scispace - formally typeset
Search or ask a question

Showing papers in "Environmental Science: Processes & Impacts in 2014"


Journal ArticleDOI
TL;DR: Key challenges facing EAOP technologies are related to toxic byproduct formation and low electro-active surface areas and must be addressed in future research in order for EAOPs to realize their full potential for water treatment.
Abstract: Electrochemical advanced oxidation processes (EAOPs) have emerged as novel water treatment technologies for the elimination of a broad-range of organic contaminants. Considerable validation of this technology has been performed at both the bench-scale and pilot-scale, which has been facilitated by the development of stable electrode materials that efficiently generate high yields of hydroxyl radicals (OH˙) (e.g., boron-doped diamond (BDD), doped-SnO2, PbO2, and substoichiometic- and doped-TiO2). Although a promising new technology, the mechanisms involved in the oxidation of organic compounds during EAOPs and the corresponding environmental impacts of their use have not been fully addressed. In order to unify the state of knowledge, identify research gaps, and stimulate new research in these areas, this review critically analyses published research pertaining to EAOPs. Specific topics covered in this review include (1) EAOP electrode types, (2) oxidation pathways of select classes of contaminants, (3) rate limitations in applied settings, and (4) long-term sustainability. Key challenges facing EAOP technologies are related to toxic byproduct formation (e.g., ClO4− and halogenated organic compounds) and low electro-active surface areas. These challenges must be addressed in future research in order for EAOPs to realize their full potential for water treatment.

600 citations


Journal ArticleDOI
TL;DR: This review summarizes current understanding of the processes underlying CDOM photophysics and photochemistry as well as their physical basis.
Abstract: Absorption of sunlight by chromophoric dissolved natural organic matter (CDOM) is environmentally significant because it controls photic zone depth and causes photochemistry that affects elemental cycling and contaminant fate. Both the optics (absorbance and fluorescence) and photochemistry of CDOM display unusual properties that cannot easily be ascribed to a superposition of individual chromophores. These include (i) broad, unstructured absorbance that decreases monotonically well into the visible and near IR, (ii) fluorescence emission spectra that all fall into a single envelope regardless of the excitation wavelength, and (iii) photobleaching and photochemical quantum yields that decrease monotonically with increasing wavelength. In contrast to a simple superposition model, these phenomena and others can be reasonably well explained by a physical model in which charge-transfer interactions between electron donating and accepting chromophores within the CDOM control the optical and photophysical properties. This review summarizes current understanding of the processes underlying CDOM photophysics and photochemistry as well as their physical basis.

288 citations


Journal ArticleDOI
TL;DR: Due to their reactivity with contaminants under environmentally relevant conditions, Mn oxides may oxidize contaminants in soils and/or be applied in water treatment applications.
Abstract: Naturally occurring manganese (Mn(iii/iv)) oxides are ubiquitous in a wide range of environmental settings and play a key role in numerous biogeochemical cycles. In addition, Mn(iii/iv) oxides are powerful oxidants that are capable of oxidizing a wide range of compounds. This review critically assesses the reactivity of Mn oxides with organic contaminants. Initial work with organic reductants employed high concentrations of model compounds (e.g., substituted phenols and anilines) and emphasized the reductive dissolution of the Mn oxides. Studies with lower concentrations of organic contaminants demonstrate that Mn oxides are capable of oxidizing a wide range of compounds (e.g., antibacterial agents, endocrine disruptors, and pesticides). Both model compounds and organic contaminants undergo similar reaction mechanisms on the oxide surface. The oxidation rates of organic compounds by manganese oxides are dependent upon solution conditions, such as pH and the presence of cations, anions, or dissolved organic matter. Similarly, physicochemical properties of the minerals used affect the rates of organic compound oxidation, which increase with the average oxidation state, redox potential, and specific surface area of the Mn oxides. Due to their reactivity with contaminants under environmentally relevant conditions, Mn oxides may oxidize contaminants in soils and/or be applied in water treatment applications.

254 citations


Journal ArticleDOI
TL;DR: This review focuses on current approaches to the chemical structural characterization of DOM, ranging from those applicable to bulk samples and in situ analyses (UV-visible spectrophotometry and fluorescence spectroscopy) through the concentration/isolation of DOM followed by the application of one or more analytical techniques.
Abstract: Natural dissolved organic matter (DOM) in aquatic systems plays many environmental roles: providing building blocks and energy for aquatic biota, acting as a sunscreen in surface water, and interacting with anthropogenic compounds to affect their ultimate fate in the environment. Such interactions are a function of DOM composition, which is difficult to ascertain due to its heterogeneity and the co-occurring matrix effects in most aquatic samples. This review focuses on current approaches to the chemical structural characterization of DOM, ranging from those applicable to bulk samples and in situ analyses (UV-visible spectrophotometry and fluorescence spectroscopy) through the concentration/isolation of DOM followed by the application of one or more analytical techniques, to the detailed separation and analysis of individual compounds or compound classes. Also provided is a brief overview of the main techniques used to characterize isolated DOM: mass spectrometry (MS), nuclear magnetic resonance mass spectrometry (NMR) and Fourier transform infrared spectroscopy (FTIR).

216 citations


Journal ArticleDOI
TL;DR: This review comprehensively discusses toxicological manifestations of heavy metals along with the detailed description of bioremediation technologies employed such as phytoremediations and biosorption for the potential removal of these metals.
Abstract: There has been a significant rise in the levels of heavy metals (Pb, As, Hg and Cd) due to their increased industrial usage causing a severe concern to public health. The accumulation of heavy metals generates oxidative stress in the body causing fatal effects to important biological processes leading to cell death. Therefore, there is an imperative need to explore efficient and effective methods for the eradication of these heavy metals as against the conventionally used uneconomical and time consuming strategies that have numerous environmental hazards. One such eco-friendly, low cost and efficient alternative to target heavy metals is bioremediation technology that utilizes various microorganisms, green plants or enzymes for the abolition of heavy metals from polluted sites. This review comprehensively discusses toxicological manifestations of heavy metals along with the detailed description of bioremediation technologies employed such as phytoremediation and biosorption for the potential removal of these metals. It also updates readers about recent advances in bioremediation technologies like the use of nanoparticles, non-living biomass and transgenic crops.

209 citations


Journal ArticleDOI
TL;DR: This review includes all major pesticide classes and focuses on the importance of dissolved organic matter (DOM) as a sensitizer in indirect photodegradation within aquatic systems, with a focus on pesticide susceptibility to DOM-sensitized indirect photolysis.
Abstract: Photochemical degradation contributes to the environmental fate of many pesticides in surface waters. A better understanding of the role of direct and indirect photochemical degradation of pesticides is necessary in order to predict their environmental fate and persistence. This review includes all major pesticide classes and focuses on the importance of dissolved organic matter (DOM) as a sensitizer in indirect photodegradation within aquatic systems. Photochemical studies conducted under environmentally relevant conditions (i.e., aqueous solutions with irradiation wavelengths >290 nm) are included. Comparisons are made between observed photodegradation rates in pure or buffered water and in water containing DOM to assess the extent of pesticide susceptibility to DOM-sensitized indirect photolysis. When data is available, the role of specific reactive species in indirect photodegradation is described. While it is possible to assess the relative importance of direct and indirect photodegradation on a pesticide-by-pesticide basis in many cases, it is often difficult to make generalizations based on compound class. Knowledge gaps and inconstancies in the current body of literature are discussed and areas that require additional research are described.

207 citations


Journal ArticleDOI
TL;DR: It is suggested that local release to the atmosphere and subsequent deposition bring about a pseudo-diffusive redistribution of P in the landscape, with P-poor ecosystems, for example ombrotrophic peatlands and oligotrophic lakes, gaining at the expense of P-rich ones.
Abstract: We compiled published and newly-obtained data on the directly-measured atmospheric deposition of total phosphorus (TP), filtered total phosphorus (FTP), and inorganic phosphorus (PO4-P) to open land, lakes, and marine coasts. The resulting global data base includes data for c. 250 sites, covering the period 1954 to 2012. Most (82%) of the measurement locations are in Europe and North America, with 44 in Africa, Asia, Oceania, and South-Central America. The deposition rates are log-normally distributed, and for the whole data set the geometric mean deposition rates are 0.027, 0.019 and 0.14 g m−2 a−1 for TP, FTP and PO4–P respectively. At smaller scales there is little systematic spatial variation, except for high deposition rates at some sites in Germany, likely due to local agricultural sources. In cases for which PO4–P was determined as well as one of the other forms of P, strong parallels between logarithmic values were found. Based on the directly-measured deposition rates to land, and published estimates of P deposition to the oceans, we estimate a total annual transfer of P to and from the atmosphere of 3.7 Tg. However, much of the phosphorus in larger particles (principally primary biological aerosol particles) is probably redeposited near to its origin, so that long-range transport, important for tropical forests, large areas of peatland and the oceans, mainly involves fine dust from deserts and soils, as described by the simulations of Mahowald et al. (Global Biogeochemical Cycles 22, GB4026, 2008). We suggest that local release to the atmosphere and subsequent deposition bring about a pseudo-diffusive redistribution of P in the landscape, with P-poor ecosystems, for example ombrotrophic peatlands and oligotrophic lakes, gaining at the expense of P-rich ones. Simple calculations suggest that atmospheric transport could bring about significant local redistribution of P among terrestrial ecosystems. Although most atmospherically transported P is natural in origin, local transfers from fertilised farmland to P-poor ecosystems may be significant, and this requires further research.

195 citations


Journal ArticleDOI
TL;DR: It is argued that the most suitable way to maximize energy recovery from wastewater treatment is to separate carbon and nutrient removal processes, with a particular focus on energy optimization in management of nitrogenous oxygen demand.
Abstract: Conventional biological wastewater treatment processes are energy-intensive endeavors that yield little or no recovered resources and often require significant external chemical inputs. However, with embedded energy in both organic carbon and nutrients (N, P), wastewater has the potential for substantial energy recovery from a low-value (or no-value) feedstock. A paradigm shift is thus now underway that is transforming our understanding of necessary energy inputs, and potential energy or resource outputs, from wastewater treatment, and energy neutral or even energy positive treatment is increasingly emphasized in practice. As two energy sources in domestic wastewater, we argue that the most suitable way to maximize energy recovery from wastewater treatment is to separate carbon and nutrient (particularly N) removal processes. Innovative anaerobic treatment technologies and bioelectrochemical processes are now being developed as high efficiency methods for energy recovery from waste COD. Recently, energy savings or even generation from N removal has become a hotspot of research and development activity, and nitritation–anammox, the newly developed CANDO process, and microalgae cultivation are considered promising techniques. In this paper, we critically review these five emerging low energy or energy positive bioprocesses for sustainable wastewater treatment, with a particular focus on energy optimization in management of nitrogenous oxygen demand. Taken together, these technologies are now charting a path towards to a new paradigm of resource and energy recovery from wastewater.

181 citations


Journal ArticleDOI
TL;DR: Although the fluorocarbon compounds identified are used as tracers, the presence of chlorocarbons and organobromides formed as a consequence of using chlorine containing oxidants suggests that industry should concentrate on non-chemical treatments of frac and produced waters.
Abstract: A detailed analysis is reported of the organic composition of produced water samples from typical shale gas wells in the Marcellus (PA), Eagle Ford (TX), and Barnett (NM) formations. The quality of shale gas produced (and frac flowback) waters is a current environmental concern and disposal problem for producers. Re-use of produced water for hydraulic fracturing is being encouraged; however, knowledge of the organic impurities is important in determining the method of treatment. The metal content was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Mineral elements are expected depending on the reservoir geology and salts used in hydraulic fracturing; however, significant levels of other transition metals and heavier main group elements are observed. The presence of scaling elements (Ca and Ba) is related to the pH of the water rather than total dissolved solids (TDS). Using gas chromatography mass spectrometry (GC/MS) analysis of the chloroform extracts of the produced water samples, a plethora of organic compounds were identified. In each water sample, the majority of organics are saturated (aliphatic), and only a small fraction comes under aromatic, resin, and asphaltene categories. Unlike coalbed methane produced water it appears that shale oil/gas produced water does not contain significant quantities of polyaromatic hydrocarbons reducing the potential health hazard. Marcellus and Barnett produced waters contain predominantly C6–C16 hydrocarbons, while the Eagle Ford produced water shows the highest concentration in the C17–C30 range. The structures of the saturated hydrocarbons identified generally follows the trend of linear > branched > cyclic. Heterocyclic compounds are identified with the largest fraction being fatty alcohols, esters, and ethers. However, the presence of various fatty acid phthalate esters in the Barnett and Marcellus produced waters can be related to their use in drilling fluids and breaker additives rather than their presence in connate fluids. Halogen containing compounds are found in each of the water samples, and although the fluorocarbon compounds identified are used as tracers, the presence of chlorocarbons and organobromides formed as a consequence of using chlorine containing oxidants (to remove bacteria from source water), suggests that industry should concentrate on non-chemical treatments of frac and produced waters.

162 citations


Journal ArticleDOI
TL;DR: This review summarizes the last 10 years of studies on the solar or solar-simulated photodegradation of PhACs in aqueous environments, covering beta-blockers, antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), histamine H₂-receptor antagonists, lipid regulators, carbamazepine, steroid hormones, and X-ray contrast media compounds.
Abstract: In the past few years, the fate and transportation of pharmaceutically active compounds (PhACs) in aqueous environments have raised significant concerns among the public, scientists and regulatory groups. Photodegradation is an important removal process in surface waters. This review summarizes the last 10 years (2003–2013) of studies on the solar or solar-simulated photodegradation of PhACs in aqueous environments. The PhACs covered include: beta-blockers, antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), histamine H2-receptor antagonists, lipid regulators, carbamazepine, steroid hormones, and X-ray contrast media compounds. Kinetic studies, degradation mechanisms and toxicity removal are the three major topics involved in this review. The quantum yield for the direct photolysis of PhACs and the bimolecular reaction rate constants of PhACs with reactive oxygen species (ROS), such as the ˙OH radical and singlet oxygen, are also summarized. This information is not only important to predict the PhAC photodegradation fate, but also is very useful for advanced treatment technologies, such as ozone or advanced oxidation processes.

146 citations


Journal ArticleDOI
TL;DR: Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging.
Abstract: The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m−3 of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40–1200 kJ per capita per day or 110–3300 kJ m−3 of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200–4700 kJ per capita per day or 3400–13 000 kJ m−3 (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic bioprocesses in energy positive wastewater management is discussed.

Journal ArticleDOI
TL;DR: Leachate from landfills in areas receiving greater amounts of precipitation had greater frequencies of CEC detections and concentrations in leachate than landfILLs receiving less precipitation.
Abstract: To better understand the composition of contaminants of emerging concern (CECs) in landfill leachate, fresh leachate from 19 landfills was sampled across the United States during 2011. The sampled network included 12 municipal and 7 private landfills with varying landfill waste compositions, geographic and climatic settings, ages of waste, waste loads, and leachate production. A total of 129 out of 202 CECs were detected during this study, including 62 prescription pharmaceuticals, 23 industrial chemicals, 18 nonprescription pharmaceuticals, 16 household chemicals, 6 steroid hormones, and 4 plant/animal sterols. CECs were detected in every leachate sample, with the total number of detected CECs in samples ranging from 6 to 82 (median = 31). Bisphenol A (BPA), cotinine, and N,N-diethyltoluamide (DEET) were the most frequently detected CECs, being found in 95% of the leachate samples, followed by lidocaine (89%) and camphor (84%). Other frequently detected CECs included benzophenone, naphthalene, and amphetamine, each detected in 79% of the leachate samples. CEC concentrations spanned six orders of magnitude, ranging from ng L−1 to mg L−1. Industrial and household chemicals were measured in the greatest concentrations, composing more than 82% of the total measured CEC concentrations. Maximum concentrations for three household and industrial chemicals, para-cresol (7 020 000 ng L−1), BPA (6 380 000 ng L−1), and phenol (1 550 000 ng L−1), were the largest measured, with these CECs composing 70% of the total measured CEC concentrations. Nonprescription pharmaceuticals represented 12%, plant/animal sterols 4%, prescription pharmaceuticals 1%, and steroid hormones <1% of the total measured CEC concentrations. Leachate from landfills in areas receiving greater amounts of precipitation had greater frequencies of CEC detections and concentrations in leachate than landfills receiving less precipitation.

Journal ArticleDOI
TL;DR: A major recommendation is the development of a method guideline, based on this rubric, for conducting and reporting on photochemical studies that would produce consistent and reliable data for quantitative comparison across studies.
Abstract: This work presents a critical assessment of the state and quality of knowledge around the aquatic photochemistry of human- and veterinary-use pharmaceuticals from laboratory experiments and field observations. A standardized scoring rubric was used to assess relevant studies within four categories: experimental design, laboratory-based direct and indirect photolysis, and field/solar photolysis. Specific metrics for each category are defined to evaluate various aspects of experimental design (e.g., higher scores are given for more appropriate characterization of light source wavelength distribution). This weight of evidence-style approach allowed for identification of knowledge strengths and gaps covering three areas: first, the general extent of photochemical data for specific pharmaceuticals and classes; second, the overall quality of existing data (i.e., strong versus weak); and finally, trends in the photochemistry research around these specific compounds, e.g. the observation of specific and consistent oversights in experimental design. In general, those drugs that were most studied also had relatively good quality data. The four pharmaceuticals studied experimentally at least ten times in the literature had average total scores (lab and field combined) of ≥29, considered decent quality; carbamazepine (13 studies; average score of 31), diclofenac (12 studies; average score of 31), sulfamethoxazole (11 studies; average score of 34), and propranolol (11 studies; average score of 29). Major oversights and errors in data reporting and/or experimental design included: lack of measurement and reporting of incident light source intensity, lack of appropriate controls, use of organic co-solvents in irradiation solutions, and failure to consider solution pH. Consequently, a number of these experimental parameters were likely a cause of inconsistent measurements of direct photolysis rate constants and quantum yields, two photochemical properties that were highly variable in the literature. Overall, the assessment rubric provides an objective and scientifically-defensible set of metrics for assessing the quality of a study. A major recommendation is the development of a method guideline, based on this rubric, for conducting and reporting on photochemical studies that would produce consistent and reliable data for quantitative comparison across studies. Furthermore, an emphasis should be placed on conducting more dual-fate studies involving controlled photolysis experiments in natural sunlight, and whole system fate studies in either natural or artificial systems. This would provide accurate data describing the actual contribution of photolysis to the overall fate of pharmaceuticals in the environment.

Journal ArticleDOI
TL;DR: These four algae species were found to be efficient in removing most of the selected organic compounds with >50% removal, and the estrogenic activity with removal efficiencies ranging from 46.2 to 81.1% from the wastewater, suggesting algae could be harnessed to simultaneously remove various contaminants in wastewater.
Abstract: Batch experiments were carried out for 7 days to investigate the simultaneous removal of various organic and inorganic contaminants including total nitrogen (TN), total phosphorus (TP), metals, pharmaceuticals and personal care products (PPCPs), endocrine disrupting chemicals (EDCs), and estrogenic activity in wastewater by four freshwater green microalgae species, Chlamydomonas reinhardtii, Scenedesmus obliquus, Chlorella pyrenoidosa and Chlorella vulgaris. After treatment for 7 days, 76.7–92.3% of TN, and 67.5–82.2% of TP were removed by these four algae species. The removal of metals from wastewater by the four algae species varied among the metal species. These four algae species could remove most of the metals efficiently (>40% removal), but showed low efficiencies in removing Pb, Ni and Co. The four algae species were also found to be efficient in removing most of the selected organic compounds with >50% removal, and the estrogenic activity with removal efficiencies ranging from 46.2 to 81.1% from the wastewater. Therefore, algae could be harnessed to simultaneously remove various contaminants in wastewater.

Journal ArticleDOI
TL;DR: An approach is outlined for future unconventional O & NG development that includes regulation, assessment and monitoring, and nitrogen oxides, volatile organic compounds, ozone, hazardous air pollutants, and methane are identified as pollutants of concern related to O &NG activities.
Abstract: Increased use of hydraulic fracturing (“fracking”) in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of pollutants is possible. Public health protection is improved when emissions are controlled and facilities are located away from where people live. Based on lessons learned in the US we outline an approach for future unconventional O & NG development that includes regulation, assessment and monitoring.

Journal ArticleDOI
Yangwei Bai1, Wei Meng, Jian Xu, Yuan Zhang, Changsheng Guo 
TL;DR: The occurrence and distribution of 19 antibiotics including ten sulfonamides, four quinolones, three tetracyclines and two macrolides in water, sediment, and biota samples from the Liao River Basin, China were investigated in the present study.
Abstract: The occurrence and distribution of 19 antibiotics including ten sulfonamides, four quinolones, three tetracyclines and two macrolides in water, sediment, and biota samples from the Liao River Basin, China were investigated in the present study. The samples were collected in May 2012, and laboratory analyses revealed that antibiotics were widely distributed in the Liao River Basin. Macrolides made up the majority of antibiotics in the water ranging from not detected (ND) to 3162.22 ng L(-1), while tetracyclines and macrolides were the predominant antibiotics in the sediments, ranging from ND to 404.82 μg kg(-1) (mean 32.11 μg kg(-1) dw) and ND to 375.13 (mean 32.77 μg kg(-1) dw), with detection frequencies of 37.3% and 38.1%, respectively. In biological samples, quinolones were the most frequently detected antibiotics (57.1-100%), with concentrations ranging from 286.6-1655.3 μg kg(-1). The highest bioaccumulation factor (BAF) of 45407 L kg(-1) was found for enrofloxacin. The phase distribution calculation showed that tetracyclines were the most strongly adsorbed antibiotics in the sediment, with the highest pseudo-partitioning coefficient values, ranging from 1299 to 1499 L kg(-1). The geographical differences of antibiotic concentrations were largely due to anthropogenic activities and the sewage discharges from the local cities along the rivers.

Journal ArticleDOI
TL;DR: The APEX software predicts the photochemical transformation kinetics of xenobiotics in surface waters as a function of photoreactivity parameters (direct photolysis quantum yield and second-order reaction rate constants with transient species), water chemistry, and water depth.
Abstract: The APEX software predicts the photochemical transformation kinetics of xenobiotics in surface waters as a function of: photoreactivity parameters (direct photolysis quantum yield and second-order reaction rate constants with transient species, namely ˙OH, CO3−˙, 1O2 and the triplet states of chromophoric dissolved organic matter, 3CDOM*), water chemistry (nitrate, nitrite, bicarbonate, carbonate, bromide and dissolved organic carbon, DOC), and water depth (more specifically, the optical path length of sunlight in water). It applies to well-mixed surface water layers, including the epilimnion of stratified lakes, and the output data are average values over the considered water column. Based on intermediate formation yields from the parent compound via the different photochemical pathways, the software can also predict intermediate formation kinetics and overall yield. APEX is based on a photochemical model that has been validated against available field data of pollutant phototransformation, with good agreement between model predictions and field results. The APEX software makes allowance for different levels of knowledge of a photochemical system. For instance, the absorption spectrum of surface water can be used if known, or otherwise it can be modelled from the values of DOC. Also the direct photolysis quantum yield can be entered as a detailed wavelength trend, as a single value (constant or average), or it can be defined as a variable if unknown. APEX is based on the free software Octave. Additional applications are provided within APEX to assess the σ-level uncertainty of the results and the seasonal trend of photochemical processes.

Journal ArticleDOI
TL;DR: Implementing quality control protocols on the manufacture of e-cigarettes would further minimize the emission of metals from these devices and improve their safety and associated health effects.
Abstract: In recent years, electronic cigarettes have gained increasing popularity as alternatives to normal (tobacco-containing) cigarettes In the present study, particles generated by e-cigarettes and normal cigarettes have been analyzed and the degree of exposure to different chemical agents and their emission rates were quantified Despite the 10-fold decrease in the total exposure to particulate elements in e-cigarettes compared to normal cigarettes, specific metals (eg Ni and Ag) still displayed a higher emission rate from e-cigarettes Further analysis indicated that the contribution of e-liquid to the emission of these metals is rather minimal, implying that they likely originate from other components of the e-cigarette device or other indoor sources Organic species had lower emission rates during e-cigarette consumption compared to normal cigarettes Of particular note was the non-detectable emission of polycyclic aromatic hydrocarbons (PAHs) from e-cigarettes, while substantial emission of these species was observed from normal cigarettes Overall, with the exception of Ni, Zn, and Ag, the consumption of e-cigarettes resulted in a remarkable decrease in secondhand exposure to all metals and organic compounds Implementing quality control protocols on the manufacture of e-cigarettes would further minimize the emission of metals from these devices and improve their safety and associated health effects

Journal ArticleDOI
TL;DR: The chemical and physical properties of BC produced from charring arctic biomass were similar to BC produced by wildfires in terrestrial ecosystems based on elemental analysis and FT-ICR MS.
Abstract: Increasing wildfire activity in the Alaskan Arctic may result in new sources of black carbon (BC) to arctic watersheds. Black carbon, primarily comprised of condensed aromatics, is one of the most chemically recalcitrant fractions of organic carbon. However, lateral transfer of particulate and dissolved BC from soils to sunlit surface waters is increasingly suggested to result in the photochemical mineralization of BC to CO2. While sunlight can also partially photooxidize aromatic compounds in surface waters, producing compounds with a higher O/C than the parent compound, this degradation pathway has not yet been identified for either particulate or dissolved BC. To address knowledge gaps on the photochemical degradation of particulate and dissolved BC, we quantified the complete and partial photooxidation of particulate and dissolved BC derived from arctic biomass as photochemical CO2 production and O2 consumption relative to dark controls. Concurrently, we investigated shifts in the chemical composition of dissolved BC following exposure to sunlight using UV-visible absorbance, fluorescence spectroscopy, and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The chemical and physical properties of BC produced from charring arctic biomass were similar to BC produced by wildfires in terrestrial ecosystems based on elemental analysis and FT-ICR MS. Based on the concentration of light-absorbing carbon in each fraction, dissolved BC was disproportionately more susceptible to complete and partial photooxidation compared to particulate BC. Upon exposure to sunlight, the predominant fate of dissolved BC was partial photooxidation, while a smaller fraction of dissolved BC was photomineralized to CO2. Shifts in both the optical and mass spectrometry spectra suggested that condensed aromatics likely comprised the fraction of dissolved BC that was completely and partially photooxidized. To further refine the meaning of sunlight as a sink for aquatic BC, the reactivity of partially oxidized photoproducts of BC in the aquatic organic carbon pool must be determined.

Journal ArticleDOI
TL;DR: Of the variables tested, sea surface temperature is the strongest predictor of iodide concentration, but chlorophyll-a was not, and Nitrate was also strongly inversely associated with iodide concentrations, but chlorine was not.
Abstract: Recent studies have highlighted the impact of sea surface iodide concentrations on the deposition of ozone to the sea surface and the sea to air flux of reactive iodine. The use of models to predict this flux demands accurate, spatially distributed sea surface iodide concentrations, but to date, the observational data required to support this is sparse and mostly arises from independent studies conducted on small geographical and temporal scales. We have compiled the available measurements of sea surface iodide to produce a data set spanning latitudes from 69°S to 66°N, which reveals a coherent, large scale distribution pattern, with highest concentrations observed in tropical waters. Relationships between iodide concentration and more readily available parameters (chlorophyll, nitrate, sea surface temperature, salinity, mixed layer depth) are evaluated as tools to predict iodide concentration. Of the variables tested, sea surface temperature is the strongest predictor of iodide concentration. Nitrate was also strongly inversely associated with iodide concentration, but chlorophyll-a was not.

Journal ArticleDOI
TL;DR: It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water, suggesting that it is a useful metric to determine temporal changes in DOC quality.
Abstract: Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230–800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R2 values between absorbance and DOC concentration were generated using 263 nm for one sample set (R2 = 0.91), and 230 nm for the other three sample sets (respective R2 values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250–350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2:E3, E2:E4, E4:E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4:E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.

Journal ArticleDOI
TL;DR: Despite the ubiquitous formation of �’OH in arctic surface waters observed in this study, photochemical ˙OH formation was estimated to contribute ≤4% to the observed photo-oxidation of DOM; however, key uncertainties in this estimate must be addressed before ruling out the role of ˜OH in the oxidation of DOM in these waters.
Abstract: Hydroxyl radical (˙OH) is an indiscriminate oxidant that reacts at near-diffusion-controlled rates with organic carbon. Thus, while ˙OH is expected to be an important oxidant of dissolved organic matter (DOM) and other recalcitrant compounds, the role of ˙OH in the oxidation of these compounds in aquatic ecosystems is not well known due to the poorly constrained sources and sinks of ˙OH, especially in pristine (unpolluted) natural waters. We measured the rates of ˙OH formation and quenching across a range of surface waters in the Arctic varying in concentrations of expected sources and sinks of ˙OH. Photochemical formation of ˙OH was observed in all waters tested, with rates of formation ranging from 2.6 ± 0.6 to 900 ± 100 × 10−12 M s−1. Steady-state concentrations ranged from 2 ± 1 to 290 ± 60 × 10−17 M, and overlapped with previously reported values in surface waters. While iron-mediated photo-Fenton reactions likely contributed to the observed ˙OH production, several lines of evidence suggest that DOM was the primary source and sink of photochemically produced ˙OH in pristine arctic surface waters. DOM from first-order or headwater streams was more efficient in producing ˙OH than what has previously been reported for DOM, and ˙OH formation decreased with increasing residence time of DOM in sunlit surface waters. Despite the ubiquitous formation of ˙OH in arctic surface waters observed in this study, photochemical ˙OH formation was estimated to contribute ≤4% to the observed photo-oxidation of DOM; however, key uncertainties in this estimate must be addressed before ruling out the role of ˙OH in the oxidation of DOM in these waters.

Journal ArticleDOI
TL;DR: The nZVI reactor achieved a remarkably high volumetric loading rate of 1876 g Cu per m(3) per day for Cu(II) removal, surpassing the loading rates of conventional technologies by more than one order of magnitude.
Abstract: A field demonstration was conducted to assess the feasibility of nanoscale zero-valent iron (nZVI) for the treatment of wastewater containing high levels of Cu(II). Pilot tests were performed at a printed-circuit-board manufacturing plant, treating 250000 L of wastewater containing 70 mg L−1 Cu(II) with a total of 55 kg of nZVI. A completely mixed reactor of 1,600 L was operated continuously with flow rates ranging from 1000 to 2500 L h−1. The average Cu(II) removal efficiency was greater than 96% with 0.20 g L−1 nZVI and a hydraulic retention time of 100 min. The nZVI reactor achieved a remarkably high volumetric loading rate of 1876 g Cu per m3 per day for Cu(II) removal, surpassing the loading rates of conventional technologies by more than one order of magnitude. The average removal capacity of nZVI for Cu(II) was 0.343 g Cu per gram of Fe. The Cu(II) removal efficiency can be reliably regulated by the solution Eh, which in turn is a function of nZVI input and hydraulic retention time. The ease of separation and recycling of nZVI contribute to process up-scalability and cost effectiveness. Cu(II) was reduced to metallic copper and cuprite (Cu2O). The end product is a valuable composite of iron and copper (∼20–25%), which can partially offset the treatment costs.

Journal ArticleDOI
TL;DR: Low accuracy and lack of sensitivity was observed for most polychlorinated dibenzo-p-dioxins/furans PCDD/Fs and polybrominated diphenyl ethers (PBDEs) (under the conditions of this study), with the exception of some congeners which may be used as qualitative markers for their respective classes.
Abstract: The most commonly used passive air sampler (PAS) (i.e. polyurethane foam (PUF) disk) is cheap, versatile, and capable of accumulating compounds present both in gas and particle phases. Its performance for particle associated compounds is however disputable. In this study, twelve sets of triplicate PUF-PAS were deployed outdoors for exposure periods of 1–12 weeks together with continuously operated active samplers, to characterize sampling efficiency and derive sampling rates (RS) for compounds belonging to 7 SVOC classes (including particle associated compounds). PUF-PAS efficiently and consistently sampled polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and eight novel brominated flame retardant (nBFR) compounds. Low accuracy and lack of sensitivity was observed for most polychlorinated dibenzo-p-dioxins/furans PCDD/Fs and polybrominated diphenyl ethers (PBDEs) (under the conditions of this study), with the exception of some congeners which may be used as qualitative markers for their respective classes. Application of compound specific RS was found crucial for all compounds except PCBs. Sampling efficiency of the particle associated compounds was often low.

Journal ArticleDOI
TL;DR: This study presents the first source apportionment results from the state of Iowa and is broadly applicable to understanding the differences in anthropogenic and natural sources in the urban-rural continuum of particle air pollution.
Abstract: The composition and sources of fine particulate matter (PM2.5) were investigated in rural and urban locations in Iowa, located in the agricultural and industrial Midwestern United States, from April 2009 to December 2012. Major chemical contributors to PM2.5 mass were sulfate, nitrate, ammonium, and organic carbon. Non-parametric statistical analyses demonstrated that the two rural sites had significantly enhanced levels of crustal materials (Si, Al) driven by agricultural activities and unpaved roads. Meanwhile, the three urban areas had enhanced levels of secondary aerosols (nitrate, sulfate, and ammonium) and combustion products (elemental carbon). The Davenport site had significantly higher levels of PM2.5 and trace metals (Fe, Pb, Zn), demonstrating the important local impact of industrial point sources on air quality. Sources of PM2.5 were evaluated by using the multi-variant positive matrix factorization (PMF) source apportionment model. For each individual site, seven to nine factors were identified: secondary sulfate (accounting for 29–30% of PM2.5), secondary nitrate (17–24%), biomass burning (9–21%), gasoline combustion (6–16%), diesel combustion (3–9%), dust (6–11%), industry (0.4–5%) and winter salt (2–6%). Source contributions demonstrated a clear urban enhancement in PM2.5 from gasoline engines (by a factor of 1.14) and diesel engines (by a factor of 2.3), which is significant due to the well-documented negative health impacts of vehicular emissions. This study presents the first source apportionment results from the state of Iowa and is broadly applicable to understanding the differences in anthropogenic and natural sources in the urban–rural continuum of particle air pollution.

Journal ArticleDOI
TL;DR: In this paper, the authors review current scientific understanding of risks associated with the following: water withdrawals for hydraulic fracturing; wastewater treatment, discharge, and disposal; methane and fluid migration in the subsurface; and spills and erosion at the surface.
Abstract: Unconventional shale gas development promises to significantly alter energy portfolios and economies around the world. It also poses a variety of environmental risks, particularly with respect to the management of water resources. We review current scientific understanding of risks associated with the following: water withdrawals for hydraulic fracturing; wastewater treatment, discharge and disposal; methane and fluid migration in the subsurface; and spills and erosion at the surface. Some of these risks are relatively unique to shale gas development, while others are variations of risks that we already face from a variety of industries and activities. All of these risks depend largely on the pace and scale of development that occurs within a particular region. We focus on the United States, where the shale gas boom has been on-going for several years, paying particular attention to the Marcellus Shale, where a majority of peer-reviewed study has taken place. Governments, regulatory agencies, industry, and other stakeholders are challenged with responding to these risks, and we discuss policies and practices that have been adopted or considered by these various groups. Adaptive Management, a structured framework for addressing complex environmental issues, is discussed as a way to reduce polarization of important discussions on risk, and to more formally engage science in policy-making, along with other economic, social and value considerations. Data suggests that some risks can be substantially reduced through policy and best practice, but also that significant uncertainty persists regarding other risks. We suggest that monitoring and data collection related to water resource risks be established as part of planning for shale gas development before activity begins, and that resources are allocated to provide for appropriate oversight at various levels of governance.

Journal ArticleDOI
TL;DR: A simple model, based on a modified Poisson-Boltzmann equation, is developed, which qualitatively explained the observed experimental results of electrochemical prevention and removal of CaSO4 and CaCO3 mineral scales on electrically conducting carbon nanotube - polyamide reverse osmosis membrane.
Abstract: The electrochemical prevention and removal of CaSO4 and CaCO3 mineral scales on electrically conducting carbon nanotube – polyamide reverse osmosis membrane was investigated. Different electrical potentials were applied to the membrane surface while filtering model scaling solutions with high saturation indices. Scaling progression was monitored through flux measurements. CaCO3 scale was efficiently removed from the membrane surface through the intermittent application of a 2.5 V potential to the membrane surface, when the membrane acted as an anode. Water oxidation at the anode, which led to proton formation, resulted in the dissolution of deposited CaCO3 crystals. CaSO4 scale formation was significantly retarded through the continuous application of 1.5 V DC to the membrane surface, when the membrane was operated as an anode. The continuous application of a sufficient electrical potential to the membrane surface leads to the formation of a thick layer of counter-ions along the membrane surface that pushed CaSO4 crystal formation away from the membrane surface, allowing the formed crystals to be carried away by the cross-flow. We developed a simple model, based on a modified Poisson–Boltzmann equation, which qualitatively explained our observed experimental results.

Journal ArticleDOI
TL;DR: It is found that Cr(iii) oxidation capacity was highest at near neutral pH and in the combined presence of carbon and light and suggested that photochemical carbon reactions are requisite for sustained Cr(ii) oxidation and persistence of reactive Mn oxides.
Abstract: Manganese (Mn) oxides, which are generally considered biogenic in origin within natural systems, are the only oxidants of Cr(III) under typical environmental conditions. Yet the influence of Mn biooxide mineral structural evolution on Cr(III) oxidation under varying geochemical conditions is unknown. In this study we examined the role of light, organic carbon, pH, and the structure of biogenic Mn oxides on Cr(III) oxidation. Aging of Mn oxides produced by a marine bacterium within the widespread Roseobacter clade resulted in structural ripening from a colloidal hexagonal to a particulate triclinic birnessite phase. The structurally diverse Mn oxides were then reacted with aqueous Cr(III) within artificial seawater in the presence or absence of carbon and light. Here we found that Cr(III) oxidation capacity was highest at near neutral pH and in the combined presence of carbon and light. Mn oxide ripening from a hexagonal to a triclinic birnessite phase led to decreased Cr(III) oxidation in the presence of carbon and light, whereas no change in reactivity was observed in the absence of carbon and/or in the dark. As only minimal Cr(III) oxidation was observed in the absence of Mn oxides, these results strongly point to coupled Mn oxide- and photo-induced generation of organic and/or oxygen radicals involved in Cr(III) oxidation. Based on Mn oxide concentration and structural trends, we postulate that Mn(II) produced from the oxidation of Cr(III) by the primary Mn oxide is recycled in the presence of organics and light conditions, (re)generating secondary hexagonal birnessite and thereby allowing for continuous oxidation of Cr(III). In the absence of this Mn oxide regeneration, Cr(III) induced structural ripening of the hexagonal birnessite precludes further Cr(III) oxidation. These results highlight the complexity of reactions involved in Mn oxide mediated Cr(III) oxidation and suggest that photochemical carbon reactions are requisite for sustained Cr(III) oxidation and persistence of reactive Mn oxides.

Journal ArticleDOI
TL;DR: Significant impacts of both central site background measurements and traffic emissions on personal exposure of volunteer commuters in an assigned route in Santiago are found, with impacts varying with transport modes.
Abstract: The objective of this study was to compare personal exposure to particulate matter (fine and ultrafine particles) in commuters using different transport modes (bicycle, bus, car and subway) in a busy, assigned route in downtown Santiago, Chile. Volunteers carrying personal samplers completed scheduled commutes during the morning rush hours, while central site measurements were conducted in parallel. A total of 137 valid commutes were assessed. The impact of central site, traffic and other variables was explored with regression models. PM2.5 personal concentrations were equal to or slightly above central site measurements, while UFP personal concentrations were above them. Regression models showed impacts of both background levels and traffic emissions on personal PM2.5 and UFP exposure. Traffic impacts varied with transport modes. Estimates of traffic impacts on personal PM2.5 exposure were 2.0, 13.0, 16.9 and 17.5 μg m−3, for car, bicycle, subway and bus, respectively; while for UFP exposure were 8400, 16200, 25600 and 30100 counts per cm3, for subway, car, bicycle and bus, respectively. After controlling the central site and transport mode, higher temperatures increased PM2.5 exposure and decreased UFP ones, while the wind direction affected UFP personal exposure. In conclusion, we found significant impacts of both central site background measurements and traffic emissions on personal exposure of volunteer commuters in an assigned route in Santiago, with impacts varying with transport modes.

Journal ArticleDOI
TL;DR: There was evidence that the accumulation of target compounds by POCIS is a dynamic process, with adsorption and desorption on the sorbent occurring in response to ambient levels of the target compounds in water.
Abstract: Contaminants of emerging concern (CEC) have been detected in drinking water world-wide. The source of most of these compounds is generally attributed to contamination from municipal wastewater. Traditional water sampling methods (grab or composite) often require the concentration of large amounts of water in order to detect trace levels of these contaminants. The Polar Organic Compounds Integrative Sampler (POCIS) is a passive sampling technology that has been developed to concentrate trace levels of CEC to provide time-weighted average concentrations for individual compounds in water. However, few studies to date have evaluated whether POCIS is suitable for monitoring contaminants in drinking water. In this study, the POCIS was evaluated as a monitoring tool for CEC in drinking water over a period of 2 and 4 weeks with comparisons to typical grab samples. Seven “indicator compounds” which included carbamazepine, trimethoprim, sulfamethoxazole, ibuprofen, gemfibrozil, estrone and sucralose, were monitored in five drinking water treatment plants (DWTPs) in Ontario. All indicator compounds were detected in raw water samples from the POCIS in comparison to six from grab samples. Similarly, four compounds were detected in grab samples of treated drinking water, whereas six were detected in the POCIS. Sucralose was the only compound that was detected consistently at all five plants. The POCIS technique provided integrative exposures of CECs in drinking water at lower detection limits, while episodic events were captured via traditional sampling methods. There was evidence that the accumulation of target compounds by POCIS is a dynamic process, with adsorption and desorption on the sorbent occurring in response to ambient levels of the target compounds in water. CECs in treated drinking water were present at low ng L−1 concentrations, which are not considered to be a threat to human health.