scispace - formally typeset
Search or ask a question

Showing papers in "Current Osteoporosis Reports in 2015"


Journal ArticleDOI
TL;DR: Type 1 and type 2 diabetes mellitus impair bone formation under conditions of perturbation such as bacteria-induced periodontal bone loss by increasing osteoblast apoptosis and reducing expression of factors that stimulate osteoblasts such as BMPs and growth factors.
Abstract: Diabetes mellitus is a metabolic disorder that increases fracture risk, interferes with bone formation, and impairs fracture healing. Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) both increase fracture risk and have several common features that affect the bone including hyperglycemia and increased advanced glycation end product (AGE) formation, reactive oxygen species (ROS) generation, and inflammation. These factors affect both osteoblasts and osteoclasts leading to increased osteoclasts and reduced numbers of osteoblasts and bone formation. In addition to fracture healing, T1DM and T2DM impair bone formation under conditions of perturbation such as bacteria-induced periodontal bone loss by increasing osteoblast apoptosis and reducing expression of factors that stimulate osteoblasts such as BMPs and growth factors.

310 citations


Journal ArticleDOI
TL;DR: This is the first area where functional benefits from diet-induced changes in the gut microbiome have been reported for healthy people, and these changes are positively correlated with increases in fractional calcium absorption in adolescents and with increases with measures of bone density and strength in animal models.
Abstract: Interactions between the environment, the gut microbiome, and host characteristics that influence bone health are beginning to be explored. This is the first area where functional benefits from diet-induced changes in the gut microbiome have been reported for healthy people. Several prebiotics that reach the lower intestine have resulted in an altered gut microbiome that is thought to enhance fermentation of the fibers to produce short-chain fatty acids. These changes are positively correlated with increases in fractional calcium absorption in adolescents and with increases in measures of bone density and strength in animal models. New methodologies are available to explore mechanisms and to refine intervention strategies.

161 citations


Journal ArticleDOI
TL;DR: This review will discuss recent developments in this new and exciting area of modulation of the gut and its microbiome through prebiotic and/or probiotic treatment.
Abstract: Recent advances in our understanding of how the intestinal microbiome contributes to health and disease have generated great interest in developing strategies for modulating the abundance of microbes and/or their activity to improve overall human health and prevent pathologies such as osteoporosis. Bone is an organ that the gut has long been known to regulate through absorption of calcium, the key bone mineral. However, it is clear that modulation of the gut and its microbiome can affect bone density and strength in a variety of animal models (zebrafish, rodents, chicken) and humans. This is demonstrated in studies ablating the microbiome through antibiotic treatment or using germ-free mouse conditions as well as in studies modulating the microbiome activity and composition through prebiotic and/or probiotic treatment. This review will discuss recent developments in this new and exciting area.

146 citations


Journal ArticleDOI
TL;DR: Treating chronic musculoskeletal pain, and chronic joint pain (osteoarthritis) in particular, is challenging as the underlying peripheral and central pain mechanisms are not fully understood, and safe and efficient analgesic drugs are not available.
Abstract: Musculoskeletal pain disorders are the second largest contributor to global disability underlining the significance of effective treatments. However, treating chronic musculoskeletal pain, and chronic joint pain (osteoarthritis (OA)) in particular, is challenging as the underlying peripheral and central pain mechanisms are not fully understood, and safe and efficient analgesic drugs are not available. The pain associated with joint pain is highly individual, and features from radiological imaging have not demonstrated robust associations with the pain manifestations. In recent years, a variety of human quantitative pain assessment tools (quantitative sensory testing (QST)) have been developed providing new opportunities for profiling patients and reaching a greater understanding of the mechanisms involved in chronic joint pain. As joint pain is a complex interaction between many different pain mechanisms, available tools are important for patent profiling and providing the basic knowledge for development of new drugs and for developing pain management regimes.

125 citations


Journal ArticleDOI
TL;DR: The pathogenesis and the phenotypes of these diseases depend significantly on the parental allelic origin of the GNAS mutation, reflecting the tissue-specific paternal Gsα silencing.
Abstract: The GNAS complex locus encodes the alpha-subunit of the stimulatory G protein (Gsα), a ubiquitous signaling protein mediating the actions of many hormones, neurotransmitters, and paracrine/autocrine factors via generation of the second messenger cAMP. GNAS gives rise to other gene products, most of which exhibit exclusively monoallelic expression. In contrast, Gsα is expressed biallelically in most tissues; however, paternal Gsα expression is silenced in a small number of tissues through as-yet-poorly understood mechanisms that involve differential methylation within GNAS. Gsα-coding GNAS mutations that lead to diminished Gsα expression and/or function result in Albright’s hereditary osteodystrophy (AHO) with or without hormone resistance, i.e., pseudohypoparathyroidism type-Ia/Ic and pseudo-pseudohypoparathyroidism, respectively. Microdeletions that alter GNAS methylation and, thereby, diminish Gsα expression in tissues in which the paternal Gsα allele is normally silenced also cause hormone resistance, which occurs typically in the absence of AHO, a disorder termed pseudohypoparathyroidism type-Ib. Mutations of GNAS that cause constitutive Gsα signaling are found in patients with McCune-Albright syndrome, fibrous dysplasia of bone, and different endocrine and non-endocrine tumors. Clinical features of these diseases depend significantly on the parental allelic origin of the GNAS mutation, reflecting the tissue-specific paternal Gsα silencing. In this article, we review the pathogenesis and the phenotypes of these human diseases.

125 citations


Journal ArticleDOI
TL;DR: A highly complex and heterogeneous molecular pathophysiology underlies diabetes-related bone disease, involving hormonal, immune, and perhaps genetic pathways, and the detrimental effects of chronically elevated glucose levels on bone should be added to the more well-known complications of diabetes.
Abstract: Diabetes and osteoporosis are both common diseases with increasing prevalences in the aging population. There is increasing evidence corroborating an association between diabetes mellitus and bone. This review will discuss the disease complications of diabetes on the skeleton, highlighting findings from epidemiological, molecular, and imaging studies in animal models and humans. Compared to control subjects, decreased bone mineral density (BMD) has been observed in type 1 diabetes mellitus, while on average, higher BMD has been found in type 2 diabetes; nonetheless, patients with both types of diabetes are seemingly at increased risk of fractures. Conventional diagnostics such as DXA measurements and the current fracture risk assessment tool (FRAX) risk prediction algorithm for estimating risk of osteoporotic fractures are not sufficient in the case of diabetes. A deterioration in bone microarchitecture and an inefficient distribution of bone mass with insufficiency of repair and adaptation mechanisms appear to be factors of relevance. A highly complex and heterogeneous molecular pathophysiology underlies diabetes-related bone disease, involving hormonal, immune, and perhaps genetic pathways. The detrimental effects of chronically elevated glucose levels on bone should be added to the more well-known complications of diabetes.

95 citations


Journal ArticleDOI
TL;DR: The altered mineral metabolism and deficiency in inhibitors are common in patients with chronic kidney disease (CKD) and is one reason why vascular calcification is so prevalent in that population.
Abstract: Vascular calcification can lead to cardiovascular morbidity and mortality. The initiating factors and clinical consequences depend on the underlying disease state and location of the calcification. The pathogenesis of vascular calcification is complex and involves a transformation of vascular smooth muscle cells to an osteo/chondrocytic cell that expresses RUNX2 and produces matrix vesicles. The imbalance of promoters (such as hyperphosphatemia and hypercalcemia) and inhibitors (e.g., fetuin-A) is critical in the development of vascular calcification. The altered mineral metabolism and deficiency in inhibitors are common in patients with chronic kidney disease (CKD) and is one reason why vascular calcification is so prevalent in that population.

85 citations


Journal ArticleDOI
TL;DR: This review article will provide updated information on all nutrients and foods now understood to alter bone health and related research from the Framingham Osteoporosis Study, an ancillary study of theFramingham Heart Study, with data on more than 5000 adult men and women.
Abstract: Osteoporosis is characterized by systemic impairment of bone mass, strength, and microarchitecture, resulting in increased risk for fragility fracture, disability, loss of independence, and even death. Adequate nutrition is important in achieving and maintaining optimal bone mass, as well as preventing this debilitating disease. It is widely accepted that adequate calcium and vitamin D intake are necessary for good bone health; however, nutritional benefits to bone go beyond these two nutrients. This review article will provide updated information on all nutrients and foods now understood to alter bone health. Specifically, this paper will focus on related research from the Framingham Osteoporosis Study, an ancillary study of the Framingham Heart Study, with data on more than 5000 adult men and women.

80 citations


Journal ArticleDOI
TL;DR: There is considerable variation in the shape of osteocyte lacunae, which is likely to influence the function of osteocytes as the professional mechanosensors of bone.
Abstract: There is considerable variation in the shape of osteocyte lacunae, which is likely to influence the function of osteocytes as the professional mechanosensors of bone. In this review, we first discussed how mechanical loading could affect the shape of osteocyte lacunae. Recent studies show that osteocyte lacunae are aligned to collagen. Since collagen fiber orientation is affected by loading mode, this alignment may help to understand how mechanical loading shapes the osteocyte lacuna. Secondly, we discussed how the shape of osteocytes could influence their mechanosensation. In vitro, round osteocytes are more mechanosensitive than flat osteocytes. Altered lacunar morphology has been associated with bone pathology. It is important to know whether osteocyte shape is part of the etiology.

79 citations


Journal ArticleDOI
TL;DR: It has been proposed that the term “sarcopenia’ should revert to its original definition of age-related muscle mass declines, with a separate term, “dynapenia”, describing muscle strength and function declines.
Abstract: Due to their differing etiologies and consequences, it has been proposed that the term "sarcopenia" should revert to its original definition of age-related muscle mass declines, with a separate term, "dynapenia", describing muscle strength and function declines. There is increasing interest in the interactions of sarcopenia and dynapenia with obesity. Despite an apparent protective effect of obesity on fracture, increased adiposity may compromise bone health, and the presence of sarcopenia and/or dynapenia ("sarcopenic obesity" and "dynapenic obesity") may exacerbate the risk of falls and fracture in obese older adults. Weight loss interventions are likely to be beneficial for older adults with sarcopenic and dynapenic obesity but may result in further reductions in muscle and bone health. The addition of exercise including progressive resistance training and nutritional strategies, including protein and vitamin D supplementation, may optimise body composition and muscle function outcomes thereby reducing falls and fracture risk in this population.

78 citations


Journal ArticleDOI
TL;DR: The mechanical relationship between muscle and bone is explored, including the stimuli that muscle imparts upon bone, models that enable investigation of this relationship, and recent data generated by these models.
Abstract: There is growing interest in the interaction between skeletal muscle and bone, particularly at the genetic and molecular levels. However, the genetic and molecular linkages between muscle and bone are achieved only within the context of the essential mechanical coupling of the tissues. This biomechanical and physiological linkage is readily evident as muscles attach to bone and induce exposure to varied mechanical stimuli via functional activity. The responsiveness of bone cells to mechanical stimuli, or their absence, is well established. However, questions remain regarding how muscle forces applied to bone serve to modulate bone homeostasis and adaptation. Similarly, the contributions of varied, but unique, stimuli generated by muscle to bone (such as low-magnitude, high-frequency stimuli) remains to be established. The current article focuses upon the mechanical relationship between muscle and bone. In doing so, we explore the stimuli that muscle imparts upon bone, models that enable investigation of this relationship, and recent data generated by these models.

Journal ArticleDOI
TL;DR: Evidence suggests that adequate protein intake and higher intake of fruits and vegetables are beneficial to bone health, and smoking and excessive alcohol intake have adverse effects on bone health and increase the risk of fracture.
Abstract: Osteoporosis is associated with a number of lifestyle factors, including nutritional factors such as intake of calcium, protein, dairy food, fruits and vegetables and vitamin D status, and behavioural factors such as physical activity, smoking and alcohol consumption. Ensuring adequate calcium intake and vitamin D status and having regular weight-bearing physical activity throughout life are important for bone health and the prevention of osteoporosis and related fractures. Studies have shown that smoking and excessive alcohol intake have adverse effects on bone health and increase the risk of fracture. There is evidence suggesting that adequate protein intake and higher intake of fruits and vegetables are beneficial to bone health.

Journal ArticleDOI
TL;DR: Why it is hypothesized that bone mass and energy metabolism should be subjected to a coordinated endocrine regulation and the importance of this regulation to understand whole-body glucose homeostasis in the physiological state and in pathological conditions are illustrated.
Abstract: A recent unexpected development of bone biology is that bone is an endocrine organ regulating a growing number of physiological processes. One of the functions regulated by bone through the hormone osteocalcin is glucose homeostasis. In this overview, we will explain why we hypothesized that bone mass and energy metabolism should be subjected to a coordinated endocrine regulation. We will then review the experiments that revealed the endocrine function of osteocalcin and the cell biology events that allow osteocalcin to become a hormone. We will also illustrate the importance of this regulation to understand whole-body glucose homeostasis in the physiological state and in pathological conditions. Lastly, we will mention epidemiological and genetic evidence demonstrating that this function of osteocalcin is conserved in humans.

Journal ArticleDOI
TL;DR: This review focuses on recent and exciting discoveries on the developmental biology and growth of articular cartilage, frames them within the context of classic studies, and points to lingering questions and research goals.
Abstract: Articular cartilage has obvious and fundamental roles in joint function and body movement. Much is known about its organization, extracellular matrix, and phenotypic properties of its cells, but less is known about its developmental biology. Incipient articular cartilage in late embryos and neonates is a thin tissue with scanty matrix and small cells, while adult tissue is thick and zonal and contains large cells and abundant matrix. What remains unclear is not only how incipient articular cartilage forms, but how it then grows and matures into a functional, complex, and multifaceted structure. This review focuses on recent and exciting discoveries on the developmental biology and growth of articular cartilage, frames them within the context of classic studies, and points to lingering questions and research goals. Advances in this research area will have significant relevance to basic science, and also considerable translational value to design superior cartilage repair and regeneration strategies.

Journal ArticleDOI
TL;DR: The role of systemic uremic factors and impaired bone metabolism in the pathogenesis of vascular calcification in CKD is discussed and the regulation of the key osteogenic transcription factor Runt-related transcription factor 2 (Runx2) and the emerging role of Runx2-dependent receptor activator of nuclear factor kappa-B ligand (RANKL) in vascular calcified are emphasized.
Abstract: Vascular calcification is highly prevalent in patients with chronic kidney disease (CKD) and increases mortality in those patients. Impaired calcium and phosphate homeostasis, increased oxidative stress, and loss of calcification inhibitors have been linked to vascular calcification in CKD. Additionally, impaired bone may perturb serum calcium/phosphate and their key regulator, parathyroid hormone, thus contributing to increased vascular calcification in CKD. Therapeutic approaches for CKD, such as phosphate binders and bisphosphonates, have been shown to ameliorate bone loss as well as vascular calcification. The precise mechanisms responsible for vascular calcification in CKD and the contribution of bone metabolism to vascular calcification have not been elucidated. This review discusses the role of systemic uremic factors and impaired bone metabolism in the pathogenesis of vascular calcification in CKD. The regulation of the key osteogenic transcription factor Runt-related transcription factor 2 (Runx2) and the emerging role of Runx2-dependent receptor activator of nuclear factor kappa-B ligand (RANKL) in vascular calcification of CKD are emphasized.

Journal ArticleDOI
TL;DR: Smoking cessation may at least partially reverse the adverse effects of smoking on the skeleton, and advanced imaging techniques have demonstrated microarchitectural deterioration in smokers, particularly in the trabecular compartment.
Abstract: Smoking is a leading cause of preventable death and disability. Smoking has long been identified as a risk factor for osteoporosis, with data showing that older smokers have decreased bone mineral density and increased fracture risk compared to nonsmokers, particularly at the hip. The increase in fracture risk in smokers is out of proportion to the effects on bone density, indicating deficits in bone quality. Advanced imaging techniques have demonstrated microarchitectural deterioration in smokers, particularly in the trabecular compartment. The mechanisms by which smoking affects skeletal health remain unclear, although multiple pathways have been proposed. Smoking cessation may at least partially reverse the adverse effects of smoking on the skeleton.

Journal ArticleDOI
TL;DR: The immunological contributions to HO disorders are discussed, with specific focus on contributing cell types, signaling pathways, relevant in vivo animal models, and potential therapeutic targets.
Abstract: The formation of bone outside the endogenous skeleton is a significant clinical event, rendering affected individuals with immobility and a diminished quality of life. This bone, termed heterotopic ossification (HO), can appear in patients following invasive surgeries and traumatic injuries, as well as progressively manifest in several congenital disorders. A unifying feature of both genetic and nongenetic episodes of HO is immune system involvement at the early stages of disease. Activation of the immune system sets the stage for the downstream anabolic events that eventually result in ectopic bone formation, rendering the immune system a particularly appealing site of early therapeutic intervention for optimal management of disease. In this review, we will discuss the immunological contributions to HO disorders, with specific focus on contributing cell types, signaling pathways, relevant in vivo animal models, and potential therapeutic targets.

Journal ArticleDOI
TL;DR: An emerging body of evidence is presented to support the hypothesis that shared pathophysiological pathways for sarcopenia and the common mental disorders constitute links between skeletal muscle and brain function.
Abstract: While it is understood that body composition impacts on physical conditions, such as diabetes and cardiovascular disease, it is only now apparent that body composition might play a role in the genesis of common mental disorders, depression and anxiety. Sarcopenia occurs in ageing and comprises a progressive decline in muscle mass, strength and function, leading to frailty, decreased independence and poorer quality of life. This review presents an emerging body of evidence to support the hypothesis that shared pathophysiological pathways for sarcopenia and the common mental disorders constitute links between skeletal muscle and brain function. Contracting skeletal muscle secretes neurotrophic factors that are known to play a role in mood and anxiety, and have the dual role of nourishing neuronal growth and differentiation, while protecting the size and number of motor units in skeletal muscle. Furthermore, skeletal muscle activity has important immune and redox effects that impact behaviour and reduce muscle catabolism.

Journal ArticleDOI
TL;DR: Circulating biochemical markers of bone formation, including P1NP, osteocalcin and bone-specific alkaline phosphatase have been found to be decreased in type 2 diabetes (T2D) and may be predictive of fractures independently of bone mineral density (BMD).
Abstract: Substantial evidence exists that in addition to the well-known complications of diabetes, increased fracture risk is an important morbidity. This risk is probably due, at least in part, to altered bone remodeling and bone cell function in diabetes. Circulating biochemical markers of bone formation, including P1NP, osteocalcin and bone-specific alkaline phosphatase have been found to be decreased in type 2 diabetes (T2D) and may be predictive of fractures independently of bone mineral density (BMD). These findings have been corroborated by preliminary histomorphometric data. Reductions in the bone resorption marker serum CTx in T2D have also been reported. Serum sclerostin levels have been found to be increased in T2D and appear to be predictive of fracture risk independent of BMD. Other factors such as bone marrow fat saturation, advanced glycation endproduct (AGE) accumulation, and microarchitectural changes might also relate to bone cell function and fracture risk in diabetes.

Journal ArticleDOI
TL;DR: This review is a discussion of the different neurophysiological processes that occur during joint disease and how inflammatory and neuropathic aspects contribute to the development of arthritis pain.
Abstract: There are over 100 different types of arthritis and each can differ greatly in their aetiology and pathophysiology; however, one characteristic that is common to all arthritic conditions is joint pain. Musculoskeletal pain is the leading cause of disability in the world, and the number one reason arthritis patients visit their primary care physician. Despite the prevalence and burden of arthritis pain, current analgesics lack sufficient efficacy and are plagued by multiple adverse side effects. In this review, we outline the current landscape of research concerning joint pain, drawing from both preclinical and clinical studies. Specifically, this review is a discussion of the different neurophysiological processes that occur during joint disease and how inflammatory and neuropathic aspects contribute to the development of arthritis pain.

Journal ArticleDOI
TL;DR: Evidence suggests that Cx43 channels expressed in osteoblastic cells are not required for the response to mechanical stimulation, but mediate the consequence of lack thereof.
Abstract: Bone adaptation to changes in mechanical stimuli occurs by adjusting bone formation and resorption by osteoblasts and osteoclasts, to maintain optimal bone mass. Osteocytes coordinate the actions of these cells on the bone surface by sensing mechanical forces and producing cytokines that increase or prevent osteoblast and osteoclast differentiation and function. Channels formed by connexins (Cxs) and, in particular, connexin 43 (Cx43) in osteoblasts and osteocytes are central part of this mechanism to control bone mass. Cx43 hemichannels are opened by fluid flow and mediate the anti-apoptotic effect of mechanical stimulation in vitro, suggesting that Cx43 participates in mechanotransduction. However, mice lacking Cx43 in osteoblasts and/or osteocytes show an increased anabolic response to loading and decreased catabolic response to unloading. This evidence suggests that Cx43 channels expressed in osteoblastic cells are not required for the response to mechanical stimulation, but mediate the consequence of lack thereof. The molecular basis of these unexpected responses to mechanical stimulation is currently under investigation.

Journal ArticleDOI
TL;DR: This review describes the genetic, pathophysiologic, and clinical aspects of this group of disorders with a focus on X-linked hypophosphatemia (XLH), the best characterized of these abnormalities.
Abstract: Fibroblast growth factor-23 (FGF23) regulates phosphate reabsorption in the kidney and therefore plays an essential role in phosphate balance in humans. There is a host of defects that ultimately lead to excess FGF23 levels and thereby cause renal phosphate wasting and hypophosphatemic rickets. We describe the genetic, pathophysiologic, and clinical aspects of this group of disorders with a focus on X-linked hypophosphatemia (XLH), the best characterized of these abnormalities. We also discuss autosomal dominant hypophosphatemic rickets (ADHR), autosomal recessive hypophosphatemic rickets (ARHR) and tumor-induced osteomalacia (TIO) in addition to other rarer FGF23-mediated conditions. We contrast the FGF23-mediated disorders with FGF23-independent hypophosphatemia, specifically hypophosphatemic rickets with hypercalciuria (HHRH). Errant diagnosis of hypophosphatemic disorders is common. This review aims to enhance the recognition and appropriate diagnosis of hypophosphatemia and to guide appropriate treatment.

Journal ArticleDOI
TL;DR: Bone loss caused by radiotherapy and radionuclides, of which the latter may be reduced with the introduction of the alpha-emitter Radium-223, is discussed and agents preventing chemotherapy- or radiotherapy-induced bone loss, in particular denosumab and bisphosphonates, are being reviewed for their efficacy.
Abstract: It is estimated that bone loss occurs in 70 % of all patients dying from cancer, causing a significant disease burden in cancer patients. Bone loss is caused by cancer itself and its metastases, but also by cancer therapies. Of the cancer therapy-induced bone loss, hormone therapies are best known for their bone damaging abilities. However, chemo- and radiotherapy may result in bone loss too. In this review, direct and indirect effects of various chemotherapies (such as methotrexate, imatinib, and taxanes) that cause bone loss are discussed. Furthermore, we discuss bone loss caused by radiotherapy and radionuclides, of which the latter may be reduced with the introduction of the alpha-emitter Radium-223. Finally, agents preventing chemotherapy- or radiotherapy-induced bone loss, in particular denosumab and bisphosphonates, are being reviewed for their efficacy in preventing chemotherapy- and irradiation-induced bone loss in cancer patients.

Journal ArticleDOI
TL;DR: Current reports have demonstrated that the embryonic notochord, a rod-like structure present in the midline of vertebrate embryos, gives rise to all cell types found in adult nuclei pulposi, and potential molecular and physical mechanisms that may be responsible for this transition are discussed.
Abstract: A tissue that commonly deteriorates in older vertebrates is the intervertebral disc, which is located between the vertebrae. Age-related changes in the intervertebral discs are thought to cause most cases of back pain. Back pain affects more than half of people over the age of 65, and the treatment of back pain costs 50-100 billion dollars per year in the USA. The normal intervertebral disc is composed of three distinct regions: a thick outer ring of fibrous cartilage called the annulus fibrosus, a gel-like material that is surrounded by the annulus fibrosus called the nucleus pulposus, and superior and inferior cartilaginous end plates. The nucleus pulposus has been shown to be critical for disc health and function. Damage to this structure often leads to disc disease. Recent reports have demonstrated that the embryonic notochord, a rod-like structure present in the midline of vertebrate embryos, gives rise to all cell types found in adult nuclei pulposi. The mechanism responsible for the transformation of the notochord into nuclei pulposi is unknown. In this review, we discuss potential molecular and physical mechanisms that may be responsible for the notochord to nuclei pulposi transition.

Journal ArticleDOI
TL;DR: In this paper, an overview of skeletal muscle changes in CKD, including defects in skeletal muscle catabolism and anabolism in uremic tissue, is presented, which is associated with a decline in muscle mass, strength, and function.
Abstract: Chronic kidney disease (CKD) is associated with a decline in muscle mass, strength, and function, collectively called “sarcopenia.” Sarcopenia is associated with hospitalizations and mortality in CKD and is therefore important to understand and characterize. While the focus of skeletal health in CKD has traditionally focused on bone and mineral aberrations, it is now recognized that sarcopenia must also play a role in poor musculoskeletal health in this population. In this paper, we present an overview of skeletal muscle changes in CKD, including defects in skeletal muscle catabolism and anabolism in uremic tissue. There are many gaps in knowledge in this field that should be the focus for future research to unravel pathogenesis and therapies for musculoskeletal health in CKD.

Journal ArticleDOI
TL;DR: Emerging data suggest that antibodies against peripheral signaling neuropeptides, such as nerve growth factor-1 (NGF-1), may significantly alleviate pain, however, concerns regarding potential adverse effects,such as rapidly progressive OA, still remain.
Abstract: Pain from osteoarthritis (OA) affects millions of people worldwide, yet treatments are limited to acetaminophen, NSAIDs, physical therapy, and ultimately, surgery when there is significant disability. In recent years, our understanding of pain pathways in OA has developed considerably. Though joint damage and inflammation play a significant role in pain generation, it is now understood that both central and peripheral nervous system mechanisms exacerbate symptoms. Evolving management strategies for OA address central factors (e.g., sleep difficulties, catastrophizing, and depression) with treatments such as cognitive behavioral therapy and exercise. In addition, emerging data suggest that antibodies against peripheral signaling neuropeptides, such as nerve growth factor-1 (NGF-1), may significantly alleviate pain. However, concerns regarding potential adverse effects, such as rapidly progressive OA, still remain. A nuanced understanding is essential if we are to make headway in developing more effective treatments for OA.

Journal ArticleDOI
TL;DR: Animal data indicates that WBV will also improve bone mass, including preventing loss due to hormone withdrawal, disuse and glucocorticoid exposure, and more robust dose-response human data are required before therapeutic guidelines can be developed.
Abstract: A considerable volume of evidence has accumulated to suggest that whole-body vibration (WBV) may have a therapeutic role to play in the prevention of osteoporotic fracture, particularly for individuals who are unable to tolerate vigorous exercise interventions. There is moderate to strong evidence that WBV will prevent falls (likely due to enhanced neuromuscular function), but also some indication that the effects of WBV do not outstrip those of targeted exercise. Animal data indicates that WBV will also improve bone mass, including preventing loss due to hormone withdrawal, disuse and glucocorticoid exposure. Human trials, however, have produced equivocal outcomes for bone. Positive trends are apparent at the hip and spine, but shortcomings in study designs have limited statistical power. The mechanism of the vibration effect on bone tissue is likely to be mechanical coupling between an oscillating cell nucleus and the cytoskeleton. More robust dose-response human data are required before therapeutic guidelines can be developed.

Journal ArticleDOI
TL;DR: Current knowledge regarding the changes in the peripheral and central nervous systems that occur during the progression of osteoarthritis are described and how therapeutic interventions may provide pain relief is discussed.
Abstract: Knee osteoarthritis is characterized by progressive damage and remodeling of all tissues in the knee joint. Pain is the main symptom associated with knee osteoarthritis. Recent clinical and pre-clinical studies have provided novel insights into the mechanisms that drive the pain associated with joint destruction. In this narrative review, we describe current knowledge regarding the changes in the peripheral and central nervous systems that occur during the progression of osteoarthritis and discuss how therapeutic interventions may provide pain relief.

Journal ArticleDOI
TL;DR: The Akt/mammalian target of rapamycin (mTOR) pathway is discussed which in skeletal muscle is known for its key role in regulating the rate of mRNA translation (protein synthesis) and the potential role of this pathway in bone remodeling.
Abstract: Insulin-like growth factor 1 (IGF-1) and interleukin 6 (IL-6) play an important role in the adaptation of both muscle and bone to mechanical stimuli. Here, we provide an overview of the functions of IL-6 and IGF-1 in bone and muscle metabolism, and the intracellular signaling pathways that are well known to mediate these functions. In particular, we discuss the Akt/mammalian target of rapamycin (mTOR) pathway which in skeletal muscle is known for its key role in regulating the rate of mRNA translation (protein synthesis). Since the role of the mTOR pathway in bone is explored to a much lesser extent, we discuss what is known about this pathway in bone and the potential role of this pathway in bone remodeling. We will also discuss the possible ways of influencing IGF-1 or IL-6 signaling by osteocytes and the clinical implications of pharmacological or nutritional modulation of the Akt/mTOR pathway.

Journal ArticleDOI
TL;DR: No optimal osteoporosis risk assessment tool is available for identifying low BMD and MOF risk and the sensitivities of SCORE; ORAI; and Age, Body Size, No Estrogen (ABONE) were very high.
Abstract: Osteoporotic fractures are common in postmenopausal women. Tools are available to estimate the risk of low bone mineral density (BMD) or fracture. This systematic review retrieved articles that evaluated osteoporosis risk assessment tools among postmenopausal women in North America. For identifying BMD T-score ≤-2.5, most studies of the Simple Calculated Osteoporosis Risk Estimation tool (SCORE) and Osteoporosis Risk Assessment Instrument (ORAI) reported sensitivity ≥90 %. Area under the receiver operating characteristic curve (AUC) was usually <0.75 for SCORE and ≥0.75 for ORAI. Among women 50-64 years old, a Fracture Risk Assessment Tool (FRAX) threshold ≥9.3 % had a sensitivity of 33 % for identifying BMD T-score ≤-2.5 and 26 % for predicting major osteoporotic fracture (MOF). For predicting MOF, sensitivity was higher for SCORE and Osteoporosis Self-assessment Tool equation (OST), and higher in women ≥65 years old. For predicting BMD T-score ≤-2.5 in women ≥65 years old, the sensitivities of SCORE; ORAI; and Age, Body Size, No Estrogen (ABONE) were very high. No optimal osteoporosis risk assessment tool is available for identifying low BMD and MOF risk.