scispace - formally typeset
Search or ask a question

Showing papers in "Contributions to Mineralogy and Petrology in 1994"


Journal ArticleDOI
TL;DR: In this paper, amphibole thermodynamics are approximated with the symmetric formalism (regular solution model for within-site non-ideality and a reciprocal solution for cross-site terms) in order to formulate improved thermometers for amphibole-plagioclase assemblages.
Abstract: Amphibole thermodynamics are approximated with the symmetric formalism (regular solution model for within-site non-ideality and a reciprocal solution model for cross-site-terms) in order to formulate improved thermometers for amphibole-plagioclase assemblages. This approximation provides a convenient framework with which to account for composition-dependence of the ideal (mixing-on-sites) equilibrium constants for the equilibria: For A and B all possible within-site and cross-site interactions among the species □−K−Na−Ca−Mg−Fe2+−Fe3+−Al−Si on the A, M4, M1, M3, M2 and T1 amphibole crystallographic sites were examined. Of the 36 possible interaction energy terms, application of the symmetric formalism results in a dramatic simplification to eight independent parameters. Plagioclase nonideality is modelled using Darken's quadratic formalism. We have supplemented an experimental data set of 92 amphibole-plagioclase pairs with 215 natural pairs from igneous and metamorphic rocks in which the pressure and temperature of equilibration are well constrained. Regression of the combined dataset yields values for the eight interaction parameters as well as for apparent enthalpy, entropy and volume changes for each reaction. These parameters are used to formulate two new thermometers, which perform well (±40°C) in the range 400–1000°C and 1–15 kbar over a broad range of bulk compositions, including tschermakitic amphiboles from garnet amphibolites which caused problems for the simple thermometer of Blundy and Holland (1990). For silica-saturated rocks both thermometers may be applied: in silica-undersaturated rocks or magmas thermometer B alone can be applied. An improved procedure for estimation of ferric iron in calcic amphiboles is presented in the appendix.

2,039 citations


Journal ArticleDOI
TL;DR: In this article, the results of dehydration experiments on a basaltic composition amphibolite under conditions appropriate to a hot slab geotherm (1.5 and 2.0 GPa) were presented.
Abstract: This study presents the results of dehydration melting experiments on a basaltic composition amphibolite under conditions appropriate to a hot slab geotherm (1.5 and 2.0 GPa and temperatures of 850 to 1150° C). Dehydration melting produces an omphacitic augite and garnet bearing residue coexisting with rhyolitic to andesitic composition melts. At 1.5 GPa, the amphibolite melts in two stages between 800 and 1025° C. The 2.0 GPa data also define two melting stages. At 2.0 GPa, the first stage involves nearly modal melting of the original amphibolite minerals (qtz, pl, amp) to produce melt + cpx + grt. During the second stage, the eclogite restite melts non-modally (0.86 cpx + 0.14 grt = 1 melt). The experimental results were combined with data from the literature to generate a composite P-T phase diagram for basaltic composition amphibolites over the 800 to 1100° C temperature range for pressures up to 2.0 GPa. Comparison of the major element compositions of the experimentally produced melts with compositions of presumed slab melts (adakites) shows that partial melting of amphibolite at conditions appropriate to a hot-slab geotherm produces melts similar to andesitic and dacitic adakites except for significant MgO and CaO depletions. Trace element modelling of amphibolite dehydration melting using the 2.0 GPa melting reactions produces REE abundances similar to those of adakites at 10–15 wt% batch melting, but the models do not reproduce the high Sr/Y ratios characteristic of adakites. Taken together, the major and trace element results are not consistent with the derivation of adakites by dehydration melting of the subducted slab with little or no interaction with the mantle wedge or crust. If adakites are partial melts of the subducted slab, they must undergo significant interaction with the mantle and/or crust, during which they acquire a number of their distinctive characteristics.

784 citations


Journal ArticleDOI
TL;DR: In this article, the authors simulated the dehydration-melting of a natural, low-K, calcic amphibolite (67.4% hornblende, 32.5% anorthite) in piston-cylinder experiments at 10 kbar and 750-1000°C, for 1-9 days.
Abstract: We have simulated the dehydration-melting of a natural, low-K, calcic amphibolite (67.4% hornblende, 32.5% anorthite) in piston-cylinder experiments at 10 kbar and 750–1000°C, for 1–9 days. The solidus temperature is lower than 750°C; garnet appears at 850°C. The overall reaction is: Hb+P→L+Cpx+Al-Hb+Ca-Hb+Ga+Opx. Three stages of reaction are: (1) melting dominated by the growth of clinopyroxene and garnet, with little change in composition of liquid or garnet, (2) a reversal of this reaction between 875°C and 900°C, with decreases in the amounts of liquid and garnet, and (3) a large increase in liquid along with the loss of hornblende and decrease of plagioclase while clinopyroxene and garnet increase. Garnet is enriched in pyrope and zoned from Fe-cores to Mg-edges (range ∼3 mol % pyrope); liquid composition is enriched first in An (to ∼950°C) and then in Ab. The liquids are more calcic and aluminous than natural tonalites, which is attributed to the plagioclase composition (An90). The formation of peraluminous liquid from the metaluminous amphibolite is caused by anorthite — not H2O-saturated conditions. The results are consistent with an amphibolite phase diagram with relatively high solidus temperatures in the garnet-absent field (900–1000°C), but with a solidus backbend at ∼7–9 kbar, coincident with the garnet-in boundary. Hornblende breakdown due to garnet formation in a closed system must make H2O available for H2O-undersaturated melting right down to the H2O-saturated solidus, below 700°C, which defines a large low-temperature PT area where hydrous granitoid melts can be generated with residual garnet and hornblende.

781 citations


Journal ArticleDOI
TL;DR: In this article, a series of experiments, between 100 and 2000 MPa, on the fluid-absent melting of a quartz-rich aluminous metagreywacke composed of 32 wt% plagioclase (Pl) (An22), 25 wt % biotite (Bt) (XMg45), and 41 wt percent quartz (Qtz), were carried out using a powder of minerals (≤5μm) and a glass of the same composition.
Abstract: Island arcs, active and passive margins are the best tectonic settings to generate fertile reservoirs likely to be involved in subsequent granitoid genesis. In such environments, greywackes are abundant crustal rock types and thus are good candidates to generate large quantities of granitoid magmas. We performed a series of experiments, between 100 and 2000 MPa, on the fluid-absent melting of a quartz-rich aluminous metagreywacke composed of 32 wt% plagioclase (Pl) (An22), 25 wt% biotite (Bt) (X Mg45), and 41 wt% quartz (Qtz). Eighty experiments, averaging 13 days each, were carried out using a powder of minerals (≤5μm) and a glass of the same composition. The multivariant field of the complex reaction Bt+Pl+Qtz⇔Grt/Crd/Spl+ Opx+Kfs+melt limited by the Opx-in and Bt-out curves, is located between 810–860°C at 100 MPa, 800–850°C at 200 MPa, 810–860°C at 300 MPa, 820–880°C at 500 MPa, 860–930°C at 800 MPa, 890–990°C at 1000 MPa, and at a temperature lower than 1000°C at 1500 and 1700 MPa. The melting of biotite+plagioclase+ quartz produced melt+orthopyroxene (Opx) +cordierite (Crd) or spinel (Spl) at 100, 200 and 300 MPa, and melt+orthopyroxene+garnet (Grt) from 500 to 1700 MPa (+Qtz, Pl, FeTi Oxide at all pressures). K-feldspar (Kfs) was found as a product of the reaction in some cases and we observed that the residual plagioclase was always strongly enriched in orthoclase component. The P-T surface corresponding to the multivariant field of this reaction is about 50 to 100°C wide. At temperatures below the appearance of orthopyroxene, biotite is progressively replaced by garnet with increasing P. At 850°C, we observed that (1) the modal proportion of garnet increases markedly with P; (2) the grossular content of the garnet increases regularly from about 4 mol% at 500 MPa to 15 mol% at 2000 MPa. These changes can be ascribed to the reaction Bt+Pl+Qtz ⇔ Grt+Kfs+melt with biotite +plagioclase+quartz on the low-P side of the reaction. As a result, at 200 MPa, we observed the progressive disappearance of biotite without production of orthopyroxene. These experiments emphasize the importance of this reaction for the understanding of partial melting processes and evolution of the lower continental crust. Ca-poor Al-metagreywackes represent fertile rocks at commonly attainable temperatures (i.e. 800–900°C), below 700 MPa. There, 30 to 60 vol.% of melt can be produced. Above this pressure, temperatures above 900°C are required, making the production of granitoid magmas more difficult. Thin layers of gneisses composed of rothopyroxene, garnet, plagioclase, and quartz (±biotite), interbedded within sillimanite-bearing paragneisses, are quite common in granulite terrains. They may result from partial melting of metagreywackes and correspond to recrystallized mixtures of crystals (+trapped melt) left behind after removal of a major proportion of melt. Available experimental constraints indicate that extensive melting of pelites takes place at a significantly lower temperature (850°C±20) than in Al-metagreywackes (950°C±30), at 1000 MPa. The common observation that biotite is no longer stable in aluminous paragneisses while it still coexists commonly with orthopyroxene, garnet, plagioclase and quartz, provides rather tight temperature constraints for granulitic metamorphism.

502 citations


Journal ArticleDOI
TL;DR: In this article, a model is developed that satisfies the petrologic temperature constraints and involves magma generation whereby a heterogeneous distribution of H2O in the mantle results in the production of a spectrum of mantle melts ranging from wet (calc-alkaline) to dry (tholeiitic).
Abstract: Quaternary volcanism in the Mt. Shasta region has produced primitive magmas [Mg/(Mg+Fe*)>0.7, MgO>8 wt% and Ni>150 ppm] ranging in composition from high-alumina basalt to andesite and these record variable extents ofmelting in their mantle source. Trace and major element chemical variations, petrologic evidence and the results of phase equilibrium studies are consistent with variations in H2O content in the mantle source as the primary control on the differences in extent of melting. High-SiO2, high-MgO (SiO2=52% and MgO=11 wt%) basaltic andesites resemble hydrous melts (H2O=3 to 5 wt%) in equilibrium with a depleted harzburgite residue. These magmas represent depletion of the mantle source by 20 to 30 wt% melting. High-SiO2, high-MgO (SiO2=58% and MgO=9 wt%) andesites are produced by higher degrees of melting and contain evidence for higher H2O contents (H2O=6 wt%). High-alumina basalts (SiO2=48.5% and Al2O3=17 wt%) represent nearly anhydrous low degree partial melts (from 6 to 10% depletion) of a mantle source that has been only slightly enriched by a fluid component derived from the subducted slab. The temperatures and pressures of last equilibration with upper mantle are 1200°C and 1300°C for the basaltic andesite and basaltic magmas, respectively. A model is developed that satisfies the petrologic temperature constraints and involves magma generation whereby a heterogeneous distribution of H2O in the mantle results in the production of a spectrum of mantle melts ranging from wet (calc-alkaline) to dry (tholeiitic).

236 citations


Journal ArticleDOI
TL;DR: A suite of biotite-hornblende granodiorite intrusions has been emplaced into blueschist-facies metasediments in northwest Anatolia, following collision between two continental margins, now represented by the Tavsanli and Sakarya zones as mentioned in this paper.
Abstract: A suite of biotite-hornblende granodiorite intrusions has been emplaced into blueschist-facies metasediments in northwest Anatolia, following collision between two continental margins, now represented by the Tavsanli and Sakarya zones. The 40Ar/39Ar ages of phengites and glaucophanes from the blueschists, metamorphosed under unusually high P-low T conditions (P=20±2 kbar, T=430±30° C), suggest that metamorphism apparently occurred over a period spanning at least 20 Ma from 108 to 88 Ma. Post-tectonic granodiorites were emplaced during the Eocene (53 to 48 Ma) resulting in a cordierite and andalusite-bearing thermal aureole, indicative of pressures of ∼3 kbar. Trace-element systematics of the granodiorites are consistent with a derivation either from mantle-derived magmas by fractional crystallisation in shallow magma chambers, or from anatexis of crustal lithologies of internediate composition at pressures <10 kbar. The preservation of high P-low T assemblages in the blueschists together with the range of ages determined for blueschist-facies metamorphism are indicative of rapid exhumation of delaminated fragments from a subducted continental margin. However decompression melting of the crust is unlikely to have been a significant cause of magmatism, both because exhumation of the blueschists from deep crustal levels predated magmatism by at least 25 Ma, and because of the small melt fraction (<0.1) that may be generated in crustal lithologies by this process. Melting in the mantle wedge is required either to generate a primary melt for the derivation of magmas of intermediate composition or to provide an advective heat source for crustal melting. The cause of melt formation in the upper mantle may be related to the termination of subduction following collision during the Mid-Eocene.

228 citations


Journal ArticleDOI
TL;DR: In this paper, two types of zonal structure were observed in relatively coarse-grained sodic pyroxenes in the matrix, one type is characterized by increasing X676Jd from core to rim, the other type by decreasing X fixmeJdfrom core-to-rim.
Abstract: Sodic pyroxene (jadeite content X jd=0.1–0.3) occurs locally as small inclusions within, albite porphyroblasts and in the matrix of hematite-bearing quartz schists in the Sanbagawa (Sambagawa) metamorphic belt, central Shikoku, Japan. The sodic, pyroxene-bearing samples are characteristically free from chlorite and their typical mineral assemblage is sodic pyroxene+subcalcic (or sodic) amphibole+phengitic mica+albite+quartz+hematite+titanite±epidote. Spessartine-rich garnet occurs in Mn-rich samples. Sodic pyroxene in epidote-bearing samples tends to be poorer in acmite content (average X Acm=0.26–0.50) than that in the epidote-free samples (X Acm=0.45–0.47). X Jd shows no systematic relationship to metamorphic grade, and is different among the three sampling regions [Saruta-gawa, Asemi-gawa and Bessi (Besshi)]. The average X Jd of the Saruta-gawa samples (0.21–0.29) is higher than that of the Asemi-gawa (0.13–0.17) and Bessi (0.14–0.23). The P-T conditions of the Asemi-gawa and Bessi regions are estimated at 5.5–6.5 kbar, >360°C in the chlorite zone, 7–8.5 kbar, 440±15°C in the garnet zone and 8–9.5 kbar, 520±25°C in the albite-biotite zone. Metamorphic pressure of the Saruta-gawa region is systematically 1–1.5 kbar higher than that of the Asemi-gawa and Bessi regions, and materials of the Saruta-gawa region have been subducted to a level 3–5 km deeper than materials that underwent metamorphism at equivalent temperatures and are now exposed in the Asemi-gawa and Bessi regions. Pressure slightly increases toward the north (structurally high levels) through the Sanbagawa belt of central shikoku. Two types of zonal structure were observed in relatively coarse-grained sodic pyroxenes in the matrix. One type is characterized by increasing X Jd from core to rim, the other type by decreasing X Jd from core to rim. Both types of zoned pyroxenes show an increase in X Fe 2+[=Fe2+/(Fe2++Mg)] from core to rim. The first type of zoning was observed in a sample from the chlorite zone of lowest grade, whereas the latter occurs in the garnet and albite-biotite zones of higher grade. The contrast in zonal structure implies that dP/dT during prograde metamorphism decreased with increasing metamorphic grade and may have been negative in some samples from the higher-grade zones. The estimated dP/dT of the prograde stage of the chlorite zone is 3.2 kbar/100°C, and that of the garnet and albite-biotite zones is -1.8 to 0.9 kbar/100°C. The variation of dP/dT at shallow and deep levels of a subduction system probably reflects the difference of heating duration and/or change in thermal gradient of the subduction zone by continuous cooling of the surrounding mantle.

198 citations


Journal ArticleDOI
TL;DR: In this article, step-wise dissolution techniques applied to a variety of zircon samples, including those with combined inheritance plus later isotopic disturbance, reveal both the complexity of ZIRcon isotopic systematics, and successfully "see through" this complexity to extract high-quality age information.
Abstract: Step-wise dissolution techniques applied to a variety of zircon samples, including those with combined inheritance plus later isotopic disturbance, reveal both the complexity of zircon isotopic systematics, and successfully “see through” this complexity to extract high-quality age information. The chemical procedures for the partial dissolution steps must be designed to extract completely all the U and Pb associated with the zircon digested in each step, in order to avoid large, laboratory-induced fluctuations in U/Pb ratio from step to step. In general, relatively short initial partial dissolution steps remove disturbed zircon domains characterized by very high U concentrations and low 206Pb/238U ages. In some cases the initial step yields the lowest 206Pb/238U age, reflecting both the high accessibility and solubility of the most disturbed domains. In other cases, disturbed domains evidently reside deep within the zircons, and are attacked only when the second or third steps penetrate to the interior via cracks or flaws to “mine out” these domains. In all the samples in this study, and regardless of the details of the steps, about a week of digestion time at 80°C removed most of the highly disturbed domains, leaving further partial dissolution steps and/or the total digestion of the final residue to sample highly refractory (i.e., highly insoluble), relatively low U zircon domains. The early partial digestion steps also remove virtually all the common Pb associated with the zircons. Study of partially digested zircons by scanning electron microscope reveals that at least in part, the disturbed, high-U, highly soluble domains and the less (un-?) disturbed, low-U, highly refractory domains are defined by primary igneous zoning on a micron or even sub-micron scale, well below the resolution of the “SHRIMP”, for example. In the case of zircons lacking any inheritance, the residue analyses yield near-concordant, highly precise results. In the case of zircons with inherited components, the residue analyses appear to plot on “primary” discordia lines. Depending on the relative solubility of the inherited versus the igneous component, the final residue will concentrate one or the other.

184 citations


Journal ArticleDOI
TL;DR: In this article, the abundance of coexisting structural units in K-, Na-, and Li-silicate melts and glasses from 25° to 1654°C was determined with in-situ micro-Raman spectroscopy.
Abstract: The abundance of coexisting structural units in K-, Na-, and Li-silicate melts and glasses from 25° to 1654°C has been determined with in-situ micro-Raman spectroscopy. From these data an equilibrium constant, Kx, for the disproportionation reaction among the structural units coexisting in the melts, Si2O5(2Q3)⇔SiO3(Q2)+SiO2(Q4), was calculated (Kx is the equilibrium constant derived by using mol fractions rather than activities of the structural units). From ln Kx vs l/T relationships the enthalpy (ΔHx) for the disproportionation reaction is in the range of-30 to 30 kJ/mol with systematic compositional dependence. In the potassium and sodium systems, where the disproportionation reaction shifts to the right with increasing temperature, the ΔHx increases with silica content (M/Si decreases, M=Na, K). For melts and supercooled liquids of composition Li2O·2SiO2 (Li/Si=1), the ΔHx is indistinguishable from 0. By decreasing the Li/Si to 0.667 (composition LS3) and beyond (e.g., LS4), the disproportionation reaction shifts to the left as the temperature is increased. For a given ratio of M/Si (M=K, Na, Li), there is a positive, near linear correlation between the ΔHx and the Z/r2 of the metal cation. The slope of the ΔHx vs Z/r2 regression lines increases as the system becomes more silica rich (i.e., M/Si is decreased). Activity coefficients for the individual structural units, γi, were calculated from the structural data combined with liquidus phase relations. These coefficients are linear functions of their mol fraction of the form γi=a lnX i+b, where a is between 0.6 and 0.87, and X i is the mol fraction of the unit. The value of the intercept, b, is near 0. The relationship between activity coefficients and abundance of individual structural units is not affected by temperature or the electronic properties of the alkali metal. The activity of the structural units, however, depend on their concentration, type of metal cation, and on temperature.

177 citations


Journal ArticleDOI
Yang Ai1
TL;DR: In this paper, a comprehensive experimental dataset was used to analyse the compositional dependence of the garnet-clinopyroxene Fe2+/Mg partition coefficient (K¯¯d).
Abstract: A comprehensive experimental dataset was used to analyse the compositional dependence of the garnet-clinopyroxene Fe2+/Mg partition coefficient (K d). The Mg no. of garnet was found to have a significant effect on the K d, in addition to calcium content of garnet. An empirical model was developed to relate these effects with equilibrium temperature and pressure in the form of a conventional geothermometer, T(K) = { − 1629[XGt Ca]2 + 3648.55[XGt Ca] − 6.59[Mg no. (Gt)] + 1987.98 + 17.66P (kbar)}/(In kd + 1.076). Application of this thermometer produced reasonable temperature estimates for rocks from the lower crust (garnet amphibolites, granulites and eclogites) and the upper mantle (eclogite and lherzolite xenoliths in kimberlites, mineral inclusions in diamonds).

171 citations


Journal ArticleDOI
TL;DR: The size distributions of olivine, plagioclase and oxides of the 1991/93 eruption at Mt. Etna (Italy) were analyzed in this article, showing that the main features of the volcano feeding system have not changed despite observed variations in the magma output rates.
Abstract: The size distributions of crystals of olivine, plagioclase and oxides of the 1991/93 eruption at Mt. Etna (Italy) are analyzed. The simultaneous collection of this information for different minerals gives precious insight into the cooling history of lavas. Three distinct episodes are detectable: a storage of the magma in a deep reservoir, characterized by nearly constant and low nucleation and growth rates (near to equilibrium); an ascent phase, with an ever increasing nucleation rate related to volatile exsolution; and finally a quenching phase. In addition to geochemical and geophysical evidence, the similarity of the crystal size distributions of the present eruption with those of previous ones of this century makes it possible to exclude that crystal size distributions of Etnean lavas are due to mixing of different populations. This strongly suggests that the main features of the volcano feeding system have not changed despite observed variations in the magma output rates.

Journal ArticleDOI
TL;DR: In this article, the authors proposed that crystal defects play a major role in non-decrepitative preferential H2O leakage through quartz, and remain effective during metamorphism.
Abstract: Preferential leakage of H2O from fluid inclusions containing multiple gas components has been suspected in natural metamorphic rocks and has been demonstrated experimentally for synthetic H2O-CO2-rich inclusions in natural quartz. Knowledge of the physical and chemical characteristics of the leakage mechanism, which may be very complex, increases the value of natural fluid inclusions to metamorphic geology. It is proposed that crystal defects play a major role in nondecrepitative preferential H2O leakage through quartz, and remain effective during metamorphism. Inclusions with either an internal overpressure or underpressure produce strain in the adjacent quartz crystal via the nucleation of many dislocations and planar defects (like Dauphine twin boundaries). These defects allow preferential loss of H2O from H2O-CO2-rich inclusions at supercritical conditions. The transport capacity of this leakage mechanism is enhanced by nucleation of small bubbles on defect structures. The nucleation of these bubbles seems to be a recovery process in strained crystals. Solubility gradients of quartz in water in a crystal with internally underpressurized inclusions may result in optical visible implosion halos in a three dimensional spatial arrangement, caused by the growth of small bubbles at the expense of the larger original fluid inclusion. Natural fluid inclusions from Naxos (Greece) are always associated with numerous interlinked dislocations. These dislocations may have been produced by plastic derormation or by crystal growth related processes (e.g. crack healing). The presence of small bubbles on these dislocations indicates that a similar leakage mechanism for H2O must have occurred in these rocks.

Journal ArticleDOI
TL;DR: In this paper, a comprehensive study for rhyolites from the Maroa Volcanic Centre in the Taupo Volcanics Zone (TVZ) of New Zealand is reported, which is consistent with the Nd-Sr isotopic constraints.
Abstract: A comprehensive Sr−Nd−Pb−O isotopic study is reported for rhyolites from the Maroa Volcanic Centre in the Taupo Volcanic Zone (TVZ) of New Zealand. The Sr−Nd isotopic compositions of the rhyolites (87Sr/86Sr=0.705236 to 0.705660 and ɛNd = 2.0 to 0.2) are intermediate between those of primitive basalts (87Sr/86Sr=0.70387 and ɛNd = 5.3) and the Torlesse basement (87Sr/86Sr=0.709 and ɛNd = -4.5). The relatively low ‘mantle-like’ oxygen isotopic compositions of δ18 O = 7 ± 0.5 are consistent with the Nd-Sr isotopic constraints in that they can be accounted for by ∼15% to 25% crustal contamination of a basaltic parent by relatively δ18 O-rich Torlesse metasediment. High precision Pb isotopic analyses of plagioclase separates from the Maroa rhyolites show that they have essentially the same compositions as the Torlesse metasedimentary terrane which is itself distinctive from the Western or Waipapa metasediments. Due to the high concentration of Pb in the Torlesse metasediments (>20 ppm) compared to the basalts ( 10%) of crustal contamination. All these results are shown to be consistent with derivation of the rhyolites by ∼15% to 25% contamination of relatively primitive basaltic magmas with Torlesse metasedimentary crust, followed by extensive, essentially closed system fractionation of the ‘basalt’ to a magma of rhyolite composition. It is argued that the processes of assimilation and fractionation are separated in both space and time. The voluminous high silica rhyolites, which make up >97% of the exposed volcanism in the continental margin back-are basin environment of the TVZ, therefore appear to be a product of predominantly new additions to the crust with assimilation-recycling of pre-existing crust being of secondary importance.

Journal ArticleDOI
TL;DR: In this paper, the stability of lawsonite has been investigated at pressures of 6 to 14 GPa and temperatures of 740 to ≈1150°C in a multi-anvil apparatus.
Abstract: The stability relations of lawsonite, CaAl2Si2O7(OH)2H2O, have been investigated at pressures of 6 to 14 GPa and temperatures of 740 to ≈1150°C in a multi-anvil apparatus. Experiments used the bulk composition lawsonite+H2O to determine the maximum stability of lawsonite. Lawsonite is stable on its own bulk composition to a pressure of ≈13.5 GPa at 800°C, and between ≈6.5 and 12 GPa at 1000°C. Its composition does not change with pressure or temperature. All lawsonite reactions have grossular, vapour and two other phases in the system Al2O3-SiO2-H2O (ASH) on their high-temperature side. A Schreinemakers analysis of the ASH phases was used to relate the reactions to each other. At the lowest pressures studied lawsonite breaks down to grossular+kyanite+coesite+vapour in a reaction passing through ≈980°C at 6 GPa and ≈1070°C at 9 GPa. Above 9 GPa the reactions coesite=stishovite and kyanite+vapour=topaz-OH are crossed. The maximum thermal stability of lawsonite is at ≈1080°C, at ≈9.4 GPa. At higher pressures the lawsonite breakdown reactions have negative slopes. The reaction lawsonite=grossular+topaz-OH+stishovite+vapour passes through ≈1070°C at 10 GPa and ≈1010°C at 12 GPa. At 14 GPa, ≈740–840°C, lawsonite is unstable relative to the assemblage grossular+diaspore+vapour+a hydrous phase with an Al:Si ratio of 1:1. Oxide totals in electron microprobe analyses suggest that the composition of this phase is AlSiO3(OH). Two experiments on the bulk composition lawsonite+pyrope [Mg3Al2Si3O12] show that at 10 GPa the reaction lawsonite=Gr-Pyss+topaz-OH+stishovite+vapour is displaced down temperature from the end-member reaction by ≈200°C for a garnet composition of Gr20Py80. Calculations suggest similar temperature displacements for reaction between lawsonite and Gr-Py-Alm garnets of compositions likely to occur in high-pressure eclogites. Temperatures in subduction zones remain relatively low to considerable depth, and therefore slab P-T paths can be within the stability field of lawsonite from the conditions of its crystallisation in blueschists and eclogites, up to pressures of at least 10 GPa. Lawsonite contains 11.5 wt% H2O, which when released may trigger partial melting of the slab or mantle, or be incorporated in hydrous phases such as the aluminosilicates synthesised here. These phases may then transport H2O to an even greater depth in the mantle.

Journal ArticleDOI
TL;DR: The chemical potential of ReO2 has been measured between 850 and 1250 K via an electrochemical method using calcia-stabilized zirconia electrolytes and either Ni+NiO or Cu+Cu2O as the reference electrode.
Abstract: The chemical potential of oxygen defined by the equilibrium: $$\operatorname{Re} (solid) + O_2 (gas) = \operatorname{Re} O_2 (solid)$$ has been measured between 850 and 1250 K via an electrochemical method using calcia-stabilized zirconia electrolytes and either Ni+NiO or Cu+Cu2O as the reference electrode. The results are: $$\begin{array}{*{20}c} {\mu O_2 ^{\operatorname{Re} + \operatorname{Re} O_2 } ( \pm 400) = - 451020 + 297.595 T} \\ { - 14.6585 T In T(850< T< 1250)} \\ \end{array} $$ where μO2 is in J·mol-1,T in kelvins, and the reference pressure for O2 is 1 bar (105 Pa). (Values in terms of log-\(f_{O_2 }\)may be obtained from the above expression by dividing by RTln10, whereR=8.31441 J.K-1·mol-1). The standard enthalpy of formation of ReO2 is-444.350±0.400 (1σ) kJ·mol-1, requiring a significant modification to previously published estimates. These results were checked in hydrothermal experiments using the double capsule method with NiO+Ni−Pd alloy as an oxygen sensor. Reversals atP=1 kbar over theT range 823 to 1073 K are in good agreement with the electrochemical measurements. These latter results also serve to demonstrate: (1) the usefulness of the “redox sensor” method; (2) the viability of using Re+ReO2 as a buffer in hydrothermal experiments. Re+ReO2 lies nearly midway between the Ni+NiO and Fe3O4+Fe2O3 buffers in μO2-T space, and thus fills a petrologically important gap in the range of μO2s which can be covered by accurately calibrated oxygen buffers.

Journal ArticleDOI
TL;DR: In this paper, the growth rates of garnets from metamorphic rocks of the Tauern Window, Eastern Alps were measured using Rb-Sr isotopes, which indicated an average growth duration of 5.4±1.7 million years.
Abstract: In order to evaluate rates of tectonometamorphic processes, growth rates of garnets from metamorphic rocks of the Tauern Window, Eastern Alps were measured using Rb-Sr isotopes. The garnet growth rates were determined from Rb-Sr isotopic zonation of single garnet crystals and the Rb-Sr isotopic compositions of their associated rock matrices. Garnets were analyzed from the Upper Schieferhulle (USH) and Lower Schieferhulle, (LSH) within the Tauern Window. Two garnets from the USH grew at rates of 0.67 −0.13 +0.19 mm/million years and 0.88 −0.19 +0.34 mm/million years, respectively, indicating an average growth duration of 5.4±1.7 million years. The duration of growth coupled with the amount of rotation recorded by inclusion trails in the USH garnets yields an average shear-strain rate during garnet growth of 2.7 −0.7 +1.2 ×10-14 s-1. Garnet growth in the sample from the USH occurred between 35.4±0.6 and 30±0.8 Ma. The garnet from the LSH grew at a rate of 0.23±0.015 mm/million years between 62±1.5 Ma and 30.2±1.5 Ma. Contemporaneous cessation of garnet growth in both units at ∼30 Ma is in accord with previous dating of the thermal peak of metamorphism in the Tauern Window. Correlation with previously published pressure-temperature paths for garnets from the USH and LSH yields approximate rates of burial, exhumation and heating during garnet growth. Assuming that theseP — T paths are applicable to the garnets in this study, the contemporaneous exhumation rates recorded by garnet in the USH and LSH were approximately 4 −2 +3 mm/year and 2±1 mm/year, respectively.

Journal ArticleDOI
TL;DR: U-Pb isotopic relations in zircon and titanite of granulite and amphibolite gneisses in the Lewisian complex and bordering Laxford Front reveal complex discordance patterns indicating multiple Late Archean and Early Proterozoic crystallization, overgrowth and Pb-loss events as discussed by the authors.
Abstract: U-Pb isotopic relations in zircon and titanite of granulite and amphibolite gneisses in the Lewisian complex and bordering Laxford Front reveal complex discordance patterns indicating multiple Late Archean and Early Proterozoic crystallization, overgrowth and Pb-loss events. The earliest stages in the evolution of the complex remain poorly resolved. Zircon ages of ≥2710 Ma date high-grade metamorphism and magmatism probably related to tectonic and magmatic accretion in a continental arc setting. A distinct event at 2490–2480 Ma, possibly initiated by metamorphism and deformation at high-grade conditions, caused amphibolitization of the granulites and emplacement of granitic pegmatites. This event can be correlated with development of Inverian shear zones and formation of granitoid layers along the Laxford Front. The emplacement of a younger generation of granitoid sheets during the Laxfordian event fromed hydrothermal titanite at ≥1754 Ma in gneisses south of the Laxford Bridge and partially reset older titanite at Scourie. Growth of secondary titanite and rutile also occurred during subsequent low-grade metamorphism at 1690–1670 Ma.

Journal ArticleDOI
TL;DR: In this article, the internal morphologies of zircon crystals from different types of granitoids (alkaline, calcalkaline and anatectic) are revealed by cathodoluminescence imaging and are described in terms of growth rates of the crystal faces relative to each other.
Abstract: The internal morphologies of zircon crystals from different types of granitoids (alkaline, calcalkaline and anatectic) are revealed by cathodoluminescence imaging and are described in terms of growth rates of the crystal faces relative to each other. Zircons in the alkaline granitoids are characterized by high and constant growth rates of {010} relative to the pyramidal forms and by symmetric grwoth of {011}. Zircons in the calcalkaline and anatectic granitoids are characterized by fluctuating or gradually decreasing relative growth rates of {010}, by asymmetric and highly variable growth of {011}, and by a tendency of {110} to become grwoth-inhibited. Corrosion events are interspersed during zircon growth in the calcalkaline magmas. In the calcalkaline and anatectic magmas, a discontinuity breaks the morphological evolution at late stages of crystallization. The discontinuity coincides with a sharp drop in cathodoluminescence. The growth behaviour of each crystal form is analysed and compared with predictions made by the periodic bond chain (PBC) theory. It is argued that the relative growth rate of {010} depends on supersaturation, that the growth rates of {011} faces are changed in response to different ratios of adsorbing cations (Na, K, Al), and that {110} faces become growth-inhibited by the adsorption of H2O or trace elements enriched in the residual liquid. Morphological and chemical discontinuities at late stages of crystallization are reasonably explained by the formation of larger growth units (from smaller ionic entities) in the residual liquid. Important factors controlling the zircon morphology in different types of granitoids are: high cooling rates (alkaline magmas), magma mixing (calcalkaline magmas), enrichment of H2O and trace elements in residual liquids (calcalkaline and anatectic magmas), and the major element chemistry of the magma, possibly the ratio of Na and K to Al (agpaicity).

Journal ArticleDOI
TL;DR: In this paper, the relative and absolute abundances of the LILE (large-ionlithophile elements) of basaltic basalts in the West Antarctic rift system were investigated.
Abstract: Cenozoic, mafic alkaline volcanic rocks throughout West Antarctica (WA) occupy diverse tectonic environments. On the Antarctic Peninsula (AP), late Miocene-Pleistocene (7 to <1 Ma) alkaline basaltic rocks were erupted <1 to 45 million years after subduction ceased along the Pacific margin of the AP. In Marie Byrd Land (MBL), by contrast, alkaline basaltic volcanism has been semi-continuous from 25–30 Ma to the present, and occurs in the West Antarctic rift system. Together, these Antarctic tectono-magmatic associations are analogous to the Basin and Range, Sierran, and Coast Range batholith provinces. Unlike the western US, however, basaltic rocks throughout WA have uniform geochemical characteristics, with especially narrow ranges in initial87Sr/86Sr (0.7026–0.7035),143Nd/144Nd (0.51286–0.51299), and La/Nb (0.6–1.4) ratios, suggesting very limited liput from “old” subcontinental lithosphere or crustal sources during magma genesis. However, there are significant differences in the relative and absolute abundances of the LILE (large-ionlithophile elements), and these divide WA into two provinces. Basalts from the AP region have unusually high K/Ba and K/Rb ratios (50–140 and 500–1500 respectively) and marked Ba depletion (Ba/Nb=2.5–8.0; Ba ppm 66–320) relative to MBL basalts, which have LILE distributions within the range for OIB (ocean-island basalt) (K/Ba <50, Ba/Nb 5–20). This geochemical contrast is accompanied by a three-fold increase in the age range of volcanic activity and a three orders of magnitude increase in the volume of eruptive products, within MBL. The regional differences in geochemistry, and in the volume and duration of volcanic activity, are best explained by a plume-related origin for MBL basalts, whereas alkaline magmatism in the AP is causally related to slab window formation following the cessation of subduction. Plume activity has alreadybeen proposed to explain tectonic doming and associated spatial patterns of volcanism in MBL. Most MBL geochemical traits are shared by the volcanic rocks of the western Ross Sea, suggesting that a large plume head underlies the West Antarctic rift system. The uniformity of basalt compositions throughout WA and the entire rift system suggest uniformly minimal extension throughout this region during late Cenozoic time. Differences in crustal thicknesses can be explained by early Cenozoic or pre-Cenozoic extension, but restraint on extension is suggested by the size of the region and the implied size of the plume. The c. 95% encirclement of the Antarctic plate by mid-ocean ridges and transforms restrains extension on a regional scale, leading to nonadiabatic plume rise and correspondingly little decompression melting.

Journal ArticleDOI
TL;DR: In this article, the authors reported the results of a Sm-Nd isotopic, major element and rare earth element (REE) study of the OMG amphibolites and showed that the amphibolite protoliths of the OMG tonalite-amphibolite association are 3.3 Ga isochron age.
Abstract: We report the results of a Sm-Nd isotopic, major element and rare earth element (REE) study of the Older Metamorphic Group (OMG) tonalite-amphibolite association of the eastern Indian Craton. The Older Metamorphic Tonalite Gneisses (OMTG) have been previously dated to be 3.8 Ga using Sm-Nd isotope systematies, and 3.2–3.4 Ga by Rb-Sr and Pb-Pb dating. The results of this study indicate that the protoliths of the OMG amphibolites are 3.3 Ga isochron age=3.30±0.06 Ga, ɛNd= +0.9 ± 0.7), and therefore, the OMTG, which intrude into the associated amphibolites, cannot be any older than 3.3 Ga. The amphibolites display light REE enrichment ((Ce/Yb)N=2.2–6.7; La=30–100 x chondrite) and nearly flat heavy REE patterns ((Tb/Lu)N=1.2–1.9); the basaltic parents of the amphibolites were probably generated by the partial melting of a spinel lherzolite mantle. Strong linear relationships between the amphibolites and tonalites in 147Sm/144Nd-143Nd/144Nd space (isochron age =3.29±0.04 Ga, ɛNd= +0.8 ± 0.8) imply that they are genetically related. The tonalites display fractionated REE patterns (La=100–300 x chondrite) with moderate heavy REE depletions ((Tb/Lu)N=1.9–3.4). The isotopic, major element and REE data are consistent with the derivation of the OMTG from partial melting of OMG amphibolites or equivalent rocks at amphibolegarnet stabilization depths. An initial ɛNd(t) value of +0.9±0.7 for the amphibolites indicates the presence of a slightly depleted mantle source at 3.3 Ga with 147Sm/144Nd. between 0.20 and 0.22. It is suggested that the growth of continental crust in the eastern Indian craton occurred in response to magmatic underplating in a plume setting.

Journal ArticleDOI
TL;DR: In this article, the graphitization process of carbonaceous matter during metamorphism with metamorphic grade was analyzed and the extent of graphitisation could be characterized mainly by temperature, duration of metamorphisms and rock composition.
Abstract: This study is an attempt to correlate the graphitization process of carbonaceous matter during metamorphism with metamorphic grade. Graphitization can be parameterized using crystal structure and chemical and isotopic compositions. The extent of graphitization could be characterized mainly by temperature, duration of metamorphism and rock composition. We compared the graphitization trends for two metamorphic terrains, a contact aureole of the Kasuga area and a regional metamorphic terrain of high-temperature/low pressure type of the Ryoke metamorphic terrain in Northern Kiso area, Central Japan, and for two different lithologies (carbonate and pelite), using X-ray diffractogram, DTA-TG analysis, and chemical and stable isotope analyses. During contact metamorphism, graphitization and carbon isotopic exchange reactions proceeded simultaneously in pelitic and carbonate rocks. The decreases in basal spacing d(002) of the carbonaceous matter in carbonate rocks is greatly accelerated at temperatures higher than about 400° C. Furthermore, carbon isotopic ratios of graphite in carbonate rocks also change to 13C-enriched values implying exchange with carbonates. The beginning of this enrichment of 13C in the carbonaceous matter coincides with an abrupt increase of the graphitization processes. Carbon isotopic shifting up to 5‰ in pelites could be observed as metamorphic temperature increased probably by about 400° C. Carbonaceous matter in pelitic rocks is sometimes a mixture of poorly crystallized organic matter and well-crystallized graphite detritus. DTA-TG analysis is an effective tool for the distinction of detrital graphitic material. Two sources for the original carbon isotopic composition of carbonaceous matter in pelites in the Kasuga contact aureole can be distinguished, about-28‰ and-24‰ regardless of the presence of detrital graphite, and were mainly controlled by depositional environment of the sediments. Graphitization in limestones and pelitic rocks in regional metamorphism proceeds further than in a contact aureole. In the low-temperature range, the differences in extent of graphitization between the two metamorphic regions is large. However, at temperatures higher than 600° C, the extent of graphitization in both regions is indistinguishable. The degree of graphitization is different in limestones and pelitic rocks from the Ryoke metamorphic terrain. We demonstrate that the graphitization involves a progressive re-construction process of the crystal structure. The sequence of the first appearance of crystal inter planar spacing correlates with the metamorphic grade and indicates the crystal growth of three-dimensional structured graphite.

Journal ArticleDOI
TL;DR: In this paper, the authors present experimental phase equilibrium data for one of the fine-grained jotunite (Tjorn locality) occurring along its northwestern lobe in the Bjerkreim-Sokndal layered intrusion.
Abstract: The Bjerkreim-Sokndal layered intrusion is part of the Rogaland anorthosite Province of southern Norway and is made of cumulates of the anorthositemangerite-charnockite suite. This study presents experimental phase equilibrium data for one of the finegrained jotunite (Tjorn locality) occurring along its northwestern lobe. These experimental data show that a jotunitic liquid similar in composition to the Tjorn jotunite, but slightly more magnesian and with a higher plagioclase component is the likely parent of macrocyclic units (MCU)III and IV of the intrusion. The limit of the olivine stability field in the experimentally determined phase diagram as well as comparison of the Al2O3 content of low-Ca pyroxenes from experiments and cumulates (≈1.5%) yields a pressure of emplacement ≤5 kbar. Experimentally determined Fe-Ti oxide equilibria compared to the order of cumulus arrival in the intrusion show that the oxygen fugacity was close to FMQ (fayalite-magnetite-quartz) during the early crystallization. It subsequently decreased relative to this buffer when magnetite disappeared from the cumulus assemblage and then increased until the reentry of this mineral. Calculated densities of experimental liquids show a density increase with fractionation at 7, 10 and 13 kbar due to the predominance of plagioclase in the crystallizing assemblage. At 5 kbar and 1 atm (FMQ-1), where plagioclase is the liquidus phase, density first increases and then drops when olivine (5 kbar) or olivine+ilmenite (1 atm: FMQ-1) precipitate. At 1 atm and NNO (nickel-nickel oxide), the presence of both magnetite and ilmenite as near liquidus phases induces a density decrease. In the Bjerkreim magma chamber, oxides are early cumulus phases and liquid density is then supposed to have decreased during fractionation. This density path implies that new influxes of magma emplaced in the chamber were both hotter and denser than the resident magma. The density contrast inferred between plagioclase and the parent magma shows that this mineral was not able to sink in the magma, suggesting anin situ crystallization process.

Journal ArticleDOI
TL;DR: In this article, chemical data of 39 fresh basaltic glasses from the East Pacific Rise (EPR) between 6 and 30°S and Pb, Sr, and Nd isotopic compositions of 12 basalt glasses are presented.
Abstract: Chemical data of 39 fresh basaltic glasses from the East Pacific Rise (EPR) between 6 and 30°S and Pb, Sr, and Nd isotopic compositions of 12 basalt glasses are presented. Major and trace element data indicate a wide compositional range, including primitive basalts (Mg#=0.67) and highly evolved FeTi-basalts (Mg#=0.34) [molMg/(Mg+Fe2+)]. The compositional range can be attributed to low-pressure fractional crystallization. Fractionation-corrected major element concentrations provide evidence for varying mantle melting conditions. Calculations of the melting conditions suggest melt generation in a rising upper mantle column between 20 and 10 kbar, at temperatures between 1430 and 1280°C, and total degrees of partial melting between 17 and 20% by weight. Leached and hand-picked basalt glasses display large variations in 87Sr/86Sr (0.70235–0.70270), 143Nd/144Nd (0.51312–0.51323), and 206Pb/204Pb (18.064–18.665), but are similar to other N-type MORB from the EPR. The isotopic ratios of basalts from 13 to 23°S show strong correlations and delineate two systematic trends. From 23 to 17°S, 87Sr/86Sr and Pb isotope ratios increase and 143Nd/144Nd decrease in agreement with previous results (Mahoney et al. 1989). A reverse trend is indicated by basalts from 17 to 13°S. However, K/Ti and (La/Sm)N continuously increase from 23 to 13°S. This opposite behavior indicates a recent decoupling of isotopic and minor element ratios in the mantle between 13 and 17°S. North of 13.5°S (Garrett Fracture Zone), isotopic data show no systematic variation with ridge location and display an overall weaker covariation. The results suggest that the isotopic variations and ridge segmentation appear to be unrelated and that major ridge offsets apparently coincide with changes in mantle melting conditions (P, T, F) (F, degrees of melting). There is no evidence for a systematic relationship between calculated melting conditions and second order ridge segmentation. Our isotopic data provide further evidence for regionally confined chemical variations in the mantle at 5 to 30°S. We interpret the isotopic trends as reflecting melting of distinct smallvolume and old enriched mantle components. In contrast, variations in trace elements are attributed to young mantle differentiation processes.

Journal ArticleDOI
TL;DR: In this article, a new form of equation of state is described with application to carbon dioxide from 215 K to T>2000 K and from zero pressure to more than 105 bar (10 GPa).
Abstract: A new form of equation of state is described with application to carbon dioxide from 215 K to T>2000 K and from zero pressure to more than 105 bar (10 GPa). The equation was calibrated using properties predicted by existing formulations at low to moderate PT conditions, original experimental PVT data at higher pressures, corresponding states comparisons at higher temperatures and using shock compression data at still higher PTs. Extensive comparisons illustrating the correlation of our new EOS with available phase equilibria and volumetric data are provided. Fugacities of carbon dioxide at high pressures and temperatures predicted using our EOS are in agreement with mineral equilibria calculated from internally consistent thermodynamic data for minerals.

Journal ArticleDOI
TL;DR: In this paper, the combined isotope and trace element systematics support a model of mixing between depleted, MORB-like mantle and Pacific pelagic sediments, and a best estimate of the composition of the sedimentary component has been determined by analyzing samples of differing lithology from DSDP Sites 579 and 581 in the western Pacific, east of the Japan arc.
Abstract: Ocean Drilling Program Legs 127 and 128 in the Yamato Basin of the Japan Sea, a Miocene-age back-arc basin in the western Pacific Ocean, recovered incompatible-element-depleted and enriched tholeiitic dolerites and basalts from the basin floor, which provide evidence of a significant sedimentary component in their mantle source. Isotopically, the volcanic rocks cover a wide range of compositions (e.g., 87Sr/86Sr=0.70369–0.70503, 204Pb/204Pb=17.65–18.36) and define a mixing trend between a depleted mantle (DM) component and an enriched component with the composition of EM II. At Site 797, the combined isotope and trace element systematics support a model of two component mixing between depleted, MORB-like mantle and Pacific pelagic sediments. A best estimate of the composition of the sedimentary component has been determined by analyzing samples of differing lithology from DSDP Sites 579 and 581 in the western Pacific, east of the Japan arc. The sediments have large depletions in the high field strength elements and are relatively enriched in the large-ion-lithophile elements, including Pb. These characteristics are mirrored, with reduced amplitudes, in Japan Sea enriched tholeiites and northeast Japan arc lavas, which strengthens the link between source enrichment and subducted sediments. However, Site 579/581 sediments have higher LILE/REE and lower HFSE/REE than the enriched component inferred from mixing trends at Site 797. Sub-arc devolatilization of the sediments is a process that will lower LILE/REE and raise HFSE/REE in the residual sediment, and thus this residual sediment may serve as the enriched component in the back-arc basalt source. Samples from other potential sources of an enriched. EM II-like component beneath Japan, such as the subcontinental lithosphere or crust, have isotopic compositions which overlap those of the Japan Sea tholeiites and are not “enriched” enough to be the EM II end-member.

Journal ArticleDOI
TL;DR: In this paper, the equilibrium distribution of hydrous silicic melts in polycrystalline aggregates of quartz was characterized in a series of partial melting and melt distribution experiments in the systems quartz-albite-orthoclase-H2O and quartz-anorthite-H 2O, at 650 to 1000 MPa and 800 to 900° C.
Abstract: The equilibrium distribution of hydrous silicic melts in polycrystalline aggregates of quartz was characterized in a series of partial melting and melt distribution experiments in the systems quartz-albite-orthoclase-H2O and quartz-anorthite-H2O, at 650 to 1000 MPa and 800 to 900° C. Near-equilibrium textures in these experiments are characterized by very low quartz-quartz-melt wetting angles, and by a substantial number of thin melt films along grain boundaries. Wetting angles in the H2O-saturated experiments are as follows: 18° at 800° C-1000 MPa, and 12° at 900° C-1000 MPa in the granitic system; 18° at 850° C-650 MPa, 15° at 900° C-650 MPa, and 15° at 900° C-1000 MPa in the quartzanorthite system. In the granitic system at 900° C-1000 MPa, a decrease of H2O content in melt from ∼17 wt% (at saturation) to ∼6 wt%, results in a slight increase of wetting angle from 12° to 16°. These low wetting angles — and the observation that many grain boundaries are wetted by melt films-indicate that the ratio of quartz-quartz to quartz-melt interfacial energies (γss/γs1) is high: ∼2. Secondary electron imaging of fracture surfaces of melt-poor samples provided a three-dimensional insight into the geometry of melt; at low melt fraction, melt forms an interconnected network of channels along grain edges, as predicted for isotropic systems with wetting angles below 60°. This high-permeability geometry suggests that the segregation of granitic melts is not as sluggish as previously anticipated; simple compaction calculations for a permeability range of 10-12 to 10-9 m2 indicate that segregation may operate at low to moderate melt fractions (below 30 vol. %), within relatively short time-scales, i.e., ≤105 to 106 years. Quartzmelt textures show significant deviations from the equilibrium geometries predicted for isotropic partially molten systems. The most consistent deviation is the pervasive development of crystallographically-controlled, planar faces of quartz; these faces provide definitive evidence for non-isotropic quartz-melt surface energy. For most silicates other than quartz, the grain-scale distribution of partial melts deviates even more significantly from equilibrium distributions in isotropic systems; accordingly, in order to describe adequately melt distributions in most natural source regions, the equilibrium model should be modified to account for anisotropy of solid-liquid interfacial energy.

Journal ArticleDOI
TL;DR: In this paper, the authors used X-ray diffraction and Raman spectra of peridotite-suite diamond inclusions to investigate the potential for graphite metastability in the mantle.
Abstract: Graphite-bearing peridotites, pyroxenites and eclogite xenoliths from the Kaapvaal craton of southern Africa and the Siberian craton, Russia, have been studied with the aim of: 1) better characterising the abundance and distribution of elemental carbon in the shallow continental lithospheric mantle; (2) determining the isotopic composition of the graphite; (3) testing for significant metastability of graphite in mantle rocks using mineral thermobarometry. Graphite crystals in peridotie, pyroxenite and eclogite xenoliths have X-ray diffraction patterns and Raman spectra characteristic of highly crystalline graphite of high-temperature origin and are interpreted to have crystallised within the mantle. Thermobarometry on the graphite-peridotite assemblages using a variety of element partitions and formulations yield estimated equilibration conditions that plot at lower temperatures and pressures than diamondiferous assemblages. Moreover, estimated pressures and temperatures for the graphite-peridotites fall almost exclusively within the experimentally determined graphite stability field and thus we find no evidence for substantial graphite metastability. The carbon isotopic composition of graphite in peridotites from this and other studies varies from δ13 CPDB = − 12.3 to − −3.8%o with a mean of-6.7‰, σ=2.1 (n=22) and a mode between-7 and-6‰. This mean is within one standard deviation of the-4‰ mean displayed by diamonds from peridotite xenoliths, and is identical to that of diamonds containing peridotite-suite inclusions. The carbon isotope range of graphite and diamonds in peridotites is more restricted than that observed for either phase in eclogites or pyroxenites. The isotopic range displayed by peridotite-suite graphite and diamond encompasses the carbon isotope range observed in mid-ocean-ridge-basalt (MORB) glasses and ocean-island basalts (OIB). Similarity between the isotopic compositions of carbon associated with cratonic peridotites and the carbon (as CO2) in oceanic magmas (MORB/OIB) indicates that the source of the fluids that deposited carbon, as graphite or diamond, in catonic peridotites lies within the convecting mantle, below the lithosphere. Textural observations provide evidence that some of graphite in cratonic peridotites is of sub-solidus metasomatic origin, probably deposited from a cooling C-H-O fluid phase permeating the lithosphere along fractures. Macrocrystalline graphite of primary appearance has not been found in mantle xenoliths from kimberlitic or basaltic rocks erupted away from cratonic areas. Hence, graphite in mantle-derived xenoliths appears to be restricted to Archaean cratons and occurs exclusively in low-temperature, coarse peridotites thought to be characteristic of the lithospheric mantle. The tectonic association of graphite within the mantle is very similar to that of diamond. It is unlikely that this restricted occurrence is due solely to unique conditions of oxygen fugacity in the cratonic lithospheric mantle because some peridotite xenoliths from off-craton localities are as reduced as those from within cratons. Radiogenic isotope systematics of peridotite-suite diamond inclusions suggest that diamond crystallisation was not directly related to the melting events that formed lithospheric peridotites. However, some diamond (and graphite?) crystallisation in southern Africa occurred within the time span associated with the stabilisation of the lithospheric mantle (Pearson et al. 1993). The nature of the process causing localisation of carbon in cratonic mantle roots is not yet clearly understood.

Journal ArticleDOI
TL;DR: The Pocho volcanic field in Argentina as discussed by the authors contains an older (7.9 to 4.5 Ma) high-K and a younger (5.3± 0.7 Ma) shoshonitic series.
Abstract: The Late Miocene (7.9 to 4.5 Ma) Pocho volcanic field in Argentina occurs 700 km east of the Chile trench over the modern shallowly dipping Andean Wadati-Benioff zone near 32° S latitude in Argentina. The field is located in the Sierra de Cordoba which is the easternmost Laramide-style, block-faulted range in the Sierras Pampeanas (Pampean ranges). The arrival of the shallowly dipping slab initiated both volcanism and the uplift of the Sierra de Cordoba. Pocho rocks (52% to 68% SiO2; FeO*/MgO>2.2) comprise an older (7.5±0.5 Ma) high-K and a younger (5.3±0.7 Ma) shoshonitic series. Mineralogic data and fractionation models show that crystallization occurred under hydrous, oxidizing conditions, which were most extreme in the high-K series. An unusual pattern of successively lower REE at higher SiO2 concentrations can be modeled by sphene, apatite and amphibole removal. An arc-like trace element signature attributed to an arc component is strongest in the younger shoshonitic series. An important depleted lower crustal/mantle lithospheric source component in both series is indicated by non-radiogenic Sr and Pb isotopic ratios at ɛNd= 0 to + 2, low Rb/Sr ratios, and low U and Th concentrations. This depleted signature contrasts with the enriched one in potassic back-arc Central Volcanic Zone (CVZ) lavas over the steeper subduction zone to the north and is attributed to several processes in the shallow subduction zone. First, deep crustal (MASH) processes in the nearly normal thickness crust beneath Pocho incorporated depleted Proterozoic basement components, and not complexly mixed structurally thickened crustal components as in the CVZ. Second, the association of Pocho volcanism with the arrival of the slab allowed little time for modification of the mantle by subduction components. Third, Miocene shallowing of the subduction zone beneath the “flat-slab” required thinning of both the astenosphere and the subcontinental lithosphere. Thus, an important subcrustal component could be from blocks removed from the base of the lithosphere to the west and recycled into the asthenosphere. Similar magmatic sources would have existed during Laramide shallow subduction in western North America.

Journal ArticleDOI
TL;DR: The Larderello geothermal field is generally accepted to have been produced by a granite intrusion at 4-9 km depth as mentioned in this paper, and it is known that the parageneses and fluid inclusions always formed at temperatures greater than or equal to current ones, which implies that the field has always undergone a roughly monotonic cooling history (fluctuations < 40 K) since intrusion of the granite at 4 Ma.
Abstract: The Larderello geothermal field is generally accepted to have been produced by a granite intrusion at 4–9 km depth. Hydrothermal parageneses and fluid inclusions always formed at temperatures greater than or equal to the current ones, which implies that the field has always undergone a roughly monotonic cooling history (fluctuations < 40 K) since intrusion of the granite at 4 Ma. The heat required to maintain the thermal anomaly over such a long period is supplied by a seismically anomalous body of ≈ 32000 km3 rooted in the mantle. Borehole minerals from Larderello are thus a unique well-calibrated natural example of thermally induced Ar and Sr loss under geological conditions and time spans. The observations (biotites retain Ar above 450°C) agree well with other, albeit less precise, geological determinations, but contrast with laboratory determinations of diffusivity from the literature. We therefore performed a hydrothermal experiment on two Larderello biotites and derived a diffusivity D Lab(370°C)=5.3·10-18 cm2s-1, in agreement with published estimates of diffusivity in annite. From D Lab and the rejuvenation of the K/Ar ages we calculate maximum survival times at the present in-hole temperatures. They trend smoothly over almost two orders of magnitude from 352 ka to 5.3 ka, anticorrelating with depth: laboratory diffusivities are inconsistent not only with geological facts, but also among themselves. From the geologically constrained lifetime of the thermal anomaly we derive a diffusivity D G(370°C)=3.81·1021 cm2s-1, 3±1 orders of magnitude lower than D Lab. The cause of these discrepancies must be sought among various laboratory artefacts: overstepping of a critical temperature T *; enhanced diffusivities in “wet” experiments; presence of fast pathway (dislocation and pipe) diffusion, and of dissolution/reprecipitation reactions, which we imaged by scanning electron microscopy. These phenomena are minor in geological settings: in the absence of mineral transformation reactions, complete or near-complete resetting is achieved only by volume diffusion. Therefore, laboratory determinations will necessarily result in apparent diffusivities that are too high compared to those actually effecting the resetting of natural geochronometers.

Journal ArticleDOI
Abstract: The model for the thermodynamic properties of multicomponent pyroxenes (Part I) is calibrated for ortho- and clinopyroxenes in the quadrilateral subsystem defined by the end-member components Mg2Si2O6, CaMgSi2O6, CaFeSi2O6, and Fe2Si2O6. This calibration accounts for: (1) Fe-Mg partitioning relations between orthopyroxenes and augites, and between pigeonites and augites, (2) miscibility gap features along the constituent binary joins CaMgSi2O6-Mg2Si2O6 and CaFeSi2O6-Fe2Si2O6, (3) calorimetric data for CaMgSi2O6-Mg2Si2O6 pyroxenes, and (4) the P-T-X systematics of both the reaction pigeonite=orthopyroxene+augite, and miscibility gap featurs, over the temperature and pressure ranges 800–1500°C and 0–30 kbar. The calibration is achieved with the simplifying assumption that all regular-solution-type parameters are constants independent of temperature. It is predicated on the assumptions that: (1) the Ca-Mg substitution is more nonideal in Pbca pyroxenes than in C2/c pyroxenes, and (2) entropies of about 3 and 6.5 J/K-mol are associated with the change of Ca from 6- to 8-fold coordination in the M2 site in magnesian and iron C2/c pyroxenes, respectively. The model predicts that Fe2+-Mg2+ M1-M2 site preferences in C2/c pyroxenes are highly dependent on Ca and Mg contents, with Fe2+ more strongly preferring M2 sites both in Ca-rich C2/c pyroxenes with a given Fe/(Fe+Mg) ratio, and in magnesian C2/c pyroxenes with intermediate Ca/(Ca+Fe+Mg) ratios. The proposed model is internally consistent with our previous analyses of the solution properties of spinels, rhombohedral oxides, and Fe-Mg olivines and orthpyroxenes. Results of our calibration extend an existing database to include estimates for the thermodynamic properties of the C2/c and Pbca pyroxene end-members clinoenstatite, clinoferrosilite, hedenbergite, orthodiopside, and orthohedenbergite. Phase relations within the quadrilateral and its constitutent subsystems are calculated for temperatures and pressures over the range 800–1700°C and 0–50 kbar and compare favorably with experimental constraints.