scispace - formally typeset
Search or ask a question

Showing papers in "Experimental Biology and Medicine in 2023"


Journal ArticleDOI
TL;DR: In this article , a review summarizes the various cellular events involved in AIH and discusses their potential therapeutic targets, with the aim of providing new ideas for the treatment of AIH, including liver metabolism, mitochondrial oxidative stress and dysfunction, sterile inflammation, endoplasmic reticulum stress, autophagy, and microcirculation dysfunction.
Abstract: Acetaminophen (APAP), a widely used antipyretic and analgesic drug in clinics, is relatively safe at therapeutic doses; however, APAP overdose may lead to fatal acute liver injury. Currently, N-acetylcysteine (NAC) is clinically used as the main antidote for APAP poisoning, but its therapeutic effect remains limited owing to rapid disease progression and the general diagnosis of advanced poisoning. As is well known, APAP-induced hepatotoxicity (AIH) is mainly caused by the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), and the toxic mechanisms of AIH are complicated. Several cellular processes are involved in the pathogenesis of AIH, including liver metabolism, mitochondrial oxidative stress and dysfunction, sterile inflammation, endoplasmic reticulum stress, autophagy, and microcirculation dysfunction. Mitochondrial oxidative stress and dysfunction are the major cellular events associated with APAP-induced liver injury. Many biomolecules involved in these biological processes are potential therapeutic targets for AIH. Therefore, there is an urgent need to comprehensively clarify the molecular mechanisms underlying AIH and to explore novel therapeutic strategies. This review summarizes the various cellular events involved in AIH and discusses their potential therapeutic targets, with the aim of providing new ideas for the treatment of AIH.

2 citations


Journal ArticleDOI
TL;DR: Tastin expression levels in different tissues were compared using the Gene Expression Omnibus (GEO), Gene Expression Database of Normal and Tumor tissues (GENT), and Cancer Genome Atlas (TCGA) databases were used as discussed by the authors .
Abstract: Tastin might be involved in tumorigenesis, but its role in non-small-cell lung cancer (NSCLC) has not been adequately explored. This work aimed to examine tastin’s role in NSCLC and to explore the underlying mechanism. The Gene Expression Omnibus (GEO), Gene Expression Database of Normal and Tumor tissues (GENT), and Cancer Genome Atlas (TCGA) databases were used. Four GEO datasets (GSE81089, GSE40419, GSE74706, and GSE19188) containing gene expression data for NSCLC and normal tissue samples were analyzed for tastin mRNA expression. Tastin expression levels in different tissues were compared using the GENT website. TCGA biolinks were used to download gene expression quantification (n = 594) and overall survival data (n = 535). In total, 30 lung adenocarcinoma and 25 lung squamous cell carcinoma cases were enrolled. In addition, four-week-old male BALB/c nude mice (n = 9/group) were used to establish xenograft mouse models. Furthermore, cultured HEK293T, A549, and NCI-H226 cells assessed. Immunoblot, hematoxylin and eosin (H&E) staining, immunohistochemistry, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), fluorescence microscopy, flow cytometry, lentiviral transduction, and MTT, colony formation, wound healing, and Transwell assays were carried out. Tastin expression levels were markedly increased in NSCLC tumor tissue specimens and correlated with a poorer prognosis. Silencing of tastin inhibited the proliferative and migratory abilities of NSCLC cells. Bioinformatic analysis suggested that tastin interacts with ErbB4. The PI3K/AKT and ERK1/2 downstream pathways were suppressed in tastin-deficient cells. In conclusion, tastin might be involved in NSCLC growth and invasion and is a potential therapeutic target in NSCLC.

2 citations


Journal ArticleDOI
TL;DR: In this paper , the impact of habitual physical activity on vagal-cardiac function and baroreflex sensitivity in elderly women is poorly characterized, and the authors compared vagalcardiac modulation and CARB function in eight physically active and eight sedentary elderly women.
Abstract: The impact of habitual physical activity on vagal-cardiac function and baroreflex sensitivity in elderly women is poorly characterized. This study compared vagal-cardiac modulation and carotid baroreflex (CBR) function in eight physically active (67.6 ± 1.9 years; peak O2 uptake 29.1 ± 2.5 mL/min/kg) versus eight sedentary (67.3 ± 1.8 years; peak O2 uptake 18.6 ± 0.9 mL/min/kg) elderly women. Heart rate (HR) variabilities and maximal changes of HR and mean arterial pressure (MAP) elicited by 5-s pressure pulses between +40 and -80 mmHg applied to the carotid sinus were measured at rest and during carotid baroreceptor unloading effected by -15 mmHg lower-body negative pressure (LBNP). HR variability was greater in active than sedentary women in both low (0.998 ± 0.286 versus 0.255 ± 0.063 bpm2; P = 0.036) and high (0.895 ± 0.301 versus 0.156 ± 0.045 bpm2; P = 0.044) frequency domains. CBR-HR gains (bpm/mmHg) were greater (fitness factor P < 0.001) in active versus sedentary women at rest (-0.146 ± 0.014 versus -0.088 ± 0.011) and during LBNP (-0.105 ± 0.014 versus -0.065 ± 0.008). CBR-MAP gains (mmHg/mmHg) tended to be greater (fitness factor P = 0.077) in active versus sedentary women at rest (-0.132 ± 0.013 versus -0.110 ± 0.011) and during LBNP (-0.129 ± 0.015 versus -0.113 ± 0.013). However, LBNP did not potentiate CBR-MAP gains in either sedentary or active women (LBNP factor P = 0.94), and it depressed CBR-HR gains in both groups (LBNP factor P = 0.003). CBR-HR gains in the sedentary women did not differ (sex factor P = 0.65) from gains reported in age-matched sedentary men, although CBR-MAP gains tended to be greater (sex factor P = 0.109) in the men. Thus, tonic vagal modulation indicated by HR variability and dynamic vagal responses assessed by CBR-HR gain were augmented in physically active women. Enhanced vagal-cardiac function may protect against senescence-associated cardiac electrical and hemodynamic instability in elderly women.

2 citations


Journal ArticleDOI
TL;DR: In this paper , the authors carried out a brief literature review that includes cohorts and single cases in which JAK-I were adopted as a promising strategy to manage VEXAS patients.
Abstract: Vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is a novel described autoinflammatory entity for which the diagnosis is defined by somatic mutations of the UBA1 X-linked gene in hematopoietic progenitor cells. The clinical manifestations are heterogeneous since they range from autoinflammatory symptoms to the presence of underlying hematologic disorders such as myelodysplastic syndromes. Response to treatment in VEXAS is very poor and to date, the therapeutic strategies adopted are only partially effective. However, recently described cohorts of subjects with VEXAS treated with Janus kinase inhibitors (JAK-I) proved that these drugs can be effective in the treatment of several manifestations related to the disease. Herein, we carried out a brief literature review that includes cohorts and single cases in which JAK-I were adopted as a promising strategy to manage VEXAS patients. Subsequently, we described our experience with JAK-I in VEXAS, illustrating the first case, to our knowledge, of a 65-year-old man who was successfully treated with the selective JAK-1 inhibitor filgotinib.

1 citations


Journal ArticleDOI
TL;DR: In this article , the clinical significance of serum tumor necrosis factor receptor-associated protein 1 (TRAP1) in diagnosing small cell lung cancer (SCLC) with different clinical stages, and to compare the diagnostic efficiency with neuron-specific enolase (NSE), carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9).
Abstract: This study set out to investigate the clinical significance of serum tumor necrosis factor receptor-associated protein 1 (TRAP1) in diagnosing small cell lung cancer (SCLC) with different clinical stages, and to compare the diagnostic efficiency with neuron-specific enolase (NSE), carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9). Besides, to analyze the role of serum TRAP1 in tumor immunity. A total of 91 patients with SCLC, 99 patients with non–small cell lung cancer (NSCLC), 102 patients with pulmonary nodules (PN), and 75 healthy people were included. The concentrations of serum TRAP1 was detected by enzyme-linked immunosorbent assay (ELISA). NSE, CEA, and CA19-9 were detected by chemiluminescence. The results showed that level of TRAP1 in Group SCLC was lower than other three groups (P < 0.01), whereas NSE in SCLC was significantly higher than the others (P < 0.01), and the levels of CEA and CA19-9 were higher than healthy people and PN patients (P < 0.01). There was a significant difference in TRAP1 levels between patients with limited-stage disease SCLC (LD-SCLC) and extensive-stage disease SCLC (ED-SCLC) (P < 0.0001). The sensitivity and specificity of TRAP1 in diagnosing LD-SCLC were 0.964 and 0.560, respectively, and the area under the curve (AUC) was 0.819. The sensitivity and specificity in diagnosing ED-SCLC were 0.810 and 0.868, respectively, and the AUC was 0.933, which showed high diagnostic value. The AUC of these two groups can be increased to 0.946 and 0.947 in combination of four biomarkers, effectively improving the diagnosis rate of SCLC. Our findings have revealed that serum TRAP1 has high diagnostic value for SCLC and high diagnostic sensitivity for LD-SCLC. It is a potential biomarker for SCLC. Combined detection can effectively improve the diagnosis rate of SCLC. TRAP1 may be secreted into the circulation by mature immune cells and participates in tumor immunity as a carrier of tumor antigens.

1 citations


Journal ArticleDOI
TL;DR: In this article , the effects of microgravity exposure on human physiology, including loss of skeletal muscle mass, bone resorption, oxidative stress, and impaired blood flow, are investigated.
Abstract: Spaceflight exerts an extreme and unique influence on human physiology as astronauts are subjected to long-term or short-term exposure to microgravity. During spaceflight, a multitude of physiological changes, including the loss of skeletal muscle mass, bone resorption, oxidative stress, and impaired blood flow, occur, which can affect astronaut health and the likelihood of mission success. In vivo and in vitro metabolite studies suggest that amino acids are among the most affected nutrients and metabolites by microgravity (a weightless condition due to very weak gravitational forces). Moreover, exposure to microgravity alters gut microbial composition, immune function, musculoskeletal health, and consequently amino acid metabolism. Appropriate knowledge of daily protein consumption, with a focus on specific functional amino acids, may offer insight into potential combative and/or therapeutic effects of amino acid consumption in astronauts and space travelers. This will further aid in the successful development of long-term manned space mission and permanent space habitats.

1 citations


Journal ArticleDOI
TL;DR: In this article , the frequency and disease distribution of CPM cells in synovial fluid (SF) in a large cohort of patients with rheumatic diseases over a 12-year period was investigated.
Abstract: Cytophagocytic mononuclear (CPM) cells, previously known as Reiter's cells, are macrophages containing apoptotic polymorphonuclear leucocytes. Although they can be found in synovial fluid (SF) from different arthropathies, their role remains unclear. This study was performed to determine the frequency and disease distribution of CPM cells in SF in a large cohort of patients with rheumatic diseases over a 12-year period. We also investigated the seasonal variation in their incidence. This record review study included the reports pertaining to SF analyses performed between January 2010 and December 2021. Data were retrieved from the charts of inpatients and outpatients at Rheumatology and Emergency Departments of Padova. The total number of SF samples containing CPM cells was 189: 69% was from patients with seronegative spondyloarthritis (SpA), thus indicating a strong association between CPM cells and SpA. SF samples containing CPM cells were predominantly inflammatory. Our analyses demonstrated a 6-month cyclical fluctuation in concentrations of CPM cells, with an increase in spring and autumn. The presence of CPM cells in SF might offer diagnostic insight into the definition of SpA. Further studies are warranted to ascertain the link between CPM cells and the apoptotic process, shedding light on the mechanisms leading to their formation.

1 citations


Journal ArticleDOI
TL;DR: In this paper , the effects of the homogenization in lung aeration caused by the prone position in association with the anti-inflammatory properties of exogenous surfactant pre-treatment could have a cumulative protective effect against ventilator-induced lung injury.
Abstract: Mechanical ventilation (MV) is a lifesaving therapy for patients with acute or chronic respiratory failure. Despite, it can also cause lung injury by inducing or worsening inflammatory responses and oxidative stress. Several clinical approaches have protective effects on the lungs, including the prone position and exogenous surfactant; however, few studies have evaluated the association between the two strategies, especially in individuals without previous lung injury. We tested the hypothesis that the effects of the homogenization in lung aeration caused by the prone position in association with the anti-inflammatory properties of exogenous surfactant pre-treatment could have a cumulative protective effect against ventilator-induced lung injury. Therefore, Wistar rats were divided into four experimental groups: Mechanical Ventilation in Supine Position (MVSP), Mechanical Ventilation in Prone position (MVPP), Mechanical Ventilation in Supine Position + surfactant (MVSPS), and Mechanical Ventilation in Prone Position + Surfactant (MVPPS). The intranasal instillation of a porcine surfactant (Curosurf®) was performed in the animals of MVSPS and MVPPS 1 h before the MV, all the rats were subjected to MV for 1 h. The prone position in association with surfactant decreased mRNA expression levels of pro-inflammatory cytokines in ventilated animals compared to the supine position; in addition, the NfκB was lower in MVPP, MVSPS and MVPPS when compared to MVSP. However, it had no effects on oxidative stress caused by MV. Pre-treatment with exogenous surfactant was more efficient in promoting lung protection than the prone position, as it also reduced oxidative damage in the lung parenchyma. Nevertheless, the surfactant did not cause additional improvements in most parameters that were also improved by the prone position. Our results indicate that the pre-treatment with exogenous surfactant, regardless of the position adopted in mechanical ventilation, preserves the original lung histoarchitecture, reduces redox imbalance, and reduces acute inflammatory responses caused by mechanical ventilation in healthy adult Wistar rats.

1 citations


Journal ArticleDOI
TL;DR: In this article , an oxidant combustion byproduct found in air pollution, the environmentally persistent free radical (EPFR) DCB230, was used to mimic pollution exposure four hours prior to infection and showed that prior exposure to EPFR-DCB230 increased SARS-CoV-2 replication, upregulated TMPRSS2 expression, increased secretion of the proinflammatory cytokine TNF-α, inhibited expression of the mucus producing MUC5AC gene, and upregulated expression of p21 (apoptosis pathway), PINK1 (mitophagy pathway), and reduced levels of antioxidant enzymes.
Abstract: Epidemiological evidence links lower air quality with increased incidence and severity of COVID-19; however, mechanistic data have yet to be published. We hypothesized air pollution-induced oxidative stress in the nasal epithelium increased viral replication and inflammation. Nasal epithelial cells (NECs), collected from healthy adults, were grown into a fully differentiated epithelium. NECs were infected with the ancestral strain of SARS-CoV-2. An oxidant combustion by-product found in air pollution, the environmentally persistent free radical (EPFR) DCB230, was used to mimic pollution exposure four hours prior to infection. Some wells were pretreated with antioxidant, astaxanthin, for 24 hours prior to EPFR-DCB230 exposure and/or SARS-CoV-2 infection. Outcomes included viral replication, epithelial integrity, surface receptor expression (ACE2, TMPRSS2), cytokine mRNA expression (TNF-α, IFN-β), intracellular signaling pathways, and oxidative defense enzymes. SARS-CoV-2 infection induced a mild phenotype in NECs, with some cell death, upregulation of the antiviral cytokine IFN-β, but had little effect on intracellular pathways or oxidative defense enzymes. Prior exposure to EPFR-DCB230 increased SARS-CoV-2 replication, upregulated TMPRSS2 expression, increased secretion of the proinflammatory cytokine TNF-α, inhibited expression of the mucus producing MUC5AC gene, upregulated expression of p21 (apoptosis pathway), PINK1 (mitophagy pathway), and reduced levels of antioxidant enzymes. Pretreatment with astaxanthin reduced SARS-CoV-2 replication, downregulated ACE2 expression, and prevented most, but not all EPFR-DCB230 effects. Our data suggest that oxidant damage to the respiratory epithelium may underly the link between poor air quality and increased COVID-19. The apparent protection by antioxidants warrants further research.

1 citations


Journal ArticleDOI
TL;DR: In this article , the lung microenvironment plays a crucial role in maintaining lung homeostasis as well as the initiation and resolution of both acute and chronic lung injury, and lung function and micromechanics molecules essential for pulmonary epithelial barrier function in these mice.
Abstract: The lung microenvironment plays a crucial role in maintaining lung homeostasis as well as the initiation and resolution of both acute and chronic lung injury. Acute chest syndrome (ACS) is a complication of sickle cell disease (SCD) like acute lung injury. Both the endothelial cells and peripheral blood mononuclear cells are known to secrete proinflammatory cytokines elevated during ACS episodes. However, in SCD, the lung microenvironment that may favor excessive production of proinflammatory cytokines and the contribution of other lung resident cells, such as alveolar macrophages and alveolar type 2 epithelial (AT-2) cells, to ACS pathogenesis is not completely understood. Here, we sought to understand the pulmonary microenvironment and the proinflammatory profile of lung alveolar macrophages (LAMs) and AT-2 cells at steady state in Townes sickle cell (SS) mice compared to control mice (AA). In addition, we examined lung function and micromechanics molecules essential for pulmonary epithelial barrier function in these mice. Our results showed that bronchoalveolar lavage (BAL) fluid in SS mice had elevated protein levels of pro-inflammatory cytokines interleukin (IL)-1β and IL-12 (p ⩽ 0.05) compared to AA controls. We showed for the first time, significantly increased protein levels of inflammatory mediators (Human antigen R (HuR), Toll-like receptor 4 (TLR4), MyD88, and PU.1) in AT-2 cells (1.4 to 2.2-fold) and LAM (17-21%) isolated from SS mice compared to AA control mice at steady state. There were also low levels of anti-inflammatory transcription factors (Nrf2 and PPARy) in SS mice compared to AA controls (p ⩽ 0.05). Finally, we found impaired lung function and a dysregulated composition of surfactant proteins (B and C). Our results demonstrate that SS mice at steady state had a compromised lung microenvironment with elevated expression of proinflammatory cytokines by AT-2 cells and LAM, as well as dysregulated expression of surfactant proteins necessary for maintaining the alveolar barrier integrity and lung function.

1 citations


Journal ArticleDOI
TL;DR: In this article , the authors discuss the therapeutic potential of CBD in the context of MSK regenerative medicine, and report common findings like immunomodulation and stimulation of cell activity associated with tissue regeneration, especially in human MSCs.
Abstract: Chronic musculoskeletal (MSK) pain is one of the most prevalent causes, which lead patients to a physician’s office. The most common disorders affecting MSK structures are osteoarthritis, rheumatoid arthritis, back pain, and myofascial pain syndrome, which are all responsible for major pain and physical disability. Although there are many known management strategies currently in practice, phytotherapeutic compounds have recently begun to rise in the medical community, especially cannabidiol (CBD). This natural, non-intoxicating molecule derived from the cannabis plant has shown interesting results in many preclinical studies and some clinical settings. CBD plays vital roles in human health that go well beyond the classic immunomodulatory, anti-inflammatory, and antinociceptive properties. Recent studies demonstrated that CBD also improves cell proliferation and migration, especially in mesenchymal stem cells (MSCs). The foremost objective of this review article is to discuss the therapeutic potential of CBD in the context of MSK regenerative medicine. Numerous studies listed in the literature indicate that CBD possesses a significant capacity to modulate mammalian tissue to attenuate and reverse the notorious hallmarks of chronic musculoskeletal disorders (MSDs). The most of the research included in this review report common findings like immunomodulation and stimulation of cell activity associated with tissue regeneration, especially in human MSCs. CBD is considered safe and well tolerated as no serious adverse effects were reported. CBD promotes many positive effects which can manage detrimental alterations brought on by chronic MSDs. Since the application of CBD for MSK health is still undergoing expansion, additional randomized clinical trials are warranted to further clarify its efficacy and to understand its cellular mechanisms.

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the relationship linking ILC3s to clinical indicators among patients with renal dysfunction and found that the proportion of peripheral ILC 3s was significantly decreased in patients with kidney dysfunction.
Abstract: Intestinal mucosa barrier injury and immunity imbalance contribute to chronic kidney disease (CKD) progression. Type 3 innate lymphoid cells (ILC3s) are essential for normal intestinal homeostasis. Nevertheless, the relationship between ILC3s and CKD remains largely unknown. The aim of this study was to investigate the relationship linking ILC3s to clinical indicators among patients with renal dysfunction. The levels of circulating ILC3s and dendritic cells, as well as their subsets, in patients with renal dysfunction and healthy controls were determined through flow cytometry. The levels of human plasma granulocyte-macrophage colony-stimulating factor (GM-CSF) were measured using enzyme-linked immunosorbent assay. Renal function was evaluated by measuring the estimated glomerular filtration rate (eGFR), as well as the levels of serum creatinine, blood urea nitrogen (BUN), and uric acid. The results revealed that the proportion of peripheral ILC3s was significantly decreased in patients with renal dysfunction. This reduction was positively associated with the levels of eGFR, and inversely associated with the levels of BUN and uric acid. Similarly, the percentage of circulating C-C motif chemokine receptor 6-positive (CCR6 +) ILC3s was also obviously reduced, and demonstrated positive and negative associations with the levels of eGFR and BUN, respectively. Furthermore, the levels of CCR6 + ILC3s correlated positively with those of GM-CSF, as well as type 1 conventional dendritic cells (cDC1s), which also decreased in parallel with kidney function. Thus, the reduction of ILC3s, particularly CCR6 + ILC3s, was related to worsening kidney function in patients with renal dysfunction. This effect may delay renal function impairment by regulating cDC1s via the secretion of GM-CSF, indicating that CCR6 + ILC3s may serve as efficient biomarkers for evaluating kidney function.

Journal ArticleDOI
TL;DR: In this paper , a new gene-edited myoblast model was constructed based on the lncRNA regulator XLOC-015548, and the in vitro analysis revealed that over-expression of XLOC_15548 significantly promoted the proliferation and differentiation of myoblasts and formation of myotubes, whereas the opposite result was obtained in the knockdown group.
Abstract: In recent years, an increasing number of studies have reported that long non-coding RNAs (lncRNAs) play essential regulatory roles in myogenic differentiation. In this study, a specific LncRNA XLOC_015548 (Lnc000280) was identified. However, little research has explored its mechanism of action by constructing XLOC_015548 gene editing cell models. In this study, relevant sequences were obtained according to the RNA-seq results. Subsequently, XLOC_015548 knockdown and over-expression lentiviral vectors were constructed, and the C2C12 myoblast cell line was transfected to prepare the XLOC_015548 gene-edited myoblast model. The in vitro analysis revealed that over-expression of XLOC_015548 significantly promoted the proliferation and differentiation of myoblasts and the formation of myotubes, whereas the opposite result was obtained in the knockdown group. XLOC_015548 regulated myogenic differentiation and affected the expression of myogenic differentiation regulators such as Myod, myogenin, and MyHC. Regarding the signaling pathway, we found that XLOC_015548 correlated with the phosphorylation level of MAPK/MEK/ERK pathway proteins. And the degree of phosphorylation was positively correlated with the protein expression of myogenic differentiation regulators. In conclusion, a new gene-edited myoblast model was constructed based on the lncRNA regulator XLOC_015548. The in vitro cell experiments verified that XLOC_015548 had regulatory effects on muscle growth and myoblast differentiation. These findings provide a laboratory foundation for the clinical application of lncRNAs as regulatory factors in the treatment of disuse muscle atrophy.

Journal ArticleDOI
TL;DR: The authors found that Lys14 and Lys20 of Akt is deacetylated by SIRT1 during macrophage activation to suppress macrophages inflammatory response to suppress M1 polarization.
Abstract: Sepsis is characterized by uncontrolled inflammatory response and altered polarization of macrophages at the early phase. Akt is known to drive macrophage inflammatory response. However, how macrophage inflammatory response is fine-tuned by Akt is poorly understood. Here, we found that Lys14 and Lys20 of Akt is deacetylated by the histone deacetylase SIRT1 during macrophage activation to suppress macrophages inflammatory response. Mechanistically, SIRT1 promotes Akt deacetylation to inhibit the activation of NF-κB and pro-inflammatory cytokines. Loss of SIRT1 facilitates Akt acetylation and thus promotes inflammatory cytokines in mouse macrophages, potentially worsen the progression of sepsis in mice. By contrast, the upregulation of SIRT1 in macrophages further contributes to the inhibition of pro-inflammatory cytokines via Akt activation in sepsis. Taken together, our findings establish Akt deacetylation as an essential negative regulatory mechanism that curtails M1 polarization.

Journal ArticleDOI
TL;DR: In this article , the association of HO-1, heme, and hemopexin (HPX) levels with COVID-19 severity and with markers of inflammation and coagulation activation was explored.
Abstract: Heme-oxygenase 1 (HO-1) is an enzyme with well-known anti-inflammatory and antioxidant properties, whose levels have been previously associated with disease severity in the context of sterile and infectious diseases. Moreover, the heme/HO-1 pathway has been associated with prothrombotic changes in other diseases. Accordingly, the potential of modulating HO-1 levels for the treatment of COVID-19 was extensively speculated during the COVID-19 pandemic, but very few actual data were generated. The aim of our study was to explore the association of HO-1, heme, and hemopexin (HPX) levels with COVID-19 severity and with markers of inflammation and coagulation activation. The study was conducted in 30 consecutive patients with COVID-19 admitted due to hypoxemia, and 30 healthy volunteers matched by sex, age, and geographic region. HO-1 and HPX levels were measured by enzyme immunoassay (ELISA) and heme levels were measured by a colorimetric method. A comprehensive panel of coagulation and fibrinolysis activation was also used. Patients with COVID-19 presented increased levels of HO-1 when compared to controls (5741 ± 2696 vs 1953 ± 612 pg/mL, respectively, P < 0.0001), as well as a trend toward increased levels of HPX (3.724 ± 0.880 vs 3.254 ± 1.022 mg/mL, respectively; P = 0.06). In addition, HO-1 and HPX levels reduced from admission to day + 4. HO-1 levels were associated with duration of intensive care unit stay and with several markers of coagulation activation. In conclusion, modulation of HO-1 could be associated with the prothrombotic state observed in COVID-19, and HO-1 could also represent a relevant biomarker for COVID-19. New independent studies are warranted to explore and expand these findings.

Journal ArticleDOI
TL;DR: In this paper , the effects of a 6-month aerobic training and weight loss program and hyperinsulinemia on SIRT1 and SIRT3 expression in skeletal muscle and compared their expression between men and women.
Abstract: The sirtuins, SIRT1 and SIRT3, are involved in the control of cellular processes to maintain metabolic homeostasis. The purpose of this study was to determine the effects of a 6-month aerobic training + weight loss program and hyperinsulinemia on SIRT1 and SIRT3 expression in skeletal muscle and to compare their expression between men and women. Thirty-five adult men (n = 18) and postmenopausal women (n = 17), (X ± SEM, age: 61 ± 1 years, BMI: 31.3 ± 0.7 kg/m2) completed 6 months 3×/week of aerobic exercise and 1×/week dietary instruction to induce weight loss (EX + WL). Participants had a VO2max test, vastus lateralis muscle biopsies at baseline and 2 h into a hyperinsulinemic-euglycemic clamp, a total body dual-energy X-ray absorptiometry scan, and abdominal computed tomography scan. Skeletal muscle SIRT1, SIRT3, and PGC1-α mRNA expression were quantified by qRT-PCR. Skeletal muscle SIRT1 and SIRT3 mRNA expression are higher in women than men (P < 0.005). Body weight, body fat, and abdominal obesity decreased and VO2max and glucose utilization (M) increased after EX + WL (P < 0.001). Basal SIRT1 decreased following EX + WL (P < 0.05). This change in basal SIRT1 was not related to changes in VO2max, M or fat mass, nor was it different by gender. Insulin stimulation increased SIRT1 expression (P < 0.001) and PGC1-α expression (P < 0.01) following EX + WL (insulin-basal post). Sex differences in the levels of these sirtuins did not affect changes with EX + WL. Skeletal muscle SIRT1 decreases after a long-term combined exercise and weight loss program in middle-aged and older adults.

Journal ArticleDOI
TL;DR: In this paper , a weighted gene co-expression network analysis (WGCNA) was used to identify the key modules and hub genes associated with pulmonary hypertension, and eight PH-associated hub genes were identified.
Abstract: Pulmonary hypertension (PH) is a cardiopulmonary vascular disease that acutely endangers human health and can be fatal. It progresses rapidly and has a high mortality rate. Its pathophysiology is complicated and still not completely elucidated; therefore, achieving treatment breakthroughs are difficult. In this study, data from 58 normal controls and 135 patients with PH were extracted from the GSE24988, GSE113439, and GSE117261 datasets in the Gene Expression Omnibus (GEO) database and screened for differentially expressed genes (DEGs). In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Weighted gene co-expression network analysis (WGCNA) was used to identify the key modules and hub genes associated with PH. Eight PH-associated hub genes were identified. Furthermore, correlation analysis between immune cell infiltration and hub genes was performed, and the receiver operating characteristic (ROC) curves showed that TARDBP had the best diagnostic efficacy. Moreover, a rat hypoxic pulmonary hypertension (HPH) model was generated, and the expression of hub genes in the lungs and pulmonary arteries of HPH rats was verified using western blotting assays. Our results showed that mTOR, PSMD2, RBM8A, SMARCA4, TARDBP, and UBXN7 were highly expressed in the lungs. In addition, EFTUD2, mTOR, RBM8A, SMARCA4, TARDBP, and UBXN7 were significantly upregulated, whereas DDB1 was significantly downregulated in the pulmonary arteries of HPH rats compared with those of controls. In conclusion, we identified PH hub genes with diagnostic and predictive value by performing WGCNA on data from the GEO database. Furthermore, we provided novel insights of PH that might be utilized to evaluate potential biomarker genes and therapeutic targets.

Journal ArticleDOI
TL;DR: In this article , the authors identify differentially expressed genes (DEGs) present in pathways that may be implicated in the pathophysiology of PSCR from the transcriptome profile analysis of endothelial progenitor cells.
Abstract: Among sickle cell anemia (SCA) complications, proliferative sickle cell retinopathy (PSCR) is one of the most important, being responsible for visual impairment in 10-20% of affected eyes. The aim of this study was to identify differentially expressed genes (DEGs) present in pathways that may be implicated in the pathophysiology of PSCR from the transcriptome profile analysis of endothelial progenitor cells. RNA-Seq was used to compare gene expression profile of circulating endothelial colony-forming cells (ECFCs) from HbSS patients with and without PSCR. Furthermore, functional enrichment analysis and protein-protein interaction (PPI) networks were performed to gain further insights into biological functions. The differential expression analysis identified 501 DEGs, when comparing the groups with and without PSCR. Furthermore, functional enrichment analysis showed associations of the DEGs in 200 biological processes. Among these, regulation of mitogen-activated protein (MAP) kinase activity, positive regulation of phosphatidylinositol 3-kinase (PI3K), and positive regulation of Signal Transducer and Activator of Transcription (STAT) receptor signaling pathway were observed. These pathways are associated with angiogenesis, cell migration, adhesion, differentiation, and proliferation, important processes involved in PSCR pathophysiology. Moreover, our results showed an over-expression of VEGFC (vascular endothelial growth factor-C) and FLT1 (Fms-Related Receptor Tyrosine Kinase 1) genes, when comparing HbSS patients with and without PSCR. These results may indicate a possible association between VEGFC and FLT1 receptor, which may activate signaling pathways such as PI3K/AKT and MAPK/ERK and contribute to the mechanisms implicated in neovascularization. Thus, our findings contain preliminary results that may guide future studies in the field, since the molecular mechanisms of PSCR are still poorly understood.

Journal ArticleDOI
TL;DR: In this paper , the anti-inflammatory action of eugenol was investigated in an experimental epilepsy model of pilocarpine-induced status epilepticus (SE), and it was shown that eugenols reduced SE-induced apoptotic neuronal cell death, mitigated the activation of astrocytes and microglia, and attenuated the expression of interleukin-1β and tumor necrosis factor α in the hippocampus after SE onset.
Abstract: Neuroinflammation is one of the most common pathological outcomes in various neurological diseases. A growing body of evidence suggests that neuroinflammation plays a pivotal role in the pathogenesis of epileptic seizures. Eugenol is the major phytoconstituent of essential oils extracted from several plants and possesses protective and anticonvulsant properties. However, it remains unclear whether eugenol exerts an anti-inflammatory effect to protect against severe neuronal damage induced by epileptic seizures. In this study, we investigated the anti-inflammatory action of eugenol in an experimental epilepsy model of pilocarpine-induced status epilepticus (SE). To examine the protective effect of eugenol via anti-inflammatory mechanisms, eugenol (200 mg/kg) was administrated daily for three days after pilocarpine-induced SE onset. The anti-inflammatory action of eugenol was evaluated by examining the expression of reactive gliosis, pro-inflammatory cytokines, nuclear factor-κB (NF-κB), and the nucleotide-binding domain leucine-rich repeat with a pyrin-domain containing 3 (NLRP3) inflammasome. Our results showed that eugenol reduced SE-induced apoptotic neuronal cell death, mitigated the activation of astrocytes and microglia, and attenuated the expression of interleukin-1β and tumor necrosis factor α in the hippocampus after SE onset. Furthermore, eugenol inhibited NF-κB activation and the formation of the NLRP3 inflammasome in the hippocampus after SE. These results suggest that eugenol is a potential phytoconstituent that suppresses the neuroinflammatory processes induced by epileptic seizures. Therefore, these findings provide evidence that eugenol has therapeutic potential for epileptic seizures.

Journal ArticleDOI
TL;DR: In this paper , the authors developed a methodology for the accurate quantification of the fraction of heme, which is pathologically relevant in sickle cell disease, that does not appear to be sequestered to a plasma compartment.
Abstract: Intravascular hemolysis results in the release of cell-free hemoglobin and heme in plasma. In sickle cell disease, the fragility of the sickle red blood cell leads to chronic hemolysis, which can contribute to oxidative damage and activation of inflammatory pathways. The scavenger proteins haptoglobin and hemopexin provide pathways to remove hemoglobin and heme, respectively, from the circulation. Heme also intercalates in membranes of blood cells and endothelial cells in the vasculature and associates with other plasma components such as albumin and lipoproteins. Hemopexin has a much higher affinity and can strip heme from the other pools and detoxify plasma from cell-free circulatory heme. However, due to chronic hemolysis, hemopexin is depleted in individuals with sickle cell disease. Thus, cell-free unbound heme is expected to accumulate in plasma. We developed a methodology for the accurate quantification of the fraction of heme, which is pathologically relevant in sickle cell disease, that does not appear to be sequestered to a plasma compartment. Our data show significant variation in the concentration of unbound heme, and rather unexpectedly, the size of the unbound fraction does not correlate to the degree of hemolysis, as measured by the concentration of bound heme. Very high heme concentrations (>150 µM) were obtained in some plasma with unbound concentrations that were several fold lower than in plasma with much lower hemolysis (<50 µM). These findings underscore the long-term effects of chronic hemolysis on the blood components and of the disruption of the essential equilibrium between release of hemoproteins/heme in the circulation and adaptative response of the scavenging/removal mechanisms. Understanding the clinical implications of this loss of response may provide insights into diagnostic and therapeutic targets in patients with sickle cell disease.

Journal ArticleDOI
TL;DR: In this paper , the effect of Stattic on the progression of joint disease and pulmonary fibrosis in zymosan-treated female SKG mice, an established model for autoimmune arthritis, was explored.
Abstract: Approximately 20% of rheumatoid arthritis (RA) patients have RA-related interstitial lung disease (RA-ILD). Stattic, an STAT3 inhibitor, has been confirmed to be relevant to both RA and ILD. Therefore, this study explored the effect of Stattic on the progression of joint disease and pulmonary fibrosis in zymosan-treated female SKG mice, an established model for autoimmune arthritis. The experimental mice developed pulmonary interstitial pneumonia, which is similar to human cellular and fibrotic nonspecific interstitial pneumonia. Oral gavage of Stattic (60 mg/kg/d) was initiated 10 weeks after zymosan injection. Arthritis and lung fibrosis outcome scores decreased significantly following Stattic treatment. An obvious decrease in lung collagen levels, measured using hydroxyproline level determination and collagen staining, was detected after 6 weeks in Stattic-exposed mice with established disease. Stattic also dramatically restricted arthritis progression, based on joint evaluation. Transforming growth factor beta 1 (TGF-β1) is a pivotal fibrosis-causing cytokine, used here to treat myofibroblasts, thereby establishing a lung fibrosis cell model. Stattic treatment can mitigate the TGF-β1-triggered inflammatory response, myofibroblast activation, oxidative stress, and hyperproliferation by modulating the JAK1/STAT3 pathway. Our observations support a direct role of Stattic-inhibited STAT3 activation in lung fibrosis, which may be particularly relevant in the RA-ILD context.

Journal ArticleDOI
TL;DR: In this paper , Nacetylcysteine (NAC) has been reported to improve social interaction behavior, irritability, self-injury, and anxiety-like behavior in autism.
Abstract: N-acetylcysteine (NAC) has been reported to improve social interaction behavior, irritability, self-injury, and anxiety-like behavior in autism. However, the molecular mechanism underlying the therapeutic roles of NAC in autism remains unknown. This study mainly aimed to investigate the therapeutic effect of NAC on valproic acid (VPA)-induced autism model and the underlying mechanisms. Our results showed that NAC ameliorated the deficits in sociability and the anxiety- and repetitive-like behaviors displayed by VPA-exposed rats. In addition, VPA exposure induced autophagic deficiency and enhanced Notch-1/Hes-1 pathway activity based on lowered Beclin-1 and LC3B levels, while increased expression of p62, Notch-1, and Hes-1 expression at the protein level. However, NAC recovered VPA-induced autophagic deficiency and reduced Notch-1/Hes-1 pathway activity in a VPA-exposed autism rat model and SH-SY5Y neural cells. The present results demonstrated that NAC improves autism-like behavioral abnormalities by inactivating Notch-1/Hes-1 signaling pathway and recovering autophagic deficiency. Taken together, this study helps to elucidate a novel molecular mechanism that underlies the therapeutic actions of NAC in autism and suggests its potential to ameliorate behavioral abnormalities in neurodevelopmental disorders.

Journal ArticleDOI
TL;DR: In this article , the effects of BPA on granulosa cell development and meiosis of oocytes using in vitro culture system of mouse preantral follicles were investigated.
Abstract: Bisphenol A (BPA) is an established environmental endocrine disruptor and can interfere with the development of female germ cells. However, the underlying mechanisms are still unclear. We investigated the effects of BPA on granulosa cell development and meiosis of oocytes using in vitro culture system of mouse preantral follicles. Preantral follicles from D14 mouse ovary were treated with 10 μg/mL BPA in vitro for 11 days. The adherent area of follicles was measured. On D11, cumulus cell expansion was observed. The meiosis recovery rate was calculated. Western blot detected P53, proliferating cell nuclear antigen (PCNA), estrogen receptor α (ERα), and cyclin B1. ELISA measured estrogen and progesterone levels. Immunofluorescence detected Cx37 on oocyte membrane. Gap junction communication was assessed. We found that BPA significantly promoted the expressions of PCNA and ERα in granulosa cells and the secretion of estrogen and progesterone by granulosa cells on D10 and significantly increased the attachment area of the follicles on D8 and D10. However, it reduced the expansion of cumulus cells, Cx37 expression, and the gap junction communication between cumulus cells and oocytes on D11. BPA promoted the recovery of oocytes from meiosis, interrupted the expression of cyclin B1 protein in arrested germinal vesicle breakdown (GVBD) oocytes, and reduced the in vitro maturation rate of oocytes. These GVBD oocytes were live without apoptosis or death. Conclusively, BPA disturbs the development of granulosa cells and the meiosis progression of oocytes by decreasing gap junction communication between oocytes and the granulosa cells as well as regulating cyclin B1 expression in GVBD oocytes.

Journal ArticleDOI
Wei Wang, Yu Gu, Hao Ni, Qiu Quan, Lingchuan Guo 
TL;DR: In this article , it was shown that FAM111B inhibition inhibited ovarian cancer cell proliferation, invasion, and migration, as well as increased cell apoptosis, and inhibited Ki-67 and proliferating cell nuclear antigen (PCNA) protein expression.
Abstract: Ovarian cancer is the most lethal gynecological tumor in women worldwide. FAM111B (family with sequence similarity 111 member B) is an oncoprotein associated with multiple cancers, but its biological functions in ovarian cancer remain elusive. In this study, FAM111B was overexpressed in ovarian cancer tissues and cell lines. Functional studies in vitro revealed that silencing of FAM111B inhibited ovarian cancer cell proliferation, invasion, and migration, as well as increased cell apoptosis. Furthermore, FAM111B silencing arrested the ovarian cancer cell cycle at the G1/S phase. Furthermore, western blot assays demonstrated that silencing of FAM111B resulted in downregulation of phospho-AKT (p-AKT) protein expression, as well as upregulation of p53 and caspase-1 protein expression. The xenograft animal model of ovarian cancer demonstrated that FAM111B silencing inhibited tumor growth, enhanced cell apoptosis, and inhibited Ki-67 and proliferating cell nuclear antigen (PCNA) protein expression in vivo. Conversely, the overexpression of FAM111B exhibited opposite effects on the ovarian cancer xenograft. It was previously established that inactivating AKT inhibited ovarian cancer progression. This study found that silencing of FAM111B inhibits tumor growth and promotes apoptosis by decreasing AKT activity in ovarian cancer. Caspase-1 and p53 signaling also influenced the function of FAM111B in SKOV3 cells. Collectively, our results demonstrate that silencing of FAM111B is a potential therapeutic strategy against ovarian cancer.

Journal ArticleDOI
TL;DR: In this article , the authors examined the role of CKAP4 in the progression and metastasis of nasopharyngeal carcinoma (NPC) using immunoblot assays.
Abstract: Cytoskeleton-associated protein 4 (CKAP4) acts as a key transmembrane protein that connects the endoplasmic reticulum (ER) to microtubule dynamics. Researchers have not examined the roles of CKAP4 in nasopharyngeal carcinoma (NPC). The study aimed at evaluating the prognostic value and metastasis-regulating effect of CKAP4 in NPC. CKAP4 protein could be observed in 86.36% of 557 NPC specimens but not in normal nasopharyngeal epithelial tissue. According to immunoblot assays, NPC cell lines presented high CKAP4 expression relative to NP69 immortalized nasopharyngeal epithelial cells. Moreover, CKAP4 was highly expressed at the NPC tumor front and in matched liver, lung, and lymph node metastasis samples. Furthermore, high CKAP4 expression reported poor overall survival (OS) and presented a positive relevance to tumor (T) classification, recurrence, and metastasis. According to multivariate analysis, CKAP4 could independently and negatively predict patients' prognosis. Stable knockdown of CKAP4 expression in NPC cells inhibited cell migration, invasion and metastasis in vitro and in vivo. Moreover, CKAP4 promoted epithelial-mesenchymal transition (EMT) in NPC cells. CKAP4 knockdown was followed by the downregulation of the interstitial marker vimentin, and upregulation of the epithelial marker E-cadherin. In NPC tissues, high CKAP4 expression exhibited a positive relevance to vimentin expression and a negative relevance to E-cadherin expression. In conclusion, CKAP4 is an independent predictor of NPC, and CKAP4 might contribute NPC progression and metastasis, which may be involved in EMT with vimentin and E-cadherin.

Journal ArticleDOI
TL;DR: In this paper , the authors conducted a review of the main SNPs of these structures that are associated with severity in COVID-19 and identified possible host protection relationships when linked to this infection.
Abstract: The administration of vaccination doses to the global population has led to a decrease in the incidence of COVID-19. However, the clinical picture developed by infected individuals remains extremely concerning due to the great variability in the severity of cases even in vaccinated individuals. The clinical progression of the pathology is characterized by various influential factors such as sex, age group, comorbidities, and the genetics of the individual. The immune response to viral infections can be strongly influenced by the genetics of individuals; nucleotide variations called single-nucleotide polymorphisms (SNPs) in structures involved in the innate and adaptive immune response such as interferon (IFN)-λ, human leukocyte antigen (HLA), and interleukin (IL)-6 are frequently associated with pathological progression. In this study, we conducted a review of the main SNPs of these structures that are associated with severity in COVID-19. Searches were conducted on some platforms of the National Center for Biotechnology and Information (NCBI), and 102 studies were selected for full reading according to the inclusion criteria. IFNs showed a strong association with antiviral function, specifically, IFN-λ3 (IL-28B) demonstrated genetic variants commonly related to clinical progression in various pathologies. For COVID-19, rs12979860 and rs1298275 presented frequently described unfavorable genotypes for pathological conditions of hepatitis C and hepatocellular carcinoma. The high genetic variability of HLA was reported in the studies as a crucial factor relevant to the late immune response, mainly due to its ability to recognize antigens, with the HLA-B*46:01 SNP being associated with susceptibility to COVID-19. For IL-6, rs1554606 showed a strong relationship with the clinical progression of COVID-19. In addition, rs2069837 was identified with possible host protection relationships when linked to this infection.

Journal ArticleDOI
TL;DR: In this article , the authors investigated the circulating bacterial profile in mild and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients as well as healthy controls using 16S rDNA (V4) sequencing approach.
Abstract: Recent reports revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients can develop bacteremia; however, the circulating bacterial profile is not well studied. Therefore, this study has aimed to investigate circulating bacterial profile in mild (n = 15) and severe (n = 13) SARS-CoV-2-infected patients as well as healthy controls (n = 10), using 16S rDNA (V4) sequencing approach. The alpha diversity indexes and Bray–Curtis dissimilarity matrix revealed that the bacterial profiles between the two conditions are significantly different. Correspondingly, the relative abundance indicates that the predominant bacterial phylum in both conditions was Proteobacteria. At genus level, the dominant bacterial genera in the mild patients belonged to Sphingomonas, Stenotrophomonas, and Achromobacter, while bacterial genera belonging to Enhydrobacter, Comamonas, and Acinetobacter were dominant in the severe patients. Furthermore, Linear discriminant analysis (LDA) Effect Size (LEfSe). revealed that Stenotrophomonas, Delftia, Achromobacter, and Neisseria were enriched in the mild condition, while Agrobacterium, Comamonas, Pseudomonas, Corynebacterium, Alkaliphilus, and Kocuria were enriched in the severe patients. These results revealed a distinct circulating bacterial profile in the mild and severe SARS-CoV-2-infected patients, which may provide an insight for further therapeutic strategy.

Journal ArticleDOI
TL;DR: In this article , the authors consider the idea of drug repurposing, in which existing medications with other indications can be re-imagined for treating age-related macular degeneration (AMD).
Abstract: The economic and visual burdens associated with age-related macular degeneration (AMD) are expected to significantly increase in the coming years. As of now, interventions to delay or prevent AMD are limited. Hence, there is an urgent and unmet need to expand our therapeutic tools for AMD in a manner, that is, both efficient and cost-effective. In this review, we consider the idea of drug repurposing, in which existing medications with other indications can be re-imagined for treating AMD. We detail the results of several population-level studies that have shown associations between several candidates and decreased risk of AMD development or progression. Such candidates include the more extensively studied metformin and statins, in addition to recently identified candidates fluoxetine and l-DOPA (levodopa) that show promise. We then briefly explore results from an advanced bioinformatics study, which provides further evidence that existing medications are associated with AMD risk genes. Many of these candidates warrant further study in prospective, clinical trials, where their potential causal relationships with AMD can be thoroughly assessed.

Journal ArticleDOI
TL;DR: In this paper , the authors investigate the long-term consequences on dendritic morphology of subicular pyramidal neurons and expression on genes regulating the complex neural processes such as neuronal connectivity, learning, and memory.
Abstract: General anesthetics are potent neurotoxins when given during early development, causing apoptotic deletion of substantial number of neurons and persistent neurocognitive and behavioral deficits in animals and humans. The period of intense synaptogenesis coincides with the peak of susceptibility to deleterious effects of anesthetics, a phenomenon particularly pronounced in vulnerable brain regions such as subiculum. With steadily accumulating evidence confirming that clinical doses and durations of anesthetics may permanently alter the physiological trajectory of brain development, we set out to investigate the long-term consequences on dendritic morphology of subicular pyramidal neurons and expression on genes regulating the complex neural processes such as neuronal connectivity, learning, and memory. Using a well-established model of anesthetic neurotoxicity in rats and mice neonatally exposed to sevoflurane, a volatile general anesthetic commonly used in pediatric anesthesia, we report that a single 6 h of continuous anesthesia administered at postnatal day (PND) 7 resulted in lasting dysregulation in subicular mRNA levels of cAMP responsive element modulator (Crem), cAMP responsive element-binding protein 1 (Creb1), and Protein phosphatase 3 catalytic subunit alpha, a subunit of calcineurin (Ppp3ca) (calcineurin) when examined during juvenile period at PND28. Given the critical role of these genes in synaptic development and neuronal plasticity, we deployed a set of histological measurements to investigate the implications of anesthesia-induced dysregulation of gene expression on morphology and complexity of surviving subicular pyramidal neurons. Our results indicate that neonatal exposure to sevoflurane induced lasting rearrangement of subicular dendrites, resulting in higher orders of complexity and increased branching with no significant effects on the soma of pyramidal neurons. Correspondingly, changes in dendritic complexity were paralleled by the increased spine density on apical dendrites, further highlighting the scope of anesthesia-induced dysregulation of synaptic development. We conclude that neonatal sevoflurane induced persistent genetic and morphological dysregulation in juvenile rodents, which could indicate heightened susceptibility toward cognitive and behavioral disorders we are beginning to recognize as sequelae of early-in-life anesthesia.

Journal ArticleDOI
TL;DR: In this paper , the effect of PEITC against renal toxicity caused by cyclophosphamide (CP) and its relationship to the Nrf2 signaling mechanism was investigated in Wistar albino rats.
Abstract: Phenethyl isothiocyanate (PEITC), a secondary metabolite in Cruciferous plants, exerts chemopreventive and antioxidant effects. However, its therapeutic potential in cyclophosphamide (CP)-induced nephrotoxicity is not clear. So, we focused to research on the effect of PEITC against renal toxicity caused by CP and its relationship to the Nrf2 signaling mechanism. Thirty female Wistar albino rats were allocated to three groups: control (n = 10), CP (n = 10), and PEITC-pretreated group (150 µmol/kg b.w. orally; n = 10). The antioxidant enzyme activities and levels of malondialdehyde (MDA), sirtuin 1 (SIRT1), glutathione-S-transferase (GST), nuclear factor E2–related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), serum urea, and creatinine (Cr) were measured. In the CP group, serum urea and Cr, MDA, and NF-κB levels have risen, and the activities of antioxidant enzymes and SIRT1, Nrf2, and GST levels have reduced significantly (P < 0.05). PEITC diminished levels of Cr, urea, MDA, and NF-κB while it enhanced antioxidant enzyme activities and GST, Nrf2, and SIRT1 levels significantly (P < 0.05). Pretreatment with PEITC ameliorated kidney tissue injury. The renal protective effect of the PEITC was supported by the histological analysis of the kidney. PEITC prevented CP-induced nephrotoxicity by decreasing oxidative damage through Nrf2 and SIRT1 activation and NF-κB inhibition. Therefore, we have suggested that PEITC may be a useful agent for protection against CP-induced renal injury.