scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Haptics in 2015"


Journal ArticleDOI
TL;DR: Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.
Abstract: This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient’s hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient’s non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.

237 citations


Journal ArticleDOI
TL;DR: Empirical research in which participants had to drive a vehicle in a real or simulated environment, were able to control the heading and/or speed of the vehicle, and a haptic signal was provided, indicated that a clear distinction can be made between warning systems (using vibrations) and guidance systems ( using continuous forces).
Abstract: A large number of haptic driver support systems have been described in the scientific literature. However, there is little consensus regarding the design, evaluation methods, and effectiveness of these systems. This literature survey aimed to investigate: (1) what haptic systems (in terms of function, haptic signal, channel, and supported task) have been experimentally tested, (2) how these haptic systems have been evaluated, and (3) their reported effects on driver performance and behaviour. We reviewed empirical research in which participants had to drive a vehicle in a real or simulated environment, were able to control the heading and/or speed of the vehicle, and a haptic signal was provided to them. The results indicated that a clear distinction can be made between warning systems (using vibrations) and guidance systems (using continuous forces). Studies typically used reaction time measures for evaluating warning systems and vehicle-centred performance measures for evaluating guidance systems. In general, haptic warning systems reduced the reaction time of a driver compared to no warnings, although these systems may cause annoyance. Guidance systems generally improved the performance of drivers compared to non-aided driving, but these systems may suffer from after-effects. Longitudinal research is needed to investigate the transfer and retention of effects caused by haptic support systems.

90 citations


Journal ArticleDOI
TL;DR: In this article, the influence of human factors on the effectiveness of presentation as well as the strengths and weaknesses of tactile, vibrotactile, haptic, and multimodal methods of rendering maps, graphs, and models are discussed.
Abstract: This paper discusses issues of importance to designers of media for visually impaired users. The paper considers the influence of human factors on the effectiveness of presentation as well as the strengths and weaknesses of tactile, vibrotactile, haptic, and multimodal methods of rendering maps, graphs, and models. The authors, all of whom are visually impaired researchers in this domain, present findings from their own work and work of many others who have contributed to the current understanding of how to prepare and render images for both hard-copy and technology-mediated presentation of Braille and tangible graphics.

75 citations


Journal ArticleDOI
TL;DR: Experiments were performed to expand existing physical models of jamming at the inter-particle level to define the rheological characteristics of jammed systems from a macroscopic perspective, relevant to force-displacement interactions that would be experienced by human users.
Abstract: The combination of particle jamming and pneumatics allows the simultaneous control of shape and mechanical properties in a tactile display. A hollow silicone membrane is molded into an array of thin cells, each filled with coffee grounds such that adjusting the vacuum level in any individual cell rapidly switches it between flexible and rigid states. The array clamps over a pressure-regulated air chamber with internal mechanisms designed to pin the nodes between cells at any given height. Various sequences of cell vacuuming, node pinning, and chamber pressurization allow the surface to balloon into a variety of shapes. Experiments were performed to expand existing physical models of jamming at the inter-particle level to define the rheological characteristics of jammed systems from a macroscopic perspective, relevant to force-displacement interactions that would be experienced by human users. Force-displacement data show that a jammed cell in compression fits a Maxwell model and a cell deflected in the center while supported only at the edges fits a Zener model, each with stiffness and damping parameters that increase at higher levels of applied vacuum. This provides framework to tune and control the mechanical properties of a jamming haptic interface.

71 citations


Journal ArticleDOI
TL;DR: Wave time-reversal was applied to re-focus displacement impulses in time and in space at one or several locations in a thin glass plate to address the problem of producing independent tactile stimuli to multiple fingers exploring a transparent solid surface without the need to track their positions.
Abstract: This article addresses the problem of producing independent tactile stimuli to multiple fingers exploring a transparent solid surface without the need to track their positions. To this end, wave time-reversal was applied to re-focus displacement impulses in time and in space at one or several locations in a thin glass plate. This result was achieved using ultrasonic bending waves produced by a set of lamellar piezoelectric actuators bonded at the periphery of the plate. Starting from first principles, the relations linking implementation parameters to the performance of the display are developed. The mechanical design of the display, signal processing, and driving electronics are described. A set of engineering tradeoffs are made explicit and used for the design of a mock up device comprising a glass plate 148 × 210 × 0.5 mm $^3$ . Tests indicate that a peak amplitude of 7 $\mu$ m confined to a 20 mm $^2$ region could be obtained for an average power consumption of 45 mW. Simultaneous focusing at several locations was successfully achieved. We showed that a lumped-mass model for the fingertip can effectively describe the effect of an actual fingertip load at the focus point. Lastly, we elucidated a likely stimulation mechanism that involves the transient decoupling of the finger skin from the plate surface. This phenomenon explains the observed tactile effect.

71 citations


Journal ArticleDOI
TL;DR: It is demonstrated that restricting tactile cues during braille reading leads to poorer performance in a letter recognition task and suggests that single cell displays which do not incorporate sliding contact are likely to be less effective for brailleReading.
Abstract: The increased access to books afforded to blind people via e-publishing has given them long-sought independence for both recreational and educational reading. In most cases, blind readers access materials using speech output. For some content such as highly technical texts, music, and graphics, speech is not an appropriate access modality as it does not promote deep understanding. Therefore blind braille readers often prefer electronic braille displays. But, these are prohibitively expensive. The search is on, therefore, for a low-cost refreshable display that would go beyond current technologies and deliver graphical content as well as text. And many solutions have been proposed, some of which reduce costs by restricting the number of characters that can be displayed, even down to a single braille cell. In this paper, we demonstrate that restricting tactile cues during braille reading leads to poorer performance in a letter recognition task. In particular, we show that lack of sliding contact between the fingertip and the braille reading surface results in more errors and that the number of errors increases as a function of presentation speed. These findings suggest that single cell displays which do not incorporate sliding contact are likely to be less effective for braille reading.

63 citations


Journal ArticleDOI
TL;DR: This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay.
Abstract: This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is sub-optimal both with and without time delays. This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay. The proposed architecture is based on modelling the controllers as dependent voltage sources and using only series passivity controllers. The obtained results are shown on a one degree-of-freedom setup and illustrate the stabilization behaviour of the proposed controller when time delay is present in the communication channel.

56 citations


Journal ArticleDOI
TL;DR: 3-DoF skin deformation feedback is effective in substituting or augmenting force feedback when force feedback is unattainable or attenuated due to device limitations or system instability.
Abstract: During tool-mediated interaction with everyday objects, we experience kinesthetic forces and tactile sensations in the form of vibration and skin deformation at the fingerpad. Fingerpad skin deformation is caused by forces applied tangentially and normally to the fingerpad skin, resulting in tangential and normal skin displacement. We designed a device to convey 3-degree-of-freedom (DoF) force information to the user via skin deformation, and conducted two experiments to determine the devices effectiveness for force-feedback substitution and augmentation. For sensory substitution, participants used 1-DoF and 3-DoF skin deformation feedback to locate a feature in a 3-DoF virtual environment. Participants showed improved precision and shorter completion time when using 3-DoF compared to 1-DoF skin deformation feedback. For sensory augmentation, participants traced a path in space from an initial to a target location, while under guidance from force and/or skin deformation feedback. When force feedback was augmented with skin deformation, participants reduced their path-following error over the cases when force or skin deformation feedback are used separately. We conclude that 3-DoF skin deformation feedback is effective in substituting or augmenting force feedback. Such substitution or augmentation could be used when force feedback is unattainable or attenuated due to device limitations or system instability.

52 citations


Journal ArticleDOI
TL;DR: This work presents a taxonomy of human interaction patterns, and proposes five different feature sets, comprising force-, velocity-and power-related information, for the classification of these patterns.
Abstract: The development of robots that can physically cooperate with humans has attained interest in the last decades. Obviously, this effort requires a deep understanding of the intrinsic properties of interaction. Up to now, many researchers have focused on inferring human intents in terms of intermediate or terminal goals in physical tasks. On the other hand, working side by side with people, an autonomous robot additionally needs to come up with in-depth information about underlying haptic interaction patterns that are typically encountered during human-human cooperation. However, to our knowledge, no study has yet focused on characterizing such detailed information. In this sense, this work is pioneering as an effort to gain deeper understanding of interaction patterns involving two or more humans in a physical task. We present a labeled human-human-interaction dataset, which captures the interaction of two humans, who collaboratively transport an object in an haptics-enabled virtual environment. In the light of information gained by studying this dataset, we propose that the actions of cooperating partners can be examined under three interaction types: In any cooperative task, the interacting humans either 1) work in harmony, 2) cope with conflicts, or 3) remain passive during interaction. In line with this conception, we present a taxonomy of human interaction patterns; then propose five different feature sets, comprising force-, velocity-and power-related information, for the classification of these patterns. Our evaluation shows that using a multi-class support vector machine (SVM) classifier, we can accomplish a correct classification rate of 86 percent for the identification of interaction patterns, an accuracy obtained by fusing a selected set of most informative features by Minimum Redundancy Maximum Relevance (mRMR) feature selection method.

49 citations


Journal ArticleDOI
TL;DR: This interface enables blind walkers to receive haptic directional instructions along complex paths without negatively impacting users' ability to listen and/or perceive the environment the way some auditory directional instructions do.
Abstract: We propose a vibrotactile interface in the form of a belt for guiding blind walkers. This interface enables blind walkers to receive haptic directional instructions along complex paths without negatively impacting users’ ability to listen and/or perceive the environment the way some auditory directional instructions do. The belt interface was evaluated in a controlled study with 10 blind individuals and compared to the audio guidance. The experiments were videotaped and the participants’ behaviors and comments were content analyzed. Completion times and deviations from ideal paths were also collected and statistically analyzed. By triangulating the quantitative and qualitative data, we found that the belt resulted in closer path following to the expense of speed. In general, the participants were positive about the use of vibrotactile belt to provide directional guidance.

49 citations


Journal ArticleDOI
TL;DR: The effectiveness of vibratory tactile feedback of slip information for grasping objects without slipping is explored, demonstrating the potential of slip feedback to improve a prosthesis user's ability to interact with objects with less visual attention, aiding in performance of everyday manipulation tasks.
Abstract: Recent advances in myoelectric prosthetic technology have enabled more complex movements and interactions with objects, but the lack of natural haptic feedback makes object manipulation difficult to perform. Our research effort aims to develop haptic feedback systems for improving user performance in object manipulation. Specifically, in this work, we explore the effectiveness of vibratory tactile feedback of slip information for grasping objects without slipping. A user interacts with a virtual environment to complete a virtual grasp and hold task using a Sensable Phantom. Force feedback simulates contact with objects, and vibratory tactile feedback alerts the user when a virtual object is slipping from the grasp. Using this task, we found that tactile feedback significantly improved a user’s ability to detect and respond to slip and to recover the slipping object when visual feedback was not available. This advantage of tactile feedback is especially important in conjunction with force feedback, which tends to reduce a subject’s grasping forces and therefore encourage more slips. Our results demonstrate the potential of slip feedback to improve a prosthesis user’s ability to interact with objects with less visual attention, aiding in performance of everyday manipulation tasks.

Journal ArticleDOI
TL;DR: There is a wealth of behavioral research that is highly applicable to assistive technology design and issues relevant for the design and use of haptic technology for assistive devices for individuals who are blind or visually impaired are considered.
Abstract: This paper considers issues relevant for the design and use of haptic technology for assistive devices for individuals who are blind or visually impaired in some of the major areas of importance: Braille reading, tactile graphics, orientation and mobility. We show that there is a wealth of behavioral research that is highly applicable to assistive technology design. In a few cases, conclusions from behavioral experiments have been directly applied to design with positive results. Differences in brain organization and performance capabilities between individuals who are “early blind” and “late blind” from using the same tactile/haptic accommodations, such as the use of Braille, suggest the importance of training and assessing these groups individually. Practical restrictions on device design, such as performance limitations of the technology and cost, raise questions as to which aspects of these restrictions are truly important to overcome to achieve high performance. In general, this raises the question of what it means to provide functional equivalence as opposed to sensory equivalence.

Journal ArticleDOI
TL;DR: To quantify the extent to which task execution is degraded by inaccuracies in the model on which haptic guidance forces are based, a human-in-the-loop experiment on tele-manipulated assembly task in a virtual environment indicates that haptic Guidance is beneficial for task execution when no inaccuracies are present in the guidance.
Abstract: Haptic shared control is a promising approach to improve tele-manipulated task execution, by making safe and effective control actions tangible through guidance forces. In current research, these guidance forces are most often generated based on pre-generated, errorless models of the remote environment. Hence such guidance forces are exempt from the inaccuracies that can be expected in practical implementations. The goal of this research is to quantify the extent to which task execution is degraded by inaccuracies in the model on which haptic guidance forces are based. In a human-in-the-loop experiment, subjects (n = 14) performed a realistic tele-manipulated assembly task in a virtual environment. Operators were provided with various levels of haptic guidance, namely no haptic guidance (conventional tele-manipulation), haptic guidance without inaccuracies, and haptic guidance with translational inaccuracies (one large inaccuracy, in the order of magnitude of the task, and a second smaller inaccuracy). The quality of natural haptic feedback (i.e., haptic transparency) was varied between high and low to identify the operator’s ability to detect and cope with inaccuracies in haptic guidance. The results indicate that haptic guidance is beneficial for task execution when no inaccuracies are present in the guidance. When inaccuracies are present, this may degrade task execution, depending on the magnitude and the direction of the inaccuracy. The effect of inaccuracies on overall task performance is dominated by effects found for the Constrained Translational Movement, due to its potential for jamming. No evidence was found that a higher quality of haptic transparency helps operators to detect and cope with inaccuracies in the haptic guidance.

Journal ArticleDOI
TL;DR: This paper will highlight the independence of the two effects on the physical and perceptual point of view to confirm the increased range of sensation and stimulation that can be supplied by the two coupled techniques to the users.
Abstract: Two different principles are available to modulate the user perceived roughness of a surface: electrovibration and ultrasonic vibration of a plate. The former enhances the perceived friction coefficient and the latter reduces it. This paper will highlight the independence of the two effects on the physical and perceptual point of view to confirm the increased range of sensation and stimulation that can be supplied by the two coupled techniques to the users. Firstly, a tribometric analysis of the induced lateral force on the finger by the two coupled effects will be presented, then a study on the dynamic of the two effects will be reported. In the end, a psychophysical experiment on the perception of the two coupled techniques will be shown.

Journal ArticleDOI
TL;DR: A novel method to improve the performance of passive teleoperation systems with force reflection by integrating kinesthetic haptic Feedback provided by common grounded haptic interfaces with cutaneous haptic feedback is introduced.
Abstract: We introduce a novel method to improve the performance of passive teleoperation systems with force reflection. It consists of integrating kinesthetic haptic feedback provided by common grounded haptic interfaces with cutaneous haptic feedback. The proposed approach can be used on top of any time-domain control technique that ensures a stable interaction by scaling down kinesthetic feedback when this is required to satisfy stability conditions (e.g., passivity) at the expense of transparency. Performance is recovered by providing a suitable amount of cutaneous force through custom wearable cutaneous devices. The viability of the proposed approach is demonstrated through an experiment of perceived stiffness and an experiment of teleoperated needle insertion in soft tissue.

Journal ArticleDOI
TL;DR: A two-stage mechanotransduction model of its near threshold Vibrotactile (VT) sensitivity valid over 10 Hz to a few kHz is described and can be extended to simulate the neural response of a group of PCs.
Abstract: Based on recent discoveries of stretch and voltage activated ion channels in the receptive area of the Pacinian Corpuscle (PC), this paper describes a two-stage mechanotransduction model of its near threshold Vibrotactile (VT) sensitivity valid over 10 Hz to a few kHz. The model is based on the nonlinear and stochastic behavior of the ion channels represented as dependent charge sources loaded with membrane impedance. It simulates the neural response of the PC considering the morphological and statistical properties of the receptor potential and action potential with the help of an adaptive relaxation pulse frequency modulator. This model also simulates the plateaus and nonmonotonic saturation of spike rate characteristics. The stochastic simulation based on the addition of mechanical and neural noise describes that the VT Sensitivity Threshold (VTST) at higher frequencies is more noise dependent. Above 800 Hz even a SNR = 150 improves the neurophysiological VTST more than 3 dBμ. In that frequency range, an absence of the entrainment threshold and a lower sensitivity index near the absolute threshold make the upper bound of the psychophysical VTST more dependent on the experimental protocol and physical set-up. This model can be extended to simulate the neural response of a group of PCs.

Journal ArticleDOI
TL;DR: A current feedback method is proposed to provide uniform intensity of electrovibration, regardless of the varying environmental impedances, and can also prevent electric shock.
Abstract: Electrovibration is a type of surface haptics that can modulate lateral forces acting between a fingertip and a touch surface. Electrovibration is fast, consumes little power, and does not involve the use of any mechanical actuators. However, it suffers from problems such as nonuniform perceived intensity due to varying environmental impedances, as well as possible electric shock, which have to be solved for commercialization. In this paper, a current feedback method is proposed to provide uniform intensity of electrovibration, regardless of the varying environmental impedances. The proposed method can also prevent electric shock. To show the effectiveness of the proposed method, a hardware prototype was developed and a user study was conducted. The user study result shows that the proposed current control method can provide significantly more uniform perceived intensity of electrovibration as compared with the conventional voltage control method.

Journal ArticleDOI
TL;DR: FYD-2 is shown to be able to accurately reproduce force-area curves of typical objects and to enable a reliable softness discrimination in human users and a psychophysical characterization is reported.
Abstract: To enable a realistic tactile interaction with remote or virtual objects, softness information represents a fundamental property to be rendered via haptic devices. What is challenging is to reduce the complexity of such an information as it arises from contact mechanics and to find suitable simplifications that can lead an effective development of softness displays. A possible approach is to surrogate detailed tactile cues with information on the rate of spread of the contact area between the object and the finger as the contact force increases, i.e. force/area relation. This paradigm is called contact area spread rate. In this paper we discuss how such a paradigm has inspired the design of a tactile device (hereinafter referred to as Fabric Yielding Display, FYD-2), which exploits the elasticity of a fabric to mimic different levels of stiffness, while the contact area on the finger indenting the fabric is measured. In this manner, the FYD-2 can be controlled to reproduce force-area characteristics. In this work, we describe the FYD-2 architecture and report a psychophysical characterization. FYD-2 is shown to be able to accurately reproduce force-area curves of typical objects and to enable a reliable softness discrimination in human users.

Journal ArticleDOI
TL;DR: This article presents a novel approach to remote cutaneous interaction that is compatible with any fingertip tactile sensor and any mechanical tactile display device, and it does not require a position/force or skin deformation model.
Abstract: Telerobotic systems enable humans to explore and manipulate remote environments for applications such as surgery and disaster response, but few such systems provide the operator with cutaneous feedback. This article presents a novel approach to remote cutaneous interaction; our method is compatible with any fingertip tactile sensor and any mechanical tactile display device, and it does not require a position/force or skin deformation model. Instead, it directly maps the sensed stimuli to the best possible input commands for the device’s motors using a data set recorded with the tactile sensor inside the device. As a proof of concept, we considered a haptic system composed of a BioTac tactile sensor, in charge of measuring contact deformations, and a custom 3-DoF cutaneous device with a flat contact platform, in charge of applying deformations to the user’s fingertip. To validate the proposed approach and discover its inherent tradeoffs, we carried out two remote tactile interaction experiments. The first one evaluated the error between the tactile sensations registered by the BioTac in a remote environment and the sensations created by the cutaneous device for six representative tactile interactions and 27 variations of the display algorithm. The normalized average errors in the best condition were 3.0 percent of the BioTac’s full 12-bit scale. The second experiment evaluated human subjects’ experiences for the same six remote interactions and eight algorithm variations. The average subjective rating for the best algorithm variation was 8.2 out of 10, where 10 is best.

Journal ArticleDOI
TL;DR: The model identifies a few generalizable features of the lamellar structure which makes it scalable for different sizes of PC with different number of lamellae and can be used for simulating a network of PCs considering their diversity for analyzing the high-frequency VT sensitivity of the human skin.
Abstract: This paper describes a multiscale analytical model of the lamellar structure and the biomechanical response of the Pacinian Corpuscle (PC). In order to analyze the contribution of the PC lamellar structure for detecting high-frequency vibrotactile (VT) stimuli covering 10 Hz to a few kHz, the model response is studied against trapezoidal and sinusoidal stimuli. The model identifies a few generalizable features of the lamellar structure which makes it scalable for different sizes of PC with different number of lamellae. The model describes the mechanical signal conditioning of the lamellar structure in terms of a recursive transfer-function, termed as the Compression-Transmittance-Transfer-Function (CTTF). The analytical results show that with the increase of the PC layer index above 15, the PC inner core (IC) relaxes within 1 ms against step compression of the outermost layer. This model also considers the mass of each PC layer to investigate its effect on the biomechanical response of the lamellar structure. The interlamellar spacing and its biomechanical properties along with the model response are validated with experimental data in the literature. The proposed model can be used for simulating a network of PCs considering their diversity for analyzing the high-frequency VT sensitivity of the human skin.

Journal ArticleDOI
TL;DR: Experimental results indicate that fine- and macro-roughness perceptions of real materials can be altered using electrotactile augmentation, and a user study, wherein participants rated the roughness ofreal materials explored using the proposed system.
Abstract: Tactile exploration of a material’s texture using a bare finger pad is a daily human activity. However, modern tactile displays do not allow users to experience the natural sensations of a material when artificial sensations are presented. We propose an electrotactile augmentation technique capable of superimposing vibrotactile sensations in a finger pad, thereby allowing the texture modulation of real materials. Users attach two stimulus electrodes to the middle phalanx of a finger and a grounded electrode at the base of the finger in order to evoke nerve activity. This paper evaluates the proposed electrotactile augmentation for roughness modulation of real materials. First, we introduce the principle of the electrotactile display, which presents artificial sensations at the finger pad. We then confirm that the perceived frequency of mechanical vibration at the finger pad can be shifted using electrotactile augmentation. Finally, we discuss a user study, wherein participants rated the roughness of real materials explored using the proposed system. Experimental results indicate that fine- and macro-roughness perceptions of real materials can be altered using electrotactile augmentation.

Journal ArticleDOI
TL;DR: A method is introduced that optimizes the energy efficiency and performance of ultrasonic friction-modulation devices by considering optimal energy transfer to the impedance provided by the finger interacting with the surface.
Abstract: Ultrasonic friction-modulation devices provide rich tactile sensation on flat surfaces and have the potential to restore tangibility to touchscreens. To date, their adoption into consumer electronics has been in part limited by relatively high power consumption, incompatible with the requirements of battery-powered devices. This paper introduces a method that optimizes the energy efficiency and performance of this class of devices. It considers optimal energy transfer to the impedance provided by the finger interacting with the surface. Constitutive equations are determined from the mode shape of the interface and the piezoelectric coupling of the actuator. The optimization procedure employs a lumped parameter model to simplify the treatment of the problem. Examples and an experimental study show the evolution of the optimal design as a function of the impedance of the finger.

Journal ArticleDOI
TL;DR: Both preferred rendering methods with spatio-temporal variation and spatial/temporal/intensity variation for the four-finger vibration could convey obstacle distance information with low workload.
Abstract: Delivering distance information of nearby obstacles from sensors embedded in a white cane—in addition to the intrinsic mechanical feedback from the cane—can aid the visually impaired in ambulating independently. Haptics is a common modality for conveying such information to cane users, typically in the form of vibrotactile signals. In this context, we investigated the effect of tactile rendering methods, tactile feedback configurations and directions of tactile flow on the identification of obstacle distance. Three tactile rendering methods with temporal variation only, spatio-temporal variation and spatial/temporal/intensity variation were investigated for two vibration feedback configurations. Results showed a significant interaction between tactile rendering method and feedback configuration. Spatio-temporal variation generally resulted in high correct identification rates for both feedback configurations. In the case of the four-finger vibration, tactile rendering with spatial/temporal/intensity variation also resulted in high distance identification rate. Further, participants expressed their preference for the four-finger vibration over the single-finger vibration in a survey. Both preferred rendering methods with spatio-temporal variation and spatial/temporal/intensity variation for the four-finger vibration could convey obstacle distance information with low workload. Overall, the presented findings provide valuable insights and guidance for the design of haptic displays for electronic travel aids for the visually impaired.

Journal ArticleDOI
TL;DR: This paper analyzes the closed-loop dynamics of haptic displays for three common virtual environments: a spring, a damper, and a spring-damper, including the effects of time delay and low-pass filtering, and presents a quantitative metric, the Average Distortion Error (ADE), to describe the fidelity of this model.
Abstract: Impedance-type kinesthetic haptic displays aim to render arbitrary desired dynamics to a human operator using force feedback. To render realistic virtual environments, the difference between desired and rendered dynamics must be small. In this paper, we analyze the closed-loop dynamics of haptic displays for three common virtual environments: a spring, a damper, and a spring-damper, including the effects of time delay and low-pass filtering. Using a linear model, we identify important parameters for the rendered dynamics in terms of effective impedances, a conceptual tool that decomposes the displays closed-loop impedance into components with physical analogs. Our results establish bandwidth limits for rendering effective stiffness and damping. The effective stiffness bandwidth is limited by the virtual stiffness and device mass, and the effective damping bandwidth is limited by the cut-off frequency of the low-pass filter which filters the device velocity estimate. We show that a general system impedance can be characterized by a mass, damper, and spring optimally by the solution to a convex optimization problem, and we present a quantitative metric, the Average Distortion Error (ADE), to describe the fidelity of this model. Time delay has no significant effect on characterized stiffness, and reduces characterized damping by the product of virtual stiffness and total time delay. Reducing the low-pass filter cut-off frequency reduces the characterized damping. Experimental data gathered with a Phantom Premium 1.5 validates the theoretical analysis. We also conducted human user experiments to investigate the effects of time delay and low-pass filtering on perceived stiffness and damping. Similar to the characterized dynamics results, we observed no significant effect of time delay on perceived stiffness, and increasing time delay resulted in reduced perceived damping. Lower filter cut-off frequencies resulted in lower perceived damping. This work informs haptic display design by presenting how closed-loop behavior changes with key parameters.

Journal ArticleDOI
TL;DR: The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity and found that the most effective training condition depended on the degree of rhythmicity.
Abstract: Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

Journal ArticleDOI
TL;DR: In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated and it was hypothesized that the position controller was most effective for learning of temporal movement aspects, while the path controller wasmost effective in teaching spatial movement aspects of the rowingtask.
Abstract: In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task’s velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.

Journal ArticleDOI
TL;DR: An improved control system for the Treadport immersive locomotion interface is described, with results that generalize to any treadmill that utilizes an actuated tether to enable self-selected walking speed.
Abstract: This paper describes an improved control system for the Treadport immersive locomotion interface, with results that generalize to any treadmill that utilizes an actuated tether to enable self-selected walking speed. A new belt controller is implemented to regulate the user’s position; when combined with the user’s own volition, this controller also enables the user to naturally self-select their walking speed as they would when walking over ground. A new kinesthetic-force-feedback controller is designed for the tether that applies forces to the user’s torso. This new controller is derived based on maintaining the user’s sense of balance during belt acceleration, rather than by rendering an inertial force as was done in our prior work. Based on the results of a human-subjects study, the improvements in both controllers significantly contribute to an improved perception of realistic walking on the Treadport. The improved control system uses intuitive dynamic-system and anatomical parameters and requires no ad hoc gain tuning. The control system simply requires three measurements to be made for a given user: the user’s mass, the user’s height, and the height of the tether attachment point on the user’s torso.

Journal ArticleDOI
TL;DR: It is shown that the presented methods achieve mean update rates around 2,000 Hz for haptic simulation and interactive frame rates for volume rendering and thus are well suited for visuo-haptic rendering of virtual patients under respiratory motion.
Abstract: This article presents methods for direct visuo-haptic 4D volume rendering of virtual patient models under respiratory motion. Breathing models are computed based on patient-specific 4D CT image data sequences. Virtual patient models are visualized in real-time by ray casting based rendering of a reference CT image warped by a time-variant displacement field, which is computed using the motion models at run-time. Furthermore, haptic interaction with the animated virtual patient models is provided by using the displacements computed at high rendering rates to translate the position of the haptic device into the space of the reference CT image. This concept is applied to virtual palpation and the haptic simulation of insertion of a virtual bendable needle. To this aim, different motion models that are applicable in real-time are presented and the methods are integrated into a needle puncture training simulation framework, which can be used for simulated biopsy or vessel puncture in the liver. To confirm real-time applicability, a performance analysis of the resulting framework is given. It is shown that the presented methods achieve mean update rates around 2,000 Hz for haptic simulation and interactive frame rates for volume rendering and thus are well suited for visuo-haptic rendering of virtual patients under respiratory motion.

Journal ArticleDOI
TL;DR: The results of testing six haptics-based computer applications created to utilize a low-cost, force feedback haptic device, the Novint Falcon, show that the device and software are feasible for teachers to implement and significant learning gains can be achieved for students who use them.
Abstract: Twenty haptics-based computer applications (apps) have been created to utilize a low-cost, force feedback haptic device, the Novint Falcon, to provide students with tactile and kinesthetic sensations while learning about math and science These low-cost apps, developed specifically for students with visual impairments (yet practical for all students), add to the accessible resources available for math and science This article outlines the motivation, development, and testing of these PC-based applications that incorporate computer haptics, auditory cues, and high-contrast visuals Included is a brief overview of two of the apps, one with science content and one with math content, in order to provide the reader with some insight into the student experience The results of testing six of the apps in classroom settings show that the device and software are feasible for teachers to implement and significant learning gains can be achieved for students who use them Student attitudes toward the apps were positive, implying that not only are the apps useful in the classroom, but engaging as well

Journal ArticleDOI
TL;DR: This work assesses a low-tech tactile mouse able to deliver three-dimensional content considering how performance, mental workload, behavior, and anxiety status vary with task difficulty and gender in congenitally blind, late blind, and sighted subjects.
Abstract: Tactile maps are efficient tools to improve spatial understanding and mobility skills of visually impaired people. Their limited adaptability can be compensated with haptic devices which display graphical information, but their assessment is frequently limited to performance-based metrics only which can hide potential spatial abilities in O&M protocols. We assess a low-tech tactile mouse able to deliver three-dimensional content considering how performance, mental workload, behavior, and anxiety status vary with task difficulty and gender in congenitally blind, late blind, and sighted subjects. Results show that task difficulty coherently modulates the efficiency and difficulty to build mental maps, regardless of visual experience. Although exhibiting attitudes that were similar and gender-independent, the females had lower performance and higher cognitive load, especially when congenitally blind. All groups showed a significant decrease in anxiety after using the device. Tactile graphics with our device seems therefore to be applicable with different visual experiences, with no negative emotional consequences of mentally demanding spatial tasks. Going beyond performance-based assessment, our methodology can help with better targeting technological solutions in orientation and mobility protocols.