scispace - formally typeset
Search or ask a question

Showing papers in "Eastern-European Journal of Enterprise Technologies in 2021"


Journal ArticleDOI
TL;DR: In this article, a method for coding systems of service components in a differentiated basis on the second cascade of cryptocompression representation of images has been developed, based on the developed scheme of data linearization from three-dimensional coordinates of representation in a two-dimensional matrix into a one-dimensional coordinate for one-to-one representation of this element in a vector.
Abstract: The demand for image confidentiality is constantly growing. At the same time, ensuring the confidentiality of video information must be organized subject to ensuring its reliability with a given time delay in processing and transmission. Methods of cryptocompression representation of images can be used to solve this problem. They are designed to simultaneously provide compression and protection of video information. The service component is used as the key of the cryptocompression transformation. However, it has a significant volume. It is 25 % of the original video data volume. A method for coding systems of service components in a differentiated basis on the second cascade of cryptocompression representation of images has been developed. The method is based on the developed scheme of data linearization from three-dimensional coordinates of representation in a two-dimensional matrix into a one-dimensional coordinate for one-to-one representation of this element in a vector. Linearization is organized horizontally line by line. On the basis of the developed method, a non-deterministic number of code values of information components is formed. They have non-deterministic lengths and are formed on a non-deterministic number of elements. The uncertainty of positioning of cryptocompression codograms in the general code stream is provided, which virtually eliminates the possibility of their unauthorized decryption. The method provides a reduction in the volume of the service component of the cryptocompression codogram. The service data volume is 6.25 % of the original video data volume. The method provides an additional reduction in the volume of cryptocompression representation of images without loss of information quality relative to the original video data on average from 1.08 to 1.54 times, depending on the degree of their saturation

47 citations


Journal ArticleDOI
TL;DR: In this paper, a short-term forecast of the recurrence of increments of the air conditions by one step, based on the current measure of recurrence, is proposed that enables the sequential implementation of five procedures.
Abstract: A method for operational forecasting of fires is proposed that enables the sequential implementation of five procedures. The method development is necessary to predict early fires in premises in order to take measures to prevent them from escalating into an uncontrolled combustion phase ‒ a fire. As a result of research, it was found that a short-term forecast of the recurrence of increments of the air conditions by one step, based on the current measure of recurrence, is an effective indicator of early fires in premises. At the same time, it was found that before the moment of ignition of the material, the state of the air environment is characterized by dynamic stability, which is described by an irregular and time-dependent random change in the recurrence of the states of the vector of current increments of the state of the air environment. The values of the indicated levels of recurrence of the state increments are determined by the probability levels of 0.67 and 0.1, respectively. The probability of recurrence of state increments of 0.67 is characteristic of a larger number of measured states. When the material is ignited, the dynamics of the probability of recurrence of state increments change abruptly. There is a transition from two to one level of recurrence, close to zero probability ‒ the loss of dynamic stability (in the region of count 250). Further dynamics are characterized by the appearance of separate random recurrent increments corresponding to the instability of the air environment in the premises. In the course of the experiment, it was found that the accuracy of predicting a fire by the proposed method ranges from 4.48 % to 12.79 %, which generally indicates its efficiency. The obtained data prove useful in the development of new systems that early warn of fire in premises, as well as in the modernization of existing systems and means of fire protection of premises

27 citations


Journal ArticleDOI
TL;DR: In this article, the inertial coefficients of the bearing structures of the wagons are determined by constructing their spatial models in the SolidWorks software package, and two cases of loading of bearing structures are taken into account.
Abstract: The determination of the dynamic loading of the bearing structures of the main types of freight wagons with the actual dimensions under the main operating conditions is carried out. The inertial coefficients of the bearing structures of the wagons are determined by constructing their spatial models in the SolidWorks software package. Two cases of loading of the bearing structures of the wagons – in the vertical and longitudinal planes – have been taken into account. The studies were carried out in a flat coordinate system. When modeling the vertical loading of the bearing structures of wagons, it was taken into account that they move in the empty state with butt unevenness of the elastic-viscous track. The bearing structures of the wagons are supported by bogies of models 18-100. The solution of differential equations of motion was carried out by the Runge-Kutta method in the MathCad software package. When determining the longitudinal loading of the bearing structures of wagons, the calculation was made for the case of a shunting collision of wagons or a "jerk" (tank wagon). The accelerations acting on the bearing structures of the wagons are determined. The research results will help to determine the possibility of extending the operation of the bearing structures of freight wagons that have exhausted their standard service life. It has been established that the indicators of the dynamics of the load-carrying structures of freight wagons with the actual dimensions of the structural elements are within the permissible limits. So, for a gondola wagon, the vertical acceleration of the bearing structure is 4.87 m/s2, for a covered wagon – 5.5 m/s2, for a flat wagon – 5.8 m/s2, for a tank wagon – 4.25 m/s2, for a hopper wagon – 4.5 m/s2. The longitudinal acceleration acting on the bearing structure of a gondola wagon is 38.25 m/s2, for a covered wagon – 38.6 m/s2, for a flat wagon – 38.9 m/s2, for a tank wagon – 27.4 m/s2, for a hopper wagon – 38.5 m/s2. This makes it possible to develop a conceptual framework for restoring the effective functioning of outdated freight wagons. The conducted research will be useful developments for clarifying the existing methods for extending the service life of the bearing structures of freight wagons that have exhausted their standard resource

25 citations


Journal ArticleDOI
TL;DR: The method of estimation and forecasting in intelligent decision support systems was developed and provides an increase in data processing efficiency at the level of 15–25% using additional advanced procedures.
Abstract: The method of estimation and forecasting in intelligent decision support systems was developed. The essence of the method is the analysis of the current state of the object and short-term forecasting of the object state. Objective and complete analysis is achieved by using improved fuzzy temporal models of the object state and an improved procedure for processing the original data under uncertainty. Also, the possibility of objective and complete analysis is achieved through an improved procedure for forecasting the object state and an improved procedure for learning evolving artificial neural networks. The concepts of fuzzy cognitive model are related by subsets of influence fuzzy degrees, arranged in chronological order, taking into account the time lags of the corresponding components of the multidimensional time series. The method is based on fuzzy temporal models and evolving artificial neural networks. The peculiarity of the method is the possibility of taking into account the type of a priori uncertainty about the object state (full awareness of the object state, partial awareness of the object state and complete uncertainty about the object state). The possibility to clarify information about the object state is achieved using an advanced training procedure. It consists in training the synaptic weights of the artificial neural network, the type and parameters of the membership function, as well as the architecture of individual elements and the architecture of the artificial neural network as a whole. The object state forecasting procedure allows conducting multidimensional analysis, consideration, and indirect influence of all components of a multidimensional time series with their different time shifts relative to each other under uncertainty. The method provides an increase in data processing efficiency at the level of 15–25% using additional advanced procedures.

21 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the zero-order parametric Brown model with out-of-limit model parameters for indoor fire forecasting and found that the performance of the model is improved by selecting the smoothing parameter from the classical set of parameters.
Abstract: Possibilities of parameterization of the zero-order Brown model for indoor air forecasting based on the current measure of air state gain recurrence are considered. The key to the zero-order parametric Brown forecasting model is the selection of the smoothing parameter, which characterizes forecast adaptability to the current air state gain recurrence measure. It is shown that for effective short-term indoor fire forecast, the Brown model parameter must be selected from the out-of-limit set defined by 1 and 2. The out-of-limit set for the Brown model parameter is an area of effective fire forecasting based on the measure of current indoor air state gain recurrence. Errors of fire forecast based on the parameterized zero-order Brown model in the case of the classical and out-of-limit sets of the model parameters are investigated using the example of ignition of various materials in a laboratory chamber. As quantitative indicators of forecast quality, the absolute and mean forecast errors exponentially smoothed with a parameter of 0.4 are investigated. It was found that for alcohol, the smoothed absolute and mean forecast errors for the classical smoothing parameter in the no-ignition interval do not exceed 20 %. At the same time, for the out-of-limit case, the indicated forecast errors are, on average, an order of magnitude smaller. Similar ratios for forecast errors remain in paper, wood and textile ignition. However, for the transition zone corresponding to the time of material ignition, a sharp decrease in the current measure of chamber air state gain recurrence is observed. It was found that for this zone, the smoothed absolute forecast error for alcohol is about 2 % if the model parameter is selected from the classical set. If the model parameter is selected from the out-of-limit set, the forecast error is about 0.2 %. The results generally demonstrate significant advantages of using the zero-order Brown parametric model with out-of-limit model parameters for indoor fire forecasting.

20 citations


Journal ArticleDOI
TL;DR: In this article, a comprehensive method for estimating the share of public funds is proposed, taking into account the investment attractiveness of a region and the risk of the corresponding region (oblast).
Abstract: The article discloses the problem of distributing state financial support based on an integrated approach. The study has proved the urgency and necessity of state support for the lowest priority territorial units (regions). It answers the research question of what components need to be included in the methodology for determining state financial support. A comprehensive method for estimating the share of public funds is proposed, taking into account the investment attractiveness of a region (oblast) and the risk of the corresponding region (oblast). To achieve this goal, the following general scientific and special methods and research techniques were used in the work, such as comparative analysis of scientific literature and information sources based on methods of comparison, systematization, and generalization; generalization of the analysis results, as well as logical generation of conclusions and integral assessment. Since the problem of financing the construction and reconstruction of bridges is relevant for a number of countries, this technique was tested using an example of bridge construction. According to the obtained results, territorial units (regions) that are not leaders in priority for the investor and have a high level of riskiness of investing financial resources become eligible for state financial support. The problem of financing such regions can be solved only through state support. The results of calculations show that the distribution of financial resources with the available volume of public finances K=1 allocated for support is carried out proportionally. An integrated approach made it possible to identify 10 territorial units (oblasts) for funding, with the oblasts with the worst priority factors receiving the largest share of state financial support. This study is of practical interest to government agencies in the distribution of public funds, and it is of theoretical importance to researchers dealing with issues of financial security and public administration

18 citations


Journal ArticleDOI
TL;DR: In this paper, the effectiveness of the white tea extract as a green corrosion inhibitor and correlation to the strength and stability bonding between the phenolic molecule and the Fe atoms in mild steel and how this interaction can be studied by altering the concentration and temperature.
Abstract: This work covers the effectiveness of the White tea extract as a green corrosion inhibitor and is correlated to the strength and stability bonding between the phenolic molecule and the Fe atoms in mild steel and how this interaction can be studied by altering the concentration and temperature. White tea has received considerable attention due to its capability as a corrosion inhibitor and has been extensively studied using electrochemical techniques. However, accurate and systematic functional group identification and surface modification have been missing. Our study sought to demonstrate the quantitative measurement of electrochemical impedance spectroscopy (EIS) complemented by the FTIR (Fourier transform infrared spectroscopy), Total Phenolic Test, and Raman Spectroscopy. The SEM (Scanning Electronic Microscope)/EDX (Energy-Dispersive X-Ray Spectroscopy), and AFM (Atomic Force Microscope) were used to study the surface modification. The EIS results show that the optimum inhibition efficiency was 96 % in a solution of 80 ppm at 60 °C. Acetone 70 % was used to extract White tea and gives 14.17±0.25 % phenolic compound. Spectroscopic studies show -OH, Aromatic C=C, C=O and C-O-C become major contributors in the adsorption process and are found on the surface of metals as corrosion protection. Meanwhile, the thermodynamic calculation shows the White tea was adsorbed chemically. The nearness of R2 to 1 shows the adsorption agrees with the Langmuir adsorption isotherm. Eventually, the surface modification revealed that phenol molecules are responsible to reduce the corrosion rate at 16.38×10-3 mpy. Our results are expected to provide a guideline for future research in White tea as a green corrosion inhibitor. Keywords: Catechin, Green Corrosion Inhibitor, Chemisorption, Adsorption, Surface Modification, Langmuir Isotherm

18 citations


Journal ArticleDOI
TL;DR: In this paper, an analysis of the method for ensuring the sinusoidality of the output voltage in power generation systems with self-commutated voltage inverters under the requirements of the international standard IEEE-519 is presented.
Abstract: An analysis of the method for ensuring the sinusoidality of the output voltage in power generation systems with self-commutated voltage inverters under the requirements of the international standard IEEE-519 is presented. In a number of programs, especially low-power generation systems, a low-cost solution is needed to provide the sinusoidal waveform of the output voltage with the total harmonic distortion of 5 %. This solution is to use two-level voltage inverters with an output sine LC filter. However, the feature of the sine filter with the frequency converter is that the PWM frequency affects the spectrum of higher harmonics of the output voltage. In addition, there is the starting current of the filter capacitor, which can disable the power switches of the voltage inverter. The developed method for calculating the values of the LC filter with the two-level voltage inverter in the PWM mode is presented meeting the requirements of the international standard IEEE-519, taking into account the modulation frequency and limitation of the starting current of the filter capacitor. To confirm the required quality of the output voltage of the two-level voltage inverter with the sine filter, an appropriate simulation model was created in the Matlab/Simulink computer simulation environment. The oscillograms and harmonic analysis of the input and output voltages of the sine filter, which showed the total harmonic distortion of 1.88 %, are presented. A physical prototype of the investigated system was created on the basis of a 5.5 kW OVEN PChV203-5K5-V frequency converter (Ukraine). Using the SIGLENT SDS1104X-E oscilloscope (China), the real waveform and the results of the harmonic analysis of the sine filter output voltage, confirming the implementation of the necessary sinusoidality criteria, were obtained

16 citations


Journal ArticleDOI
TL;DR: In this article, a conceptual scheme of interaction between collective and individual scientific activity subjects has been described, taking into consideration the dynamics of their productivity, which can be used to solve the task of selecting subjects for the implementation of joint scientific and educational projects, and these spaces could be applied to form the organizational and functional framework of the collective scientific activity subject, including their structural units, which would contribute to ensuring their stable development.
Abstract: This paper describes the basic conceptual apparatus required to form information spaces for scientific activity subjects. Multiple models have been built to identify collective and individual scientific activity subjects, including information on the subjects' publication citations, their abstracts, as well as their indicators in scientometric databases, etc. A conceptual scheme of interaction between collective and individual scientific activity subjects has been described, taking into consideration the dynamics of their productivity. A method has been proposed to form the information spaces for the collective and individual scientific activity subjects such as higher education establishments and scientists. The method involves a series of stages to identify and construct citation and scientific cooperation networks, to form subject scientific spaces, and, based on them, to devise methods in order to quantify productivity. The results of methods application form the components of the relevant information spaces of scientific activity subjects. The spaces to be built could be used to solve the task of selecting subjects for the implementation of joint scientific and educational projects. In addition, these spaces could be applied to form the organizational and functional framework of the collective scientific activity subjects, including their structural units, which would contribute to ensuring their stable development. Creating the information spaces of scientific activity subjects underlies resolving those issues that would stimulate investment in research and innovation, strengthen cooperation between universities, improve the efficiency and productivity of the scientific enterprise. It has been confirmed experimentally that the potential of a collective subject of scientific activity, including individual subjects, the rate of change of identifiers of whom is positive, would have a non-negative potential. A rate of change in the normalized indicators of identifiers of individual and collective scientific activity subjects has been calculated for the period from January 2019 to December 2020 for three higher education establishments

15 citations


Journal ArticleDOI
TL;DR: In this article, a method of selective financing of scientific and educational institutions that create innovative technologies taking into account their investment in innovative developments is proposed, and the problem of quantifying the rate of premium on the basis of indicators of innovative potential from the production of innovations and the rating of a scientific and education institution for two institutions (namely: K and H) has been solved.
Abstract: The problem of supporting scientific and educational institutions is considered. A method of selective financing of scientific and educational institutions that create innovative technologies taking into account their investment in innovative developments is proposed. On the basis of statistical data on the indicators for assessing the activities of scientific and educational institutions and the indicator of the innovative potential of a scientific and educational institution from the production of innovations (PNn), their rating was calculated. The essence of PNn is to compare the indicators of the volumes of income of the special fund Dsfn and the volume of expenditures of the scientific and educational institution Vn. In order to stimulate scientific and educational institutions to create innovative technologies, it was proposed to introduce targeted investments. The problem of quantifying the rate of premium on the basis of an integrated approach in terms of indicators of innovative potential from the production of innovations and the rating of a scientific and educational institution for 2 institutions (namely: K and H) has been solved. Institution K will receive a large increase, and institution N will receive a smaller increase, the value of which will be 56.23 % and 43.76 %, respectively. The results showed the independence of the indicator of the innovative potential of a scientific and educational institution from the production of innovations from the previous rating of a scientific and educational institution, or vice versa. The proposed methodology has been tested by an experimental method, targeted investments have been determined based on an integrated approach in terms of indicators of innovative potential and the rating of a scientific and educational institution. This study is of practical interest to government authorities and grantors when allocating funds according to the vector of selective financing of scientific and educational institutions through targeted investments in the development of innovative technologies, and theoretically – to researchers dealing with issues of financial security, protectionism and public administration

15 citations


Journal ArticleDOI
TL;DR: In this paper, a modification of Brown's zero-order model is proposed, which ensures increased accuracy of the short-term fire forecast based on the use of the current measure of recurrence in the increments of the state of the air environment in the premises.
Abstract: This paper reports the rationale for the modification of Brown’s zero-order model, which ensures increased accuracy of the short-term fire forecast based on the use of the current measure of recurrence in the increments of the state of the air environment in the premises. A special feature of the proposed model modification is that the a priori model of the dynamics of the level of the time series of the measure of the current recurrence of increments in the air environment states determined by the dangerous factors of the fire has been modified. In this case, it is proposed that the new a priori model should take into consideration additionally the value of the current increments of the level of the studied time series. That makes it possible to negligibly reduce errors of the short-term forecast of fire in the premises without significantly complicating Brown’s zero-order model while retaining all its implementing advantages. The provided accuracy of the forecast for one step in advance on the basis of a time series of measures of the current recurrence of increments of the state of the air environment, determined from the experimental data during the ignition of alcohol and timber in a laboratory chamber, has been investigated. The considered quantitative indicators of forecast accuracy are the absolute and average errors exponentially smoothed with a parameter of 0.4. It has been established that for the proposed modification the value of the average absolute error does not exceed 0.02 %. That means that an error of the short-term forecast of a fire in the premises based on the proposed modification is an order of magnitude less than that in the case of using known Brown’s model at the smoothing parameter from an unclustered set. The results from the ignition of alcohol and timber in the laboratory chamber, in general, indicate significant advantages of using the proposed modification of Brown’s zero-order model for a short-term forecast of a fire in the premises.

Journal ArticleDOI
TL;DR: In this paper, a device has been designed for cleansing the udder teats with two rotating brushes, and the interaction of the cleansing elements of the device for mechanical removal of pollutants from the uding teats in the course of milking operation was investigated.
Abstract: Preparing cows for milking is one of the most important operations. Not only the speed of milk production but also the quality of milk depends on the level of the work performed. One of the most effective ways to mechanize the preparation of cows for milking implies the development of a special mechanical brush that cleans and stimulates the teat skin. As a result, there is no need to use additional foam detergents and napkins to cleanse and disinfect teats. A device has been designed for cleansing teats with two rotating brushes. Theoretical studies of the interaction of cleansing elements of the device for mechanical removal of pollutants from the udder teats in the course of milking operation were carried out. Assuming constancy of the modulus of elasticity, shape and roughness of teats, linear and angular velocities of brushes, nap stiffness, and homogeneity of physical and mechanical properties of contaminants on the teat, dependence of force Fe of the mechanical device on length l of the cleansing element and its speed ω was established. Under the condition that force Fe of the mechanical device is smaller than force Fp which causes pain but greater than the force retaining pollutants (adhesion), values of the main design and technological parameters of the developed device were determined: l=8 mm, ω=106 rpm. As a result of production tests, it was found that when using the developed device, the daily milk yield of the experimental group of cows exceeded that of the control group by an average of 1.1 times which has made it possible to obtain a supplement of 132.5 kg of milk. Along with this, there was a 0.19 % increase in milk fat content in the experimental group compared to the control group. The number of microorganisms decreased 2.2 times and the number of contaminant particles decreased 4.6 times

Journal ArticleDOI
TL;DR: In this article, a numerical analysis of the decrease in the accuracy of measuring the Doppler frequency of a coherent packet is presented, depending on the statistical characteristics of fluctuations of the initial phases of its radio pulses.
Abstract: The necessity of estimating the decrease in the accuracy of measuring the informative parameters of a radar signal in real conditions of its propagation and reflection has been substantiated. The results of the estimation determine the requirements for optimizing this measurement to achieve the required efficiency. A numerical analysis of the decrease in the accuracy of measuring the Doppler frequency of a coherent packet is presented, depending on the statistical characteristics of fluctuations of the initial phases of its radio pulses. Expressions are given for calculating the fluctuation component of the measurement error of radio pulse packet frequency for various coefficients of interpulse correlation of phase fluctuations. An assessment is made of the possibility of increasing the accuracy of Doppler frequency measurement, which can be ensured by statistical optimization of the algorithm for time-frequency processing of a given radar signal by taking into account its phase fluctuations. The conditions for the multiplicative influence of phase fluctuations of radio pulses of the received packet are substantiated, which determine the efficiency of optimization of Doppler frequency measurement. Based on the results of the study, an optimization method for measuring the Doppler frequency of the packet taking into account fluctuations in the initial phases of its radio pulses is proposed. The accuracy of Doppler frequency measurement under the influence of both the internal noise of the radar receiver and the correlated phase fluctuations of its radio pulses is estimated. The efficiency of optimization of measuring the Doppler frequency of the packet is estimated taking into account fluctuations of the initial phases of its radio pulses by means of computer simulation. It is proved that, under the influence of phase fluctuations, the accuracy of Doppler frequency measurement can be increased due to the performed optimization from 1.86 to 6.29 times. This opens the way to improving the existing algorithms for measuring the higher time range derivatives to improve the quality of tracking complex maneuvering aerodynamic objects. This explains the importance and usefulness of the work for the radar theory.

Journal ArticleDOI
TL;DR: The influence of sintering modes on the formation of the microstructure of zirconium nanopowders has been studied for different contents of alumina additives.
Abstract: Peculiarities of formation of microstructure in composites based on chemically synthesized zirconium nanopowders obtained by the method of decomposition from fluoride salts were considered. Hydrofluoric acid, concentrated nitric acid, aqueous ammonia solution, metallic zirconium, and polyvinyl alcohol were used. It was established that the reduction of porosity in nanopowders in the sintering process is the main problem in the formation of high-density materials. Analysis of various initial nanopowders, their morphology, and features of sintering by the method of hot pressing with direct transmission of electric current was made. Peculiarities of obtaining the composites based on them with the addition of Al2O3 nanopowders applying the electric sintering method were considered. It was shown that the increase in the content of alumina nano additives leads to an increase in strength and crack resistance of the samples due to simultaneous inhibition of abnormal grain growth and formation of a finer structure with a high content of tetragonal phase. The influence of sintering modes on the formation of the microstructure of zirconium nanopowders has been studied for different contents of alumina additives. Electric current promotes the surface activity of nanopowders and its variable value promotes partial fragmentation of agglomerated grains thus affecting the composite structure. Physical-mechanical properties of the obtained samples, optimal compositions of mixtures, and possibilities of improving some parameters were determined. It was found that nanopowders of zirconium dioxide obtained by the method of decomposition from fluoride salts are quite suitable for the production of composite materials with high physical and mechanical properties. They can compete with imported analogs and enable obtaining of crack resistance of 7.8 MPa·m1/2 and strength of 820 MPa.

Journal ArticleDOI
TL;DR: In this paper, the potential of loan financing for the implementation of energy-saving technologies at enterprises has been analyzed in terms of the number of projects and the amount of finance they could receive.
Abstract: This paper reports modeling the assessment of the potential of loan financing of projects aimed at implementing energy-saving technologies. An array of information to assess the potential of loan financing of these projects was formed. The methods for assessing the existing and prospective potential of loan financing of projects for the implementation of energy-saving technologies were devised. The criteria for the selection of energy-saving projects, which should be financed at the expense of loan funds, were systematized and ordered. The appropriateness of these studies is determined by the need to reduce the volume of energy consumption of non-renewable energy resources in many countries of the world. This causes the need to determine the potential of financial support, in particular the potential of loan financing, the implementation of energy-saving projects, first of all, projects for the implementation of energy-saving technologies at enterprises. The obtained theoretic and methodological results for the sample of enterprises were tested. It was established that the absolute magnitude of the potential of loan financing of projects implementing technologies that ensure reducing natural gas consumption at the studied enterprises is 42 projects and USD 1,805 thousand. As for the relative level of this potential, for the whole totality of enterprises it is: by the number of projects – 0.447; by financing volumes – 0.420. The obtained theoretical and methodological results can be applied by enterprises of all types of economic activity in assessing the magnitude of the potential of loan financing of energy-saving projects. In addition, these results can be used by the authorities in the development of the programs of preferential lending of the projects of implementation of energy-saving technologies

Journal ArticleDOI
TL;DR: In this paper, the authors employed a digital three-dimensional model of the gas condensate reservoir to investigate the process of nitrogen injection at the boundary of initial gas-water contact at different values of the injection duration.
Abstract: This paper reports a study that employed a digital three-dimensional model of the gas condensate reservoir to investigate the process of nitrogen injection at the boundary of initial gas-water contact at different values of the injection duration. The calculations were performed for 5, 6, 8, 10, 12 and 14 months injection duration. Based on the modeling results, it was found that increasing the duration of the nitrogen injection decreases the operation time of production wells until the breakthrough of non-hydrocarbon gas. Based on the analysis of the technological indicators of reservoir development, it was established that the introduction of technology of the nitrogen injection into a reservoir ensures a reduction in the volume of reservoir water production. The cumulative water production at the time of nitrogen breakthrough to the production wells at the nitrogen injection duration of 5 months is 197,3 thousand m3; of 14 months – 0,038 m3. According to the results from the statistical treatment of estimation data, the optimal value for the nitrogen injection duration was determined, which is 8,04 months. The ultimate gas recovery factor for the optimal period of the non-hydrocarbon gas injection is 58,11 %, and in the development of a productive reservoir for depletion – 34,6 %. Based on the research results, the technological efficiency of nitrogen injection into a productive reservoir has been determined at the boundary of initial gas-water contact in order to slow the movement of reservoir water into gas-saturated horizons. This study results allow the improvement of the existing technologies of hydrocarbon fields development under conditions of water drive. The use of the results of the research carried out in production will make it possible to reduce the volume of cumulative water production and increase the ultimate gas recovery factors to 23,51 %

Journal ArticleDOI
TL;DR: A method for the formation of standards of linguistic variables for further selection of the most effective Honeypots is developed, which will allow classifying and selecting the mosteffective virtual baits in the future.
Abstract: One of the pressing areas that is developing in the field of information security is associated with the use of Honeypots (virtual decoys, online traps), and the selection of criteria for determining the most effective Honeypots and their further classification is an urgent task. The main products that implement virtual decoy technologies are presented. They are often used to study the behavior, approaches and methods that an unauthorized party uses to gain unauthorized access to information system resources. Online hooks can simulate any resource, but more often they look like real production servers and workstations. A number of fairly effective developments are known that are used to solve the problems of detecting attacks on information system resources, which are based on the apparatus of fuzzy sets. They showed the effectiveness of the appropriate mathematical apparatus, the use of which, for example, to formalize the approach to the formation of a set of reference values that will improve the process of determining the most effective Honeypots. For this purpose, many characteristics have been formed (installation and configuration process, usage and support process, data collection, logging level, simulation level, interaction level) that determine the properties of online traps. These characteristics became the basis for developing a method for the formation of standards of linguistic variables for further selection of the most effective Honeypots. The method is based on the formation of a Honeypots set, subsets of characteristics and identifier values of linguistic estimates of the Honeypot characteristics, a base and derived frequency matrix, as well as on the construction of fuzzy terms and reference fuzzy numbers with their visualization. This will allow classifying and selecting the most effective virtual baits in the future.

Journal ArticleDOI
TL;DR: In this article, the effect of milking rubber tension in a teat cup on the speed of the milking process has been investigated, and it was found that when the tension force of rubber was increased from 25 to 60 N, the difference in the average intensity of milk yield was 0.13 kg/min (10.8%).
Abstract: Many years of experience in the operation of milking machines show that milking rubber was and remains a short-lived and unreliable link in the technological process of machine milking. During operation, rubber quickly loses its strength and elastic properties, becomes stiff and less elastic, deforms, and changes its shape. The purpose of this study is to identify changes in the technical parameters of milking rubber under industrial conditions in order to establish their impact on the milking process. The obtained results could make it possible to rationally choose the milking rubber for teat cups, which would ensure an effective milking process. During this study’s initial stage, the physical and mechanical condition of milking rubber was experimentally established at steam disinfection and as a result of saturating the article with milk fats. The following stage implied detecting the effect of milking rubber tension in a teat cup on the speed of milking. It was established that milking rubber during operation is actively exposed to milk fat, which leads to the loss of its weight relative to its original value. On day 1,000 of work, the weight loss relative to the initial value (100 g), under the washing regime temperature of 85 °C, 50 °C, 35 °C, and 20 °C, was 1 g, 3.3 g, 5 g, and 4.2 g, respectively. The dependences have been derived for the swell mass of milking rubber M on the temperature of washing solutions T and the duration of operation t as a result of saturation with milk fats. The dependence of milk yield rate V on the tension force of milking rubber F in teat cups has been established. Thus, it was found that when the tension force of milking rubber changes from 25 to 60 N, the difference in the average intensity of milk yield is 0.13 kg/min (10.8 %). Regarding the amount of milk yield at the specified tension, the difference is 0.15 kg (2.5 %). At rubber tension from 60 to 25 N, the average milking time increases by 0.46 min (8.3 %). Thus, it was determined that a milking machine with milking rubber at different tension over a total milking time would unevenly milk different parts of the cow’s udder. The study reported here expands the idea about the technical and manufacturing characteristics of rubber articles, namely changes in them at steam disinfection and as a result of saturation with milk fats

Journal ArticleDOI
TL;DR: In this article, a model of the life cycle of an ecologistic system, which shows the relations between time intervals and cash flows that correspond to the stages of the project life cycle phases, was developed.
Abstract: The issue of assessing the effectiveness of a project of an ecologistic system using the criterion of «a discounted payback period», which takes into consideration the transformational changes in the project life cycle, was considered. The specific features of the life cycle of a project of an ecologistic system, in the structure of which it is proposed to include environmentally-oriented regeneration and revitalization phases, were explored. The phases of a life cycle were divided into stages, between which consecutive and parallel relations were established. The project life cycle consists of time intervals, during which from one to three stages of the project phases can run in parallel. A model of the life cycle of an ecologistic system, which shows the relations between time intervals and cash flows that correspond to the stages of the project life cycle phases, was developed. A mathematical formula for calculating the discounted payback period of a project, which takes into consideration the specific features of the formation of cash flows of separate phases of the life cycle of an ecologistic system, was proposed. The application of the formula is possible when assuming the constancy of cash flows of the stages of operational and the regeneration phases, which corresponds to the conditions of uncertainty of their forecasting at the beginning of the project. The functional dependences between the discounted payback period and cash flows during the phases of a project life cycle were studied. Depending on a phase of the life cycle, the dependence is expressed by a linear, polynomial, or power function. The identification of functional dependences makes it possible to study the dynamics of changes in the discounted payback period with changes in project cash flows, which can be used in forecasting the effectiveness of an ecologistic system project.

Journal ArticleDOI
TL;DR: In this article, a mathematical model of the induction generator-induction motor system with parametric asymmetry was developed to determine the quality of generated electricity in load operating modes, and the results of changes in the main characteristics of an induction motor at various degrees of parametric imbalance in the generator were presented.
Abstract: The paper presents studies of the system "induction generator-induction motor" with parametric asymmetry on a mathematical model to determine the quality of generated electricity in load operating modes. A mathematical model of the "induction generator-induction motor" system has been developed taking into account losses in steel and parametric asymmetry. The analysis of the transient characteristics of an induction generator when a motor load is connected in symmetrical and asymmetrical modes of operation is carried out. The results of changes in the main characteristics of an induction motor at various degrees of parametric asymmetry in the generator are presented. The quality of the generated electricity was analyzed based on the calculations of the unbalance coefficients for each of the operating modes. The assessment of the thermal state in steady-state conditions was carried out using an equivalent thermal equivalent circuit. Thermal transients were investigated when starting an induction motor from an autonomous energy source based on an induction generator. On a thermal mathematical model, the study of the effect of the output voltage asymmetry on the heating of the connected induction motor was carried out. It is shown that the asymmetry of the output voltage of an induction generator reaches 3–10 % and causes overheating of the windings in excess of the permissible values. A regression model has been developed for studying the operating conditions of an induction motor when powered by an induction generator with an asymmetry of the stator windings. The use of the obtained equations will make it possible to determine the most rational combination of factors affecting the heating of the stator windings of induction machines, in which they will not overheat above the maximum permissible temperature values of the corresponding insulation classes

Journal ArticleDOI
TL;DR: In this article, the influence of the bearing surface profile on the unit elements when moving in the field prepared for sowing and the field after plowing was calculated, and a mathematical model of tractor wheel dynamics was formed.
Abstract: Results of theoretical studies of dynamics of the machine-tractor assembly taking into account the influence of a bearing surface profile were presented. It was established that in the course of operation, the machine-tractor assembly is exposed to a number of external factors leading to a change of vertical loads on the chassis and the engine. Mathematical models of dynamics of a tractor and a machine and a tractor unit consisting of a tractor of pivotally connected arrangement and a trailed sower were constructed. Such models make it possible to study dynamics and oscillatory processes of multi-element units. A mathematical model of tractor wheel dynamics was formed. Speeds and angles of orientation of elements of the machine-tractor assembly in space were determined. Influence of profile of the bearing surface on the unit elements when moving in the field prepared for sowing and the field after plowing was calculated. Theoretical studies of the influence of the bearing surface profile on dynamics of the machine-tractor assembly were performed on the example of KhTZ-242K tractor and Vega-8 Profi sower (Ukraine). When moving, the sower frame has a smaller amplitude of vibration accelerations than that of the tractor. Accordingly, the tractor has higher oscillation energy because it rests on the ground through its wheels having appropriate stiffness. The sower moves with its working bodies immersed into the soil which leads to a decrease in the amplitude of oscillations. The highest energy of amplitude of oscillation accelerations of the sower frame in the vertical direction was observed at frequencies of 15.9; 23.44; 35.3 and 42.87 Hz. It was found that the increase in working speeds of agricultural units leads to the fact that oscillations of all components reach significant values. This entails an increase in dynamic loads on soil and, as a consequence, its compaction

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the parameters of frontal plowing slope, which provides high-quality execution of the technological process in accordance with the agro-technical requirements with minimum energy consumption without furrow plowing, agrotechnical and energy performance of variable frontal forks.
Abstract: Agricultural land plays an important role in ensuring food security and employment in rural areas. For many years, the planned economy has forced Uzbekistan to grow water-intensive crops, which has led to declining land productivity and increased crop yields. In a market economy, new innovative technologies are in high demand not only in agriculture but also in other sectors. In order to solve the above-mentioned problems, our research has found it necessary to set goals and objectives. The purpose of the study was to substantiate the parameters of frontal plowing slope, which provides high-quality execution of the technological process in accordance with the agro-technical requirements with minimum energy consumption without furrow plowing, agrotechnical and energy performance of variable frontal forks. The following results were achieved by performing the tasks identified in the study: a – humidity V=16–17 % and load conditions with elastic rods of 3 mm, 4 mm, 5 mm; b – humidity V=13–14 % and the diameter of elastic rods is 3 mm, 4 mm, 5 mm; c – humidity V=9–10 % and the diameter of the elastic rods is 3 mm, 4 mm, 5 mm. The experiments were performed on lumps with different humidity conditions: 9–10 %, 13–14 % and 16–17 %. The speed of the installation was 1.0 m/s. The recommended technology was to destroy soil fragments with a moisture content of 16–17 % at a vertical load of 400 N with 3, 4 and 5 mm elastic rods at 86.6, 81.5, 75.1 %, respectively, and the vertical load equal to 1,000 N – 94.4, 89.2, 81.2 %, respectively

Journal ArticleDOI
TL;DR: In this paper, a robust U-Net deep learning Convolutional Neural Network (CNN) model was proposed to classify if the subject has a tumor or not based on Brain Magnetic resonance imaging (MRI) with acceptable accuracy for medical grade application.
Abstract: Brain tumors are the growth of abnormal cells or a mass in a brain. Numerous kinds of brain tumors were discovered, which need accurate and early detection techniques. Currently, most diagnosis and detection methods rely on the decision of neuro-specialists and radiologists to evaluate brain images, which may be time-consuming and cause human errors. This paper proposes a robust U-Net deep learning Convolutional Neural Network (CNN) model that can classify if the subject has a tumor or not based on Brain Magnetic resonance imaging (MRI) with acceptable accuracy for medical-grade application. The study built and trained the 3D U-Net CNN including encoding/decoding relationship architecture to perform the brain tumor segmentation because it requires fewer training images and provides more precise segmentation. The algorithm consists of three parts; the first part, the downsampling part, the bottleneck part, and the optimum part. The resultant semantic maps are inserted into the decoder fraction to obtain the full-resolution probability maps. The developed U-Net architecture has been applied on the MRI scan brain tumor segmentation dataset in MICCAI BraTS 2017. The results using Matlab-based toolbox indicate that the proposed architecture has been successfully evaluated and experienced for MRI datasets of brain tumor segmentation including 336 images as training data and 125 images for validation. This work demonstrated comparative performance and successful feasibility of implementing U-Net CNN architecture in an automated framework of brain tumor segmentations in Fluid-attenuated inversion recovery (FLAIR) MR Slices. The developed U-Net CNN model succeeded in performing the brain tumor segmentation task to classify the input brain images into a tumor or not based on the MRI dataset.

Journal ArticleDOI
TL;DR: In this article, the concept of building security systems based on a variety of models describing various CIF functioning aspects is presented, which can be used for all CIFs, which makes it possible to unify preventive measures and increase the security level.
Abstract: To effectively protect critical infrastructure facilities (CIF), it is important to understand the focus of cybersecurity efforts. The concept of building security systems based on a variety of models describing various CIF functioning aspects is presented. The development of the concept is presented as a sequence of solving the following tasks. The basic concepts related to cyberattacks on CIF were determined, which make it possible to outline the boundaries of the problem and determine the level of formalization of the modeling processes. The proposed threat model takes into account possible synergistic/emergent features of the integration of modern target threats and their hybridity. A unified threat base that does not depend on CIF was formed. The concept of modeling the CIF security system was developed based on models of various classes and levels. A method to determine attacker's capabilities was developed. A concept for assessing the CIF security was developed, which allows forming a unified threat base, assessing the signs of their synergy and hybridity, identifying critical CIF points, determining compliance with regulatory requirements and the state of the security system. The mathematical tool and a variety of basic models of the concept can be used for all CIFs, which makes it possible to unify preventive measures and increase the security level. It is proposed to use post-quantum cryptography algorithms on crypto-code structures to provide security services. The proposed mechanisms provide the required stability (230–235 group operations), the rate of cryptographic transformation is comparable to block-symmetric ciphers (BSC) and reliability (Perr 10–9–10–12)

Journal ArticleDOI
TL;DR: In this article, a model of the induction motor is proposed that takes into consideration changes in the values of mutual inductance of phases and complete inductance in the magnetization circuit due to changes of the geometric dimensions of the winding caused by a certain defect.
Abstract: The analysis of operating conditions of induction traction motors as part of traction electric drives of electric locomotives reported here has revealed that they are powered by autonomous voltage inverters with asymmetric non-sinusoidal voltage. It was established that the induction motor operation may be accompanied by defects caused by the asymmetrical modes of the motor stator. A model of the induction motor has been proposed that takes into consideration changes in the values of mutual inductance of phases and complete inductance of the magnetization circuit due to changes in the geometric dimensions of the winding caused by a certain defect. An algorithm that considers the saturation of the magnetic circuit of the electric motor has been proposed. This approach to modeling an induction motor is important because if one of the stator's windings is damaged, its geometry changes. This leads to a change in the mutual inductance of phases and the complete inductance of the magnetization circuit. Existing approaches to modeling an induction motor do not make it possible to fully take into consideration these changes. The result of modeling is the determined starting characteristics for an intact and damaged engine. The comparison of modeling results for an intact engine with specifications has shown that the error in determining the controlled parameters did not exceed 5 %. The modeling results for the damaged engine demonstrated that the nature of change in the controlled parameters did not contradict the results reported by other authors. The discrepancy in determining the degree of change in the controlled parameters did not exceed 10 %. That indicates a high reliability of the modeling results. The proposed model of an induction electric motor could be used to investigate electromagnetic processes occurring in an electric motor during its operation as part of the traction drive of electric locomotives

Journal ArticleDOI
TL;DR: In this paper, the impact of 3D printing parameters (temperature, print speed, layer height) on mechanical parameters (strength, elasticity module), as well as on the accuracy of printing and roughness of the surface of a specimen based on thermoplastic (PLA plastic).
Abstract: The mass application of FDM technology is slowed down due to the difficulty of selecting 3D printing parameters in order to manufacture an article with the required characteristics. This paper reports a study into the impact of 3D printing parameters (temperature, print speed, layer height) on mechanical parameters (strength, elasticity module), as well as on the accuracy of printing and roughness of the surface of a specimen based on thermoplastic (PLA plastic). Several batches of specimens were fabricated for this study in accordance with ASTM D638 and ASTM D695, which were tested for tension, geometric accuracy, and roughness. Based on the experimental data, regression analysis was carried out and the functional dependences of the strength, elasticity module, printing precision, roughness of a surface on 3D printing parameters (temperature, speed, thickness of the layer) were constructed. In addition, the derived mathematical model underlying a method of non-linear programming has established such printing parameters that could provide for the required properties of a structure. The analytical dependences reported in the current work demonstrate a high enough determination factor in the examined range of parameters. Using functional dependences during the design phase makes it possible to assess the feasibility of its manufacture with the required properties, reduce the time to work out the process of printing it, and give recommendations on the technological parameters of 3D printing. The recommendations from this study could be used to make PLA-plastic articles for various purposes with the required properties

Journal ArticleDOI
TL;DR: The use of microprocessor equipment in the ship’s electricity generating units implies the automation of control processes, as well as the processes of control and protection of ship technical systems and complexes, which includes the measurement of electric power parameters, which are necessary to enable effective automatic synchronization of generator sets (GSs).
Abstract: This paper considers the construction of principles and the synthesis of a system of effective control over the processes of synchronization of generator sets (GSs) that form a part of the distributed MP-control systems for complex ship technical systems and complexes (STS and C). The tasks of synchronization have been set, the process and database models have been built, the system configurations have been defined. Based on the use of resultant functions, we have determined stages in solving the tasks of control over the frequency adjustment synchronization in a hierarchical sequence. The performance analysis of the STS and C control elements has been carried out; the use of the integrated optimization criteria and dual management principles has been proposed. Practical techniques to manage the GS synchronization have been given. We have solved the problem of high-speed control over the frequency of synchronized objects based on the principles of adjustment. That has made it possible to determine in advance the moments of GS enabling under the deterministic and stochastic statement of the synchronization task. The results of the experimental study into the GS synchronization processes are given; the effectiveness of the proposed GS control has been proven. The principles underlying the construction of procedures to control the GS composition when using the methods of "rigid" and "flexible" thresholds have made it possible to define the optimization criteria and implement a control law that satisfied the condition for an extremum, which is an indicator of the feasibility of the set goal and takes into consideration the limitations of control influences. We managed to design a system in the class of adaptive control systems by the appropriate decomposition of the system's elements by splitting a synchronization task into the task on performance and the task on control under the required conditions. The given examples of the processes where the synchronization failed while using standard synchronizer control algorithms, as well as processes of successful GS synchronization when applying the proposed synchronizer dual control algorithms, have confirmed the reliability of the main scientific results reported here.

Journal ArticleDOI
TL;DR: A doctrinal model of state financial security management in the context of globalization changes has been developed in this paper, which is formed at five levels (doctrinal, conceptual, strategic, programmatic, planned), containing a logical continuum of mission, priorities in the financial sector and the level of technological innovation, influencing factors and a system of actions aimed at achieving goals.
Abstract: A doctrinal model of state financial security management in the context of globalization changes has been developed. The model is formed at five levels (doctrinal, conceptual, strategic, programmatic, planned), contains a logical continuum of mission, priorities in the financial sector and the level of technological innovation, influencing factors and a system of actions aimed at achieving goals. This model accumulates a set of solutions aimed at adapting to transformational processes in the economy associated with new needs of states, globalization processes in the world financial space, technology development, new challenges and threats. As a result of the study, forecasting is carried out and the effectiveness of the results of modifying approaches to managing the financial security of the state using a polynomial algorithm for extrapolating the parameters of stochastic systems is proved. A polynomial correlation-regression model is presented, the input data of which were specific indicators of the effectiveness of innovative development of the state, perception of corruption and debt dependence. In fact, this is a set of those indicators at which the strategic directions of strengthening the financial security of the state are directed in the context of globalization changes. The generalized values of the state of financial security of the state, determined on the basis of the developed polynomial correlation-regression model, are obtained, as well as the absolute and relative amounts of error indicate the accuracy of the forecasts obtained. So, the mean level of error is 0.005 %, which means that the totality of these indicators can characterize the state of financial security of the state. Accordingly, this model is useful in the process of predicting the results of modifying approaches to the formation of the financial security of the state

Journal ArticleDOI
TL;DR: In this article, a mathematical model of the phase transformation process during the transfer of heat flux to a sample was built based on the derived dependences, and it was established that when hornbeam wood is exposed to temperature treatment, it undergoes endothermic phase transformations characterized by the heat absorption and change in the color of the wood.
Abstract: The creation of environmentally friendly protective materials for building structures made of wood could make it possible to influence the processes of stability and the physical-chemical properties at the thermal modification of hornbeam wood over a certain time. That necessitates studying the conditions for investigating phase transformations when the timber is exposed to high temperature, as well as establishing the mechanism of hornbeam wood thermal modification. Given this, a mathematical model of the phase transformation process during the transfer of heat flux to a sample was built. Based on the derived dependences, it was established that when hornbeam wood is exposed to temperature treatment, it undergoes endothermic phase transformations characterized by the heat absorption and change in the color of hornbeam wood. In particular, at a temperature of 200 °C, the temperature in the wood decreases by 5 % due to the chemical changes in the structure of cell wall components (lignin, cellulose, and hemicellulose). It was found that the process of thermal modification is accompanied by the decomposition of hemicellulose and the amorphous part of cellulose, a decrease in moisture absorption, as well as a decrease in the volume of substances that are a medium for the development of fungi. In addition, lignin and the resulting pseudo lignin undergo a process of polymerization and redistribution throughout the cell volume. At the same time, they give the cell walls higher density, hardness, increase hydrophobicity (water repellency), thereby reducing the ability to absorb moisture and swell. It was established that the most effective parameter of phase transformations is the temperature and aging duration. The results of moisture absorption have been given; it has been found that over 6 hours of modified timber exposure, its moisture absorption decreases by more than 10 times, which allows its application at facilities with high humidity

Journal ArticleDOI
TL;DR: In this paper, a switching-based multiple access control model is proposed to improve the data transmission performance of wireless asynchronous transfer mode (ATM) in wireless networks, where three control access is processed; polling, token passing, and reservation algorithms for collision avoidance.
Abstract: The developments of wireless networks have directed to search for opportunities of a broad diversity of improved and new networking contributions. Wireless Asynchronous Transfer Mode (ATM) is a non-synchronous or random mode of transferring information. The advantages of circuit switching include dedicated connections and guaranteed traffic parameters and the benefits of packet switching are the efficiency at the physical layer and a more cost-effective design. ATM is the only protocol that offers the best of both communication methods. Although the Variable Bit-Rate (VBR) transmission presents a promising prospective of stable data quality, it is usually accompanied by network traffic overload and cell packet loss, which extensively weakens that potential. This work overcomes these concerns by developing a switching-based multiple access control model to improve the data transmission performance of wireless ATM. Therefore, this work discusses the effectiveness of the developed approach to minimize the cell packet losses and network traffic overload in wireless ATM. Three control access is processed; polling, token passing, and reservation algorithms for collision avoidance. The reservation stage reserves the data before sending, which includes two timeline intervals; a fixed-time reservation period, and variable data transmission interval. Using OPNET 10.5, the results show that the presented switching-based multiple access control model can achieve a throughput value of 98.3 %, data transmission delay of about 40.2 ms, and 0.024 % of packet losses during data transmission between the source and destination. It is demonstrated that the introduced method effectively transmits information without creating any network complexity and delay