of 6.22%, by revenue, over the period 2015 to 2019. Pigments such as anthocyanins, carotenoids, betalains, and chlorophylls have been used to color foods. However, there are challenges related to color losses during food processing, storage, and commercialization due to a low stability of natural pigments compared to synthetic colorants. This review summarizes the most recent studies and patents aimed at enhancing anthocyanin stability in food systems. The stabilizing methods include additions of copigment compounds, such as polymers, phenolic compounds, and metals. In addition, the exclusion of O2 during processing and storage, hard-panned candy coating methods for blue, green, and brown colors, and various encapsulation techniques were considered. Combining strategies and evaluating new materials capable of stabilizing anthocyanins will enhance their potential for use as value-added natural food pigments.

314 citations


Journal ArticleDOI
TL;DR: Commercially available polyphenols can decrease primary and secondary lipid peroxidation levels, inhibit lipoxygenase activity, improve meat color stability, minimize the degradation of salt-soluble myofibrillar protein and sulfhydryl groups, and retard bacterial growth.
Abstract: Oxidative processes and meat spoilage bacteria are major contributors to decreasing the shelf-life of meat and meat products. Oxidative processes occur during processing, storage, and light exposure, lowering the nutritional and sensory value and acceptability of meat and generating toxic compounds for humans. Polyphenols inhibit oxidative processes in 3 ways: as reactive species scavengers, lipoxygenase inhibitors, and reducing agents for metmyoglobin. Thus, polyphenols are candidate antioxidants for meat and meat products. The cross-contamination of meat with spoilage and pathogenic microorganisms can occur in production lines and result in economic losses. The ability of polyphenols to interact with bacterial cell wall components and the bacterial cell membrane can prevent and control biofilm formation, as well as inhibit microbial enzymes, interfere in protein regulation, and deprive bacterial cell enzymes of substrates and metal ions. Thus, polyphenols are candidate antimicrobial agents for use with meat and meat products. Commercially available polyphenols can decrease primary and secondary lipid peroxidation levels, inhibit lipoxygenase activity, improve meat color stability, minimize the degradation of salt-soluble myofibrillar protein and sulfhydryl groups, and retard bacterial growth. Further studies are now needed to clarify the synergistic/antagonistic action of various polyphenols, and to identify the best polyphenol classes, concentrations, and conditions of use.

309 citations


Journal ArticleDOI
TL;DR: A combination of prospective experimental and modeling research on precooling uniformity, responsive food inventory management systems, and cold chains in developing countries is proposed for the improvement of the cold chain at the global scale.
Abstract: The cold chain is responsible for the preservation and transportation of perishable foods in the proper temperature range to slow biological decay processes and deliver safe and high-quality foods to consumers Studies show that the efficiency of the cold chain is often less than ideal, as temperature abuses above or below the optimal product-specific temperature range occur frequently, a situation that significantly increases food waste and endangers food safety In this work, field studies on time-temperature conditions at each critical stage of the cold chain are reviewed to assess the current state of commercial cold chains Precooling, ground operations during transportation, storage during display at retail and in domestic refrigerators, and commercial handling practices are identified and discussed as the major weaknesses in the modern cold chain The improvement in efficiency achieved through the measurement, analysis, and management of time-temperature conditions is reviewed, along with the accompanying technical and practical challenges delaying the implementation of such methods A combination of prospective experimental and modeling research on precooling uniformity, responsive food inventory management systems, and cold chains in developing countries is proposed for the improvement of the cold chain at the global scale

300 citations


Journal ArticleDOI
TL;DR: It would appear that 2 outstanding issues are currently preventing full realization of the potential of DEs in food applications: the lack of availability of large-scale production equipment to ensure efficient nondestructive 2nd-stage emulsification, and the limited range of food-grade ingredients available to successfully replace polyglycerol polyricinoleate as the primary emulsifier in W/O/W formulations.
Abstract: This review describes advances in the preparation of food-relevant double emulsions (DEs) of the water-in-oil-in-water (W/O/W) and oil-in-water-in-oil (O/W/O) types with emphasis on research published within the last decade. The information is assembled and critically evaluated according to the following aspects: the food application area, the range of encapsulated components and emulsion composition, the emulsification preparation methods, the balancing of the osmotic pressure, the stabilization by increased viscosity or gelation, the role of protein-polysaccharide interactions, and the techniques used to estimate DE yield and emulsification efficiency. Particular focus is directed toward the control of encapsulation and release behavior, including strategies that have been employed to improve the retention ability of the inner phase droplets by modifying the outer oil-water interface through mixed ingredient interactions, Pickering stabilization by particles, and biopolymer gelation. We also briefly consider the incorporation of DEs into dried microcapsules and the stability of W/O/W emulsions during eating and digestion. It would appear that 2 outstanding issues are currently preventing full realization of the potential of DEs in food applications: (i) the lack of availability of large-scale production equipment to ensure efficient nondestructive 2nd-stage emulsification, and (ii) the limited range of food-grade ingredients available to successfully replace polyglycerol polyricinoleate as the primary emulsifier in W/O/W formulations.

267 citations


Journal ArticleDOI
TL;DR: The characteristics and advantages of sheep Milk as a potentially functional food, as well as the development of sheep milk dairy products containing prebiotics and/or probiotics are addressed.
Abstract: Sheep milk has a high nutritional value and high concentrations of proteins, fats, minerals, and vitamins, as compared to the milks of other domestic species. The physicochemical and nutritional characteristics of sheep milk can be advantageous for the manufacture of products containing prebiotic ingredients and/or probiotic bacteria, which are major categories in the functional food market. Following this technological trend, this review will address the characteristics and advantages of sheep milk as a potentially functional food, as well as the development of sheep milk dairy products containing prebiotics and/or probiotics.

253 citations


Journal ArticleDOI
TL;DR: The most common functions associated with wine pomace products are theirUse as antioxidants, followed by their use as fortifying, coloring, and antimicrobial agents, which have been applied to the preparation of meat and fish products and to, a lesser extent, cereal products.
Abstract: Winemaking generates large amounts of wine pomace, also called grape pomace This by-product has attracted the attention of food scientists and the food industry, due to its high content in nutrients and bioactive compounds This review mainly focuses on the different published approaches to the use of wine pomace and its functions in the food industry Traditionally, wine pomace has been used to obtain wine alcohol, food colorings, and grape seed oil More recently, research has focused in the production of other value-added products, such as extracts of bioactive compounds, mainly phenols, recovery of tartaric acid, and the making of flours The most common functions associated with wine pomace products are their use as antioxidants, followed by their use as fortifying, coloring, and antimicrobial agents These products have mainly been applied to the preparation of meat and fish products and to, a lesser extent, cereal products

224 citations


Journal ArticleDOI
TL;DR: A thorough review on conventional and advanced separation techniques for the extraction of piperine from pepper is presented and an outline of the most significant conditions to improve the extraction yield is provided and discussed.
Abstract: Piperine is the major bio-active component of pepper, which imparts pungency and biting taste to it. This naturally occurring alkaloid has numerous demonstrated health effects and beneficial therapeutic properties; nevertheless, its biological applications are limited due to its poor solubility in aqueous environments. This emphasizes an implementation of advanced extraction approaches which could enhance the extraction yield of piperine from pepper and also the development of new formulations containing piperine to improve its in vivo bioavailability. This paper presents a review on the therapeutic and medicinal effects of piperine, its isolation from pepper fruit and the development of new formulations for its medicinal (pharmaceutical) applications. A thorough review on conventional and advanced separation techniques for the extraction of piperine from pepper is presented and an outline of the most significant conditions to improve the extraction yield is provided and discussed. Different methods used to measure and quantify the isolated piperine are also reviewed. An overview of biotechnological advancements for nanoparticle formulations of piperine or its incorporation in lipid formulations, which could enhance its bioavailability, is also presented.

217 citations


Journal ArticleDOI
TL;DR: An improved understanding of the chemical reactions that occur between major food ingredients and how they can be utilized to develop biopolymer-based delivery systems with enhanced functional attributes is provided.
Abstract: Food proteins, polysaccharides, and polyphenols are 3 major food constituents with distinctly different functional attributes. Many proteins and polysaccharides are capable of stabilizing emulsions and foams, thickening solutions, and forming gels, although they differ considerably in their abilities to provide these functional attributes. Many plant polyphenols exhibit beneficial physiological functions, such as antitumor, antioxidant, antibacterial, and antiviral properties. Proteins, polysaccharides, and polyphenols can form complexes with each other, which leads to changes in the functional and nutritional properties of the combined systems. Recently, there has been considerable interest in understanding and utilizing covalent interactions between polyphenols and biopolymers (proteins and polysaccharides). The binary or tertiary conjugates formed may be designed to have physicochemical properties and functional attributes that cannot be achieved using the individual components. This article provides a review of the formation, characterization, and utilization of conjugates prepared using proteins, polysaccharides, and polyphenols. It also discusses the relationship between the structural properties and functionality of the conjugates, and it highlights the bioavailability of bioactive compounds loaded in conjugate-based delivery systems. In addition, it highlights the main challenges to be considered when preparing and analyzing conjugates. This article provides an improved understanding of the chemical reactions that occur between major food ingredients and how they can be utilized to develop biopolymer-based delivery systems with enhanced functional attributes.

216 citations


Journal ArticleDOI
TL;DR: The residential bacterial population, or bacteriota, does not seem to be an important source for the transfer of antibiotic resistance genes to humans, but more knowledge is needed to verify this.
Abstract: Surface hygiene is commonly measured as a part of the quality system of food processing plants, but as the bacteria present are commonly not identified, their roles for food quality and safety are not known. Here, we review the identity of residential bacteria and characteristics relevant for survival and growth in the food industry along with potential implications for food safety and quality. Sampling after cleaning and disinfection increases the likelihood of targeting residential bacteria. The increasing use of sequencing technologies to identify bacteria has improved knowledge about the bacteria present in food premises. Overall, nonpathogenic Gram-negative bacteria, especially Pseudomonas spp., followed by Enterobacteriaceae and Acinetobacter spp. dominate on food processing surfaces. Pseudomonas spp. persistence is likely due to growth at low temperatures, biofilm formation, tolerance to biocides, and low growth requirements. Gram-positive bacteria are most frequently found in dairies and in dry production environments. The residential bacteria may end up in the final products through cross-contamination and may affect food quality. Such effects can be negative and lead to spoilage, but the bacteria may also contribute positively, as through spontaneous fermentation. Pathogenic bacteria present in food processing environments may interact with residential bacteria, resulting in both inhibitory and stimulatory effects on pathogens in multispecies biofilms. The residential bacterial population, or bacteriota, does not seem to be an important source for the transfer of antibiotic resistance genes to humans, but more knowledge is needed to verify this. If residential bacteria occur in high numbers, they may influence processes such as membrane filtration and corrosion.

Journal ArticleDOI
TL;DR: An updated, critical, and extensive overview on the current and advanced analytical methods targeting markers of adulteration/authenticity, including nontarget fingerprint approaches will be provided, including the most recent advances on molecular, chromatographic, and spectroscopic methodologies.
Abstract: Honey is a highly consumed natural product, not only for its taste and nutritional value, but also for its health benefits. Owing to characteristics that are essentially or exclusively related to the specific region or particular local environment and flora, honey can be classified as a premium product generally perceived as a high-quality and valued product because of its desirable flavor and taste. Consequently, honey has been a target of adulteration through inappropriate/fraudulent production practices and mislabeling origin. Globally, authentication of honey covers 2 main aspects: the production, with main issues related to sugar syrup addition, filtration, thermal treatment, and water content; and the labeled origin (geographical and/or botanical) and “organic” provenance. This review addresses all those issues, focusing on the approaches to detect the different types of honey adulteration. Due to the complex nature of honey and to the different types of adulteration, its authentication has been challenging and prompted the development of several advanced analytical approaches. Therefore, an updated, critical, and extensive overview on the current and advanced analytical methods targeting markers of adulteration/authenticity, including nontarget fingerprint approaches will be provided. The most recent advances on molecular, chromatographic, and spectroscopic methodologies will be described, emphasizing their pros and cons for the identification of botanical and geographical origins.

Journal ArticleDOI
TL;DR: A holistic synthesis of the information on ancient wheats is provided to facilitate a greater exploitation of their potential benefits and to ensure sustainable wheat production in the context of climate change and low-input organic farming systems.
Abstract: A sustainable and wholesome food supply is the most important incentive that has led to an increasing interest in ancient wheats over the past few decades. Domestication of wheat, followed by breeding efforts, largely over the past 2 centuries, has resulted in yield increases but with grain quality deterioration due to the reduction of protein, vitamins, and minerals in grains. It has also resulted in a decrease in food diversity due to the loss of genetic variation in the cultivated wheat gene pool. Ancient hulled wheats, einkorn, emmer, and spelt are among the early cereals that were domesticated in their places of origin in the Fertile Crescent of the Middle East where their wild predecessors still grow. The ancient wheats had a long history as part of human diet, and played an important role as a major source of food for the early civilizations in that region. The risks of genetic erosion of crop plants and the associated likely consequences for agriculture now call for revitalization of the unrealized potentials of ancestral species like einkorn, emmer, and spelt wheat, the domesticated ancestors of modern durum and bread wheats. These ancestors need to be exploited to maximize the sustainable supply of grain protein, fiber, minerals, and phytochemicals. In addition, ancient wheat biodiversity can be utilized to ensure sustainable wheat production in the context of climate change and low-input organic farming systems. This review provides a holistic synthesis of the information on ancient wheats to facilitate a greater exploitation of their potential benefits.

Journal ArticleDOI
TL;DR: Reports by some researchers who suggest that dietary lipid and protein oxidation products and heme iron from red meat are in part cytotoxic and/or genotoxic are suggested.
Abstract: Antioxidant system loss after slaughtering, reactive species production, cell disruption, contact with oxygen and light, heme and nonheme iron, and irradiation starts up mainly by 2 related oxidative processes: lipid peroxidation and protein oxidation. Products generated in these processes are responsible for meat quality loss, and some of them are suspected to be toxic to humans. This review article is focused on reactive species implicated in oxidative processes in meat, on lipid peroxidation mechanisms, heme protein, and nonheme protein oxidation, and on some toxic oxidation and digestion products. Nonenzymatic fatty acid peroxidation is exemplified by an arachidonic acyl group, and the initiation of chain reaction can be described by 3 pathways: singlet oxygen, hydroxyl radical from the Fenton reaction, and perferrylmyoglobin. Enzymatic oxidation of fatty acids is exemplified using linoleic acid, and the main characteristics of lipoxygenase are also presented. Heme protein oxidation is described in an interrelation with lipid peroxidation and the significance for food quality is shown. For protein oxidation, 3 different mechanism types are described: oxidation of amino acid residues, oxidation of protein backbone, and reactions of proteins with carbonyl compounds from lipid peroxidation. The effects of oxidative damage on protein properties and bioavailability are also shown. At the end of each oxidative process, the postprandial toxicity induced by oxidation products and the dietary degradation products are presented. Also discussed are reports by some researchers who suggest that dietary lipid and protein oxidation products and heme iron from red meat are in part cytotoxic and/or genotoxic.

Journal ArticleDOI
TL;DR: The nutritional value and health benefits of shellfish items are highlighted and the various control measures to safeguard consumer safety with respect to the products are pointed out.
Abstract: Shellfish is a major component of global seafood production. Specific items include shrimp, lobsters, oysters, mussels, scallops, clams, crabs, krill, crayfish, squid, cuttlefish, snails, abalone, and others. Shellfish, in general, contain appreciable quantities of digestible proteins, essential amino acids, bioactive peptides, long-chain polyunsaturated fatty acids, astaxanthin and other carotenoids, vitamin B12 and other vitamins, minerals, including copper, zinc, inorganic phosphate, sodium, potassium, selenium, iodine, and also other nutrients, which offer a variety of health benefits to the consumer. Although shellfish are generally safe for consumption, their exposure to diverse habitats, the filter feeding nature of shellfish such as oysters, clams, and mussels, and unhealthy farming and handling practices may occasionally entail health risks because of possible presence of various hazards. These hazards include pathogenic organisms, parasites, biotoxins, industrial and environmental pollutants, heavy metals, process-related additives such as antibiotics and bisulfite, and also presence of allergy-causing compounds in their bodies. Most of the hazards can be addressed by appropriate preventive measures at various stages of harvesting, farming, processing, storage, distribution, and consumption. Furthermore, consumer safety of shellfish and other seafood items is strictly monitored by international, governmental, and local public health organizations. This article highlights the nutritional value and health benefits of shellfish items and points out the various control measures to safeguard consumer safety with respect to the products.

Journal ArticleDOI
TL;DR: This review covers researches on thermal processing of fruit and vegetable juices and beverages, with a particular emphasis on products derived from different botanical sources, and conventional and alternative thermal treatments presented.
Abstract: Fruit and vegetable juices and beverages are generally preserved by thermal processing, currently being the most cost-effective means ensuring microbial safety and enzyme deactivation. However, thermal treatments may induce several chemical and physical changes that impair the organoleptic properties and may reduce the content or bioavailability of some nutrients; in most cases, these effects are strongly dependent on the food matrix. Moreover, the efficacy of treatments can also be affected by the complexity of the product and microorganisms. This review covers researches on this topic, with a particular emphasis on products derived from different botanical sources. Technologies presented include conventional and alternative thermal treatments. Advances toward hurdle-based technology approaches have been also reviewed.

Journal ArticleDOI
TL;DR: This review focuses on the valorization of apple pomace towards the recovery of the main compounds, namely pectin and polyphenols, and applications, advantages, and drawbacks of conventional extraction compared with novel extraction technologies are presented.
Abstract: Apple pomace is a promising source of carbohydrates, proteins, amino acids, fatty acids, phenolic compounds, vitamins, and other compounds with a vast range of food applications. This review focuses on the valorization of apple pomace towards the recovery of the main compounds, namely pectin and polyphenols. Applications, advantages, and drawbacks of conventional extraction (acidic medium under high temperatures) compared with novel extraction technologies are presented. The comparison is based on an extensive literature review of research on extraction of valuable compounds from plant matrixes, particularly apple pomace. Novel extraction techniques involving enzymes, electric field, ultrasound, microwave heating, pressurized liquid, and super/subcritical fluid are also discussed. These techniques offer several advantages, including shorter extraction time, increased yield, reduction-or suppression-of solvents, and minimization of the environmental impact. This paper may help researchers and food industry professionals on the scaling-up and optimization of eco-friendly extractions of pectin and phenolic compounds.

Journal ArticleDOI
TL;DR: The current state of understanding of protein modifications at the molecular level in commonly consumed mammalian food is summarized and relevant case studies relating to characterization of heat-induced amino acid residue-level modifications in other biological materials such as milk and wool are discussed to provide complementary insights.
Abstract: Food ingredients commonly undergo heat treatment. Meat, in particular, is typically consumed after some form of heating, such as boiling or roasting. Heating of meat can introduce a wide range of structural changes in its proteinaceous components. At the 3-dimensional structural level, meat proteins may denature and form aggregates upon heating. At the molecular level, primary structure (amino acid residue) alterations reported in cooked meat include protein carbonylation, modification of aromatic residues, and the formation of Maillard reaction products. Identification of these modifications is essential for determining the mechanism of thermal processing of meat and allowing better control of the nutritional and functional properties of products. This article reviews and summarizes the current state of understanding of protein modifications at the molecular level in commonly consumed mammalian food. In addition, relevant case studies relating to characterization of heat-induced amino acid residue-level modifications in other biological materials such as milk and wool are discussed to provide complementary insights.

Journal ArticleDOI
TL;DR: The review revealed no single production factor causing dark cutting, but that a range of factors or a combination of factors and interactions lead to its occurrence.
Abstract: Dark cutting in beef and sheep meat has been the subject of extensive research with numerous associations established between it and various production practices. Despite these associations, dark cutting still occurs and causes significant financial losses globally in the fresh meat market. Consumers tend to reject dark meat as it is perceived to be from old or poorly-handled animals and is described as being tough, having an undesirable flavor, and having a short shelf-life. There is no universal system to categorize dark cutting carcasses and meat across countries, although various methods are used to determine the phenomenon. Classifying carcasses as dark cutters on the basis of ultimate pH or color using one muscle, such as the m. longissimus thoracis can lead to mis-description of other muscles within the same carcass and loss of income across the supply chain. The purpose of this review was to identify the factors predisposing animals to dark cutting and to provide recommendations and directions for future research. The review revealed no single production factor causing dark cutting, but that a range of factors or a combination of factors and interactions lead to its occurrence. Dark cutting is a complex condition that can be resolved through comprehensive management of animals, and management of human involvement, and clear guidelines to minimize the incidence of “dark cutting” meat and to improve the profitability of all sectors in the supply chain are provided here.

Journal ArticleDOI
TL;DR: This review covers the concepts, uses, obtainment processes, and quality analysis of vital Wheat gluten, as well as simple tests to help identify details about protein quality of commercial vital wheat gluten.
Abstract: The use of vital wheat gluten in the baking industry and wheat flour mills aims to improve the rheological characteristics of flour considered unsuitable to obtain products such as sliced bread, French bread, high-fiber breads, and other products that require strong flours. To improve characteristics such as flour strength, dough mixing tolerance, and bread volume, vital wheat gluten is added to flour at levels that can vary from 2% to 10% (flour basis), with 5% being a commonly used dosage. However, the vital wheat gluten commercialized in the market has few quality specifications, especially related to the characteristics of the proteins that constitute it and are responsible for the formation of the viscoelastic gluten network. Information on protein quality is important, because variations are observed in the technological quality of vital wheat gluten obtained from different sources, which could be associated to damage caused to proteins during the obtainment process. Several tests, either physical-chemical analyses, or rheological tests, are carried out to establish gluten quality; however, they are sometimes time-consuming and costly. Although these tests give good answers to specify gluten quality, flour mills, and the baking industries require fast and simple tests to evaluate the uses and/or dosage of vital gluten addition to wheat flour. This review covers the concepts, uses, obtainment processes, and quality analysis of vital wheat gluten, as well as simple tests to help identify details about protein quality of commercial vital wheat gluten.

Journal ArticleDOI
TL;DR: It was revealed that microbiological hazards are encountered more frequently in dairy products than chemical and physical hazards, and increased milk production is seen as most relevant in relation to food safety.
Abstract: Monitoring of dairy products should preferably focus on the most relevant food safety hazards in the dairy supply chain. For this purpose, the possible presence of microbiological, chemical, and physical hazards as well as trends in the dairy supply chain that may affect their presence were assessed. A literature review was combined with available data from EFSA, RASFF, and the Dutch monitoring program on chemical hazards as well as expert information. This study revealed that microbiological hazards are encountered more frequently in dairy products than chemical and physical hazards. Listeria monocytogenes, Staphylococcus aureus, Salmonella, and human pathogenic Escherichia coli were identified as the most important microbiological hazards in dairy products. Soft and semisoft cheeses are most frequently associated with L. monocytogenes and S. aureus enterotoxins, whereas raw milk is most frequently associated with human pathogenic E. coli and Campylobacter spp., Cronobacter spp., and Salmonella spp. are the microbiological hazards of most concern in powdered infant formula. Based on literature, monitoring, and RASFF data, the most relevant chemical hazards in dairy products are aflatoxin M1, dioxins, and dioxin-like compounds and residues of veterinary drugs. Chemical hazards primarily occur at the dairy farm and may accumulate during further processing. The most relevant physical hazards are metal, glass, and plastic particles introduced during processing. Analysis of trends in the near future revealed that increased milk production is seen as most relevant in relation to food safety. Other trends affecting food safety are climate change and changes at the farm level, which aim to improve animal welfare and environmental sustainability.

Journal ArticleDOI
TL;DR: The structural properties, denaturation and aggregation behaviors, and solubility, as well as the foaming, emulsifying, and gelling properties of amaranth, buckwheat, and quinoa proteins are discussed.
Abstract: There is currently much interest in the use of pseudocereals for developing nutritious food products. Amaranth, buckwheat, and quinoa are the 3 major pseudocereals in terms of world production. They contain high levels of starch, proteins, dietary fiber, minerals, vitamins, and other bioactives. Their proteins have well-balanced amino acid compositions, are more sustainable than those from animal sources, and can be consumed by patients suffering from celiac disease. While pseudocereal proteins mainly consist of albumins and globulins, the predominant cereal proteins are prolamins and glutelins. We here discuss the structural properties, denaturation and aggregation behaviors, and solubility, as well as the foaming, emulsifying, and gelling properties of amaranth, buckwheat, and quinoa proteins. In addition, the technological impact of incorporating amaranth, buckwheat, and quinoa in bread, pasta, noodles, and cookies and strategies to affect the functionality of pseudocereal flour proteins are discussed. Literature concerning pseudocereal proteins is often inconsistent and contradictory, particularly in the methods used to obtain globulins and glutelins. Also, most studies on protein denaturation and techno-functional properties have focused on isolates obtained by alkaline extraction and subsequent isoelectric precipitation at acidic pH, even if the outcome of such studies is not necessarily relevant for understanding the role of the native proteins in food processing. Finally, even though establishing in-depth structure-function relationships seems challenging, it would undoubtedly be of major help in the design of tailor-made pseudocereal foods.

Journal ArticleDOI
TL;DR: The present review provides an overview of antimicrobial properties of various photocatalyst metal oxides and their potential applications as surface coatings, as well as the physical stability of the coatings.
Abstract: Cross-contamination of foods with pathogenic microorganisms such as bacteria, viruses, and parasites may occur at any point in the farm to fork continuum. Food contact and nonfood contact surfaces are the most frequent source of microbial cross-contamination. In the wake of new and emerging food safety challenges, including antibiotic-resistant human pathogens, conventional sanitation and disinfection practices may not be sufficient to ensure safe food processing, proper preparation, and also not be environmentally friendly. Nanotechnology-enabled novel food safety interventions have a great potential to mitigate the risk of microbial cross-contamination in the food chain. Especially engineered nanoparticles (ENPs) are increasingly finding novel applications as antimicrobial agents. Among various ENPs, photocatalyst metal oxides have shown great promise as effective nontargeted disinfectants over a wide range of microorganisms. The present review provides an overview of antimicrobial properties of various photocatalyst metal oxides and their potential applications as surface coatings. Further, this review discusses the most common approaches to developing antimicrobial coatings, methods to characterize, test, and evaluate antimicrobial efficacy as well as the physical stability of the coatings. Finally, regulations and challenges concerning the use of these novel photocatalytic antimicrobial coatings are also discussed.

Journal ArticleDOI
TL;DR: Smart processing and encapsulation technologies utilizing properly stabilized oils as well as optimized packaging parameters aiming to enhance n-3 fatty acid stability by smart selection/design of antioxidants, control of the interfacial physics and chemistry, and elimination of surface oil are needed for this purpose.
Abstract: The consumption of omega-3 fatty acids provides a wide range of health benefits. However, the incorporation of these fatty acids in foods is limited because of their high oxidative instability. A new paradigm has emerged to better explain the oxidation mechanism of polyunsaturated fatty acids, which will be discussed here with reference to bulk lipids considered a special case of water in oil microemulsion. This paradigm suggests that lipid oxidation reactions are initiated by heterogeneous catalysis by metal oxides followed by the formation of micelles containing initial hydroperoxides, water, and other amphiphilic compounds. The induction period comes to the end when the formed micelles reach a critical micelle concentration and start to decompose opening the way to intense free radical reactions. Antioxidants and synergists extend the induction period not only by scavenging free radicals but also by stabilizing the micelles. With better understanding of the lipid oxidation mechanism, a tailored choice of antioxidants and synergistic combinations, and efficient encapsulation methods may be optimized to provide stable encapsulates containing highly n-3 polyunsaturated fatty acids. Smart processing and encapsulation technologies utilizing properly stabilized oils as well as optimized packaging parameters aiming to enhance n-3 fatty acid stability by smart selection/design of antioxidants, control of the interfacial physics and chemistry, and elimination of surface oil are needed for this purpose.

Journal ArticleDOI
TL;DR: The major and minor structural features of wheat starch and their contributions toward noodle quality are summarized and presented as a schematic diagram, which shows the effects of starch structure on cooked noodles.
Abstract: Although the processing and eating qualities of noodles are largely related to the quality and quantity of wheat protein (gluten), the importance of starch, a major ingredient of wheat flour, is often overlooked. Recent developments on the multilevel structural model of starch have brought new insights into the role of starch for better processing and noodle eating qualities. With critical analysis and discussion, this review outlines the comprehensive relationships between the multilevel (molecular, crystalline, and granular) starch structure, noodle eating qualities, and related physicochemical properties. Further, the major and minor structural features of wheat starch and their contributions toward noodle quality are summarized and presented as a schematic diagram, which shows the effects of starch structure on cooked noodles. These features provide new insights for the scientific community, as well as industry, into the role of starch, along with gluten, on the quality of noodles.

Journal ArticleDOI
TL;DR: This review presents compositional information focused on the potential functional phenolic compounds correlated to health-promoting effects of purple corn and some other plant sources with similar phenolic composition to purple corn.
Abstract: Purple corn (Zea mays L.), a grain with one of the deepest shades in the plant kingdom, has caught the attention of the food industry as it could serve as a source for alternatives to synthetic colorants. Also being rich in phenolic compounds with potential health-promoting properties, purple corn is becoming a rising star in the novel ingredients market. Although having been widely advertised as a “healthy” food, the available information on purple corn health benefits has not yet been well reviewed and summarized. In this review, we present compositional information focused on the potential functional phenolic compounds correlated to health-promoting effects. Studies evaluating potential health-benefitting properties, including in vitro tests, cell models, animal and human trials, are also discussed. This paper emphasizes research using purple corn, or its extracts, but some other plant sources with similar phenolic composition to purple corn are also mentioned. Dosage and toxicity of purple corn studies are also reviewed. Purple corn phenolic compounds have been shown in numerous studies to have potent antioxidant, anti-inflammatory, antimutagenic, anticarcinogenic, and anti-angiogenesis properties. They were also found to ameliorate lifestyle diseases, such as obesity, diabetes, hyperglycemia, hypertension, and cardiovascular diseases, based on their strong antioxidant power involving biochemical regulation amelioration. With promising evidence from cell and animal studies, this rich source of health-promoting compounds warrants additional attention to better understand its potential contributions to human health.

Journal ArticleDOI
TL;DR: The various elimination methods for GEs in refined edible oils are being reviewed with focus on 3 aspects: inhibition and removal of reactants, modification of reactive conditions, and elimination of GE products.
Abstract: Glycidyl fatty acid esters (GEs), one of the main contaminants in processed oils, are mainly formed during the deodorization step in the refining process of edible oils and therefore occur in almost all refined edible oils. GEs are potential carcinogens, due to the fact that they readily hydrolyze into the free form glycidol in the gastrointestinal tract, which has been found to induce tumors in various rat tissues. Furthermore, glycidol has already been identified as a "possible human carcinogen'' (group 2A) by the Intl. Agency for Research on Cancer (IARC). Therefore, significant effort has been devoted to inhibit and eliminate the formation of GEs. The aim of this review is to provide a comprehensive summary on the following topics: (i) GE occurrence data for different edible oils and oil-based food products, (ii) precursors of GEs, (iii) factors influencing the formation of GEs, (iv) potential reaction mechanisms involving the leaving group and reaction intermediates, and (v) analytical methods, including the indirect and direct methods. More importantly, the various elimination methods for GEs in refined edible oils are being reviewed with focus on 3 aspects: (i) inhibition and removal of reactants, (ii) modification of reactive conditions, and (iii) elimination of GE products.

Journal ArticleDOI
TL;DR: How a small fraction of the population might be rendered-either through their genes or a chronic medical condition-particularly susceptible to any adverse effects of sodium benzoate is discussed.
Abstract: Sodium benzoate and potassium sorbate are extremely useful agents for food and beverage preservation, yet concerns remain over their complete safety. Benzoate can react with the ascorbic acid in drinks to produce the carcinogen benzene. A few children develop allergy to this additive while, as a competitive inhibitor of D-amino acid oxidase, benzoate can also influence neurotransmission and cognitive functioning. Model organism and cell culture studies have raised some issues. Benzoate has been found to exert teratogenic and neurotoxic effects on zebrafish embryos. In addition, benzoate and sorbate are reported to cause chromosome aberrations in cultured human lymphocytes; also to be potently mutagenic toward the mitochondrial DNA in aerobic yeast cells. Whether the substantial human consumption of these compounds could significantly increase levels of such damages in man is still unclear. There is no firm evidence that it is a risk factor in type 2 diabetes. The clinical administration of sodium benzoate is of proven benefit for many patients with urea cycle disorders, while recent studies indicate it may also be advantageous in the treatment of multiple sclerosis, schizophrenia, early-stage Alzheimer's disease and Parkinson's disease. Nevertheless, exposure to high amounts of this agent should be approached with caution, especially since it has the potential to generate a shortage of glycine which, in turn, can negatively influence brain neurochemistry. We discuss here how a small fraction of the population might be rendered-either through their genes or a chronic medical condition-particularly susceptible to any adverse effects of sodium benzoate.

Journal ArticleDOI
TL;DR: Almond has a diverse polyphenol profile contributing to both its food quality and health-promoting actions, and putative effects on antioxidant function, detoxification, antiviral activity, anti-inflammatory function, and topical use for inhibiting ultraviolet A damage are suggested.
Abstract: Almond is a nutrient-dense tree nut recognized for its favorable lipid profile, vitamin E content, and polyphenols. The objectives of this review were to determine the polyphenols reported in almond, summarize the methods of analysis, and determine the polyphenol contribution to almond quality and health-promoting activity. Approximately 130 different polyphenols have been identified in almond, although not all of these have been quantitated. The mean and 25% to 75% percentile contents reported in literature were 162 mg (67.1 to 257) proanthocyanidins (dimers or larger), 82.1 mg (72.9 to 91.5) hydrolysable tannins, 61.2 mg (13.0 to 93.8) flavonoids (non-isoflavone), 5.5 mg (5.2 to 12) phenolic acids and aldehydes, and 0.7 mg (0.5 to 0.9) isoflavones, stilbenes, and lignans per 100 g almond. Following solvent extraction of almond, hydrolysis of the residue liberates additional proanthocyanidins, phenolic acids and aldehydes, and total phenols. Blanching and skin removal consistently reduces almond polyphenol content, but blanch water and almond skins retain enough polyphenols to be used as antimicrobial and antioxidant ingredients. Roasting and pasteurization have inconsistent effects on almond polyphenols. Almond polyphenols contribute to shelf life by inhibiting lipid oxidation and providing pigmentation, flavor, astringency, and antimicrobial activity. The health-promoting activity of whole almonds has been widely investigated, but few have considered the contribution of polyphenols. Preclinical studies of polyphenol-rich almond skin or almond extracts suggest putative effects on antioxidant function, detoxification, antiviral activity, anti-inflammatory function, and topical use for inhibiting ultraviolet A damage. Therefore, almond has a diverse polyphenol profile contributing to both its food quality and health-promoting actions.

Journal ArticleDOI
TL;DR: The domestic refrigerator is now a common household device with very few households in the developed world not possessing 1, or more, for the storage of chilled foods, and this review seeks to put this important stage of the food cold chain in its context.
Abstract: The domestic refrigerator is now a common household device with very few households in the developed world not possessing 1, or more, for the storage of chilled foods. Domestic storage is the last, and in many respects the most important, link in the food chill chain. Inadequate domestic refrigeration or cooling is frequently cited as a factor in incidents of food poisoning. The authors reviewed the temperature performance of refrigerators in 2008. This new review builds on that review, covering studies that have been published since (and those that were unfortunately missed in the first review), and also seeks to put this important stage of the food cold chain in its context. It is clear from the published data that many refrigerators throughout the world are running at higher than recommended temperatures. It is also clear that, despite improvements in energy use, the temperature performance and use of refrigerators have not changed significantly in the last 40 or so years. Many householders still remain unaware of the recommended refrigeration temperature range, how to ensure that the correct refrigeration temperature range is achieved, the importance of monitoring that it is being maintained, and the potential hazards of temperature abuse.