scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Anatomy in 2021"


Journal ArticleDOI
TL;DR: Tissue clearing contributes to the investigation of structure‐function relationships in intact mammalian organs, and opens new avenues for cellular and molecular mapping of intact human organs.
Abstract: Organisms are inherently three dimensional, thus comprehensive understanding of the complicated biological system requires analysis of organs or even whole bodies in the context of three dimensions. However, this is a tremendous task since the biological specimens are naturally opaque, a major obstacle in whole-body and whole-organ imaging. Tissue clearing technique provides a prospective solution and has become a powerful tool for three-dimensional imaging and quantification of organisms. Tissue clearing technique aims to make tissue transparent by minimizing light scattering and light absorption, thus allowing deep imaging of large volume samples. When combined with diverse molecular labeling methods and high-throughput optical sectioning microscopes, tissue clearing technique enables whole-body and whole-organ imaging at cellular or subcellular resolution, providing detailed and comprehensive information about the intact biological systems. Here, we give an overview of recent progress and biomedical applications of tissue clearing technique. We introduce the mechanisms and basic principles of tissue clearing, and summarize the current tissue clearing methods. Moreover, the available imaging techniques and software packages for data processing are also presented. Finally, we introduce the recent advances in applications of tissue clearing in biomedical fields. Tissue clearing contributes to the investigation of structure-function relationships in intact mammalian organs, and opens new avenues for cellular and molecular mapping of intact human organs. We hope this review contributes to a better understanding of tissue clearing technique and can help researchers to select the best-suited clearing protocol for their experiments.

59 citations


Journal ArticleDOI
TL;DR: There is close correspondence in terms of morphology and organization between the brain and the corresponding endocast with the exception of the superior region, which represents an important reference for paleoneurological studies.
Abstract: Endocasts (i.e., replicas of the inner surface of the bony braincase) constitute a critical proxy for qualifying and quantifying variations in brain shape and organization in extinct taxa. In the absence of brain tissues preserved in the fossil record, endocasts provide the only direct evidence of brain evolution. However, debates on whether or not information inferred from the study of endocasts reflects brain shape and organization have polarized discussions in paleoneurology since the earliest descriptions of cerebral imprints in fossil hominin crania. By means of imaging techniques (i.e., MRIs and CT scans) and 3D modelling methods (i.e., surface-based comparisons), we collected consistent morphological (i.e., shape) and structural (i.e., sulci) information on the variation patterns between the brain and the endocast based on a sample of extant human individuals (N = 5) from the 3D clinical image database of the Steve Biko Academic Hospital in Pretoria (South Africa) and the Hopitaux Universitaires Pitie Salpetriere in Paris (France). Surfaces of the brain and endocast of the same individual were segmented from the 3D MRIs and CT images, respectively. Sulcal imprints were automatically detected. We performed a deformation-based shape analysis to compare both the shape and the sulcal pattern of the brain and the endocast. We demonstrated that there is close correspondence in terms of morphology and organization between the brain and the corresponding endocast with the exception of the superior region. By comparatively quantifying the shape and organization of the brain and endocast, this work represents an important reference for paleoneurological studies.

21 citations


Journal ArticleDOI
TL;DR: In this paper, the distribution of cells expressing SARS-CoV-2 entry factor angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in human oral tissues were tested.
Abstract: The distribution of cells expressing SARS-CoV-2 entry factor angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in human oral tissues were tested. The investigation was conducted with normal flesh tissue and paraffin-embedded specimens. The ACE2 and TMPRSS2 expression was detected with all subjects in the normal mucosa of the keratinized stratified squamous epithelia of the tongue and non-keratinized stratified squamous epithelia of the lip and cheek. It was found that ACE2 is expressed in the cytoplasm and on the cell membrane mainly in the stratum granulosum of the epithelia while the TMPRSS2 is strongly expressed on the cell membrane mainly in the stratum granulosum and stratum spinosum, but not in the stratum basale. Antibodies' reactions for ACE2 and TMPRSS2 were not observed in the nuclei or keratin layer. The expression of ACE2 and TMPRSS2 in the oral epithelia appears to be general, and the expression was also observed in the mucous and serous acini of the labial glands. The SARS-CoV-2 may transiently attach to the oral mucosa and the minor salivary glands which are present under all of the oral mucosa. The oral cavity can be considered an important organ for SARS-CoV-2 attachment and may provide a preventive medical avenue to guard against COVID-19 by preventing saliva from scattering.

20 citations


Journal ArticleDOI
TL;DR: US imaging findings confirmed that the superficial and deep fascia have different thicknesses, and they showed that the US measurements were always larger with respect to those produced by histological analysis (p < 0.001) probably due to shrinkage during the processing.
Abstract: Although the number of Ultrasound (US) imaging studies investigating the fascial layers are becoming more numerous, the majority tend to use different reference points and terminology to describe their findings. The current work set out to compare macroscopic and microscopic data of specimens of the fascial layers of the thigh with US imaging findings. Specimens of the different fascial layers of various regions of the thigh were collected for macroscopic and histological analyses from three fresh cadavers and compared with in vivo US images of the thighs of 20 healthy volunteers. The specimens showed that the subcutaneous tissue of the thigh is made up of three layers: a superficial adipose layer, a membranous layer/superficial fascia, and a deep adipose layer. The deep fascia is composed of an aponeurotic fascia, which envelops all the thigh muscles and is laterally reinforced by the iliotibial tract and an epimysial fascia, which is specific for each muscle. The morphometric measurements of the thickness of the superficial fascia were different (anterior: 153.2 ± 39.3 µm; medial: 128.4 ± 24.7 µm; lateral: 154 ± 28.9 µm; and posterior: 148.8 ± 33.2 µm) as were those of the deep fascia (anterior: 556.8 ± 176.2 µm; medial: 820.4 ± 201 µm; lateral: 1112 ± 237.9 µm; and posterior: 730.4 ± 186.5 µm). The US scans showed a clear picture of the superficial adipose tissue, the superficial fascia, and the deep adipose tissue, as well as the deep fasciae. The epimysial and aponeurotic fasciae of only some topographic areas could be independently identified. The US imaging findings confirmed that the superficial and deep fascia have different thicknesses, and they showed that the US measurements were always larger with respect to those produced by histological analysis (p < 0.001) probably due to shrinkage during the processing. The posterior region (level 1) of the superficial fascia had, for example, a mean thickness of 0.56 ± 0.12 mm at US, while the histological analysis showed that it was 148.8 ± 33.2 µm. Showing a similar pattern, the thickness of the deep fascia was as follows: 1.64 ± 0.85 mm versus 730.4 ± 186.5 µm. Study results have confirmed that US can be considered a valid, non-invasive instrument to evaluate the fascial layers. In any event, there is a clear need for a set of standardised protocols since the thickness of the fascial layers of different parts of the human body varies and the data obtained using inaccurate reference points are not reproducible or comparable. Given the inconsistent terminology used to describe the fascial system, it would also be important to standardise the terminology used to define its parts. The difficulty in distinguishing between the epimysial and aponeurotic/deep fascia can also impede data interpretation.

19 citations


Journal ArticleDOI
TL;DR: This work introduces new quantitative methods and demonstrates the utility of comparative ROM mapping approaches, highlighting that Palorchestes' forelimb function was unlike its contemporaneous relatives and appears to lack clear functional analogues among living mammals.
Abstract: Joint mobility is a key factor in determining the functional capacity of tetrapod limbs, and is important in palaeobiological reconstructions of extinct animals. Recent advances have been made in quantifying osteological joint mobility using virtual computational methods; however, these approaches generally focus on the proximal limb joints and have seldom been applied to fossil mammals. Palorchestes azael is an enigmatic, extinct ~1000 kg marsupial with no close living relatives, whose functional ecology within Australian Pleistocene environments is poorly understood. Most intriguing is its flattened elbow morphology, which has long been assumed to indicate very low mobility at this important joint. Here, we tested elbow mobility via virtual range of motion (ROM) mapping and helical axis analysis, to quantitatively explore the limits of Palorchestes' elbow movement and compare this with their living and extinct relatives, as well as extant mammals that may represent functional analogues. We find that Palorchestes had the lowest elbow mobility among mammals sampled, even when afforded joint translations in addition to rotational degrees of freedom. This indicates that Palorchestes was limited to crouched forelimb postures, something highly unusual for mammals of this size. Coupled flexion and abduction created a skewed primary axis of movement at the elbow, suggesting an abducted forelimb posture and humeral rotation gait that is not found among marsupials and unlike that seen in any large mammals alive today. This work introduces new quantitative methods and demonstrates the utility of comparative ROM mapping approaches, highlighting that Palorchestes' forelimb function was unlike its contemporaneous relatives and appears to lack clear functional analogues among living mammals.

19 citations


Journal ArticleDOI
TL;DR: In this article, a 3D model of a juvenile Nile Crocodile (Crocodylus niloticus) pelvis and hindlimb, composed of 47 pelvic limb muscles, was used to investigate muscle function.
Abstract: We developed a three-dimensional, computational biomechanical model of a juvenile Nile crocodile (Crocodylus niloticus) pelvis and hindlimb, composed of 47 pelvic limb muscles, to investigate muscle function. We tested whether crocodiles, which are known to use a variety of limb postures during movement, use limb orientations (joint angles) that optimise the moment arms (leverages) or moment-generating capacities of their muscles during different limb postures ranging from a high walk to a sprawling motion. We also describe the three-dimensional (3D) kinematics of the crocodylian hindlimb during terrestrial locomotion across an instrumented walkway and a treadmill captured via X-ray Reconstruction of Moving Morphology (biplanar fluoroscopy; 'XROMM'). We reconstructed the 3D positions and orientations of each of the hindlimb bones and used dissection data for muscle lines of action to reconstruct a focal, subject-specific 3D musculoskeletal model. Motion data for different styles of walking (a high, crouched, bended and two types of sprawling motion) were fed into the 3D model to identify whether any joints adopted near-optimal poses for leverage across each of the behaviours. We found that (1) the hip adductors and knee extensors had their largest leverages during sprawling postures and (2) more erect postures typically involved greater peak moment arms about the hip (flexion-extension), knee (flexion) and metatarsophalangeal (flexion) joints. The results did not fully support the hypothesis that optimal poses are present during different locomotory behaviours because the peak capacities were not always reached around mid-stance phase. Furthermore, we obtained few clear trends for isometric moment-generating capacities. Therefore, perhaps peak muscular leverage in Nile crocodiles is instead reached either in early/late stance or possibly during swing phase or other locomotory behaviours that were not studied here, such as non-terrestrial movement. Alternatively, our findings could reflect a trade-off between having to execute different postures, meaning that hindlimb muscle leverage is not optimised for any singular posture or behaviour. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in extant crocodiles which can form a basis for investigating muscle function in extinct archosaurs.

18 citations


Journal ArticleDOI
TL;DR: In this article, the role of saliva in SARS-CoV-2 transmission remains obscure and the binding function of spike protein to ACE2 in three major salivary glands was detected.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is primarily transmitted through droplets. All human tissues with the angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serines 2 (TRMPRSS2) are potential targets of SARS-CoV-2. The role of saliva in SARS-CoV-2 transmission remains obscure. In this study, we attempted to reveal ACE2 and TRMPRSS2 protein expression in human parotid, submandibular, and sublingual glands (three major salivary glands). Then, the binding function of spike protein to ACE2 in three major salivary glands was detected. The expression of ACE2 and TMPRSS2 in human saliva from parotid glands were both examined. Exogenous recombined ACE2 and TMPRSS2 anchoring and fusing to oral mucosal epithelial cells in vitro were also unraveled. ACE2 and TMPRSS2 were found mainly to be expressed in the cytomembrane and cytoplasm of epithelial cells in the serous acinus cells in parotid and submandibular glands. Our research also discovered that the spike protein of SARS-CoV-2 binds to ACE2 in salivary glands in vitro. Furthermore, exogenous ACE2 and TMPRSS2 can anchor and fuse to oral mucosa in vitro. Thus, the expression of ACE2 and TMPRSS2 in human saliva might have implications for SARS-CoV-2 infection.

17 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared the temporal disease progression with severity of disease at the neuromuscular junction in mouse models with the most commonly mutated genes in ALS patients (SOD1, C9ORF72, TARDBP and FUS).
Abstract: Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with an extremely heterogeneous clinical and genetic phenotype. In our efforts to find therapies for ALS, the scientific community has developed a plethora of mouse models, each with their own benefits and drawbacks. The peripheral nervous system, specifically the neuromuscular junction (NMJ), is known to be affected in ALS patients and shows marked dysfunction across mouse models. Evidence of pathology at the NMJ includes denervated NMJs, changes in endplate size and loss of terminal Schwann cells. This review compares the temporal disease progression with severity of disease at the NMJ in mouse models with the most commonly mutated genes in ALS patients (SOD1, C9ORF72, TARDBP and FUS). Despite variability, early NMJ dysfunction seems to be a common factor in models with SOD1, TARDBP and FUS mutations, while C9ORF72 models do not appear to follow the same pattern of pathology. Further work into determining the timing of NMJ pathology, particularly in newer ALS mouse models, will confirm its pivotal role in ALS pathogenesis and therefore highlight the NMJ as a potential therapeutic target.

17 citations


Journal ArticleDOI
TL;DR: In this paper, the histological and developmental properties of squamate tooth attachment tissues were investigated in multiple planes of section, including cementum, periodontal ligaments, and alveolar bone in pleurodont squamates.
Abstract: Squamates present a unique challenge to the homology and evolution of tooth attachment tissues. Their stereotypically pleurodont teeth are fused in place by a single "bone of attachment", with seemingly dubious homology to the three-part tooth attachment system of mammals and crocodilians. Despite extensive debate over the interpretations of squamate pleurodonty, its phylogenetic significance, and the growing evidence from fossil amniotes for the homology of tooth attachment tissues, few studies have defined pleurodonty on histological grounds. Using a sample of extant squamate teeth that we organize into three broad categories of implantation, we investigate the histological and developmental properties of their dental tissues in multiple planes of section. We use these data to demonstrate the specific soft- and hard-tissue features of squamate teeth that produce their disparate tooth implantation modes. In addition, we describe cementum, periodontal ligaments, and alveolar bone in pleurodont squamates, dental tissues that were historically thought to be restricted to extant mammals and crocodilians. Moreover, we show how the differences between pleurodonty and thecodonty do not relate to the identity of the tooth attachment tissues, but rather the arrangements of homologous tissues around the teeth.

14 citations


Journal ArticleDOI
TL;DR: A comprehensive description of the neurocranial osteology of extant crocodylians, with notes on the development of individual skeletal elements and a discussion of the terminology used for this project is given in this paper.
Abstract: Present-day crocodylians exhibit a remarkably akinetic skull with a highly modified braincase. We present a comprehensive description of the neurocranial osteology of extant crocodylians, with notes on the development of individual skeletal elements and a discussion of the terminology used for this project. The quadrate is rigidly fixed by multiple contacts with most braincase elements. The parabasisphenoid is sutured to the pterygoids (palate) and the quadrate (suspensorium); as a result, the basipterygoid joint is completely immobilized. The prootic is reduced and externally concealed by the quadrate. It has a verticalized buttress that participates in the canal for the temporal vasculature. The ventrolateral processes of the otoccipitals completely cover the posteroventral region of the braincase, enclose the occipital nerves and blood vessels in narrow bony canals and also provide additional sutural contacts between the braincase elements and further consolidate the posterior portion of the crocodylian skull. The otic capsule of crocodylians has a characteristic cochlear prominence that corresponds to the lateral route of the perilymphatic sac. Complex internal structures of the otoccipital (extracapsular buttress) additionally arrange the neurovascular structures of the periotic space of the cranium. Most of the braincase elements of crocodylians are excavated by the paratympanic pneumatic sinuses. The braincase in various extant crocodylians has an overall similar structure with some consistent variation between taxa. Several newly observed features of the braincase are present in Gavialis gangeticus and extant members of Crocodylidae to the exclusion of alligatorids: the reduced exposure of the prootic buttress on the floor of the temporal canal, the sagittal nuchal crest of the supraoccipital projecting posteriorly beyond the postoccipital processes and the reduced paratympanic pneumaticity. The most distinctive features of the crocodylian braincase (fixed quadrate and basipterygoid joint, consolidated occiput) evolved relatively rapidly at the base of Crocodylomorpha and accompanied the initial diversification of this clade during the Late Triassic and Early Jurassic. We hypothesize that profound rearrangements in the individual development of the braincases of basal crocodylomorphs underlie these rapid evolutionary modifications. These rearrangements are likely reflected in the embryonic development of extant crocodylians and include the involvement of neomorphic dermal anlagen in different portions of the developing chondrocranium, the extensive ossification of the palatoquadrate cartilage as a single expanded quadrate and the anteromedial inclination of the quadrate.

14 citations


Journal ArticleDOI
TL;DR: The combination of cerebral, dental, and postcranial data suggest that B. schultzi was an active small predator, able to track moving prey, and the first calculations of the Reptile Encephalization Quotient (REQ) for a Triassic dinosaur are presented.
Abstract: Our knowledge on the anatomy of the first dinosaurs (Late Triassic, 235-205 Ma) has drastically increased in the last years, mainly due to several new findings of exceptionally well-preserved specimens. Nevertheless, some structures such as the neurocranium and its associated structures (brain, labyrinth, cranial nerves, and vasculature) remain poorly known, especially due to the lack of specimens preserving a complete and articulated neurocranium. This study helps to fill this gap by investigating the endocranial cavity of one of the earliest sauropodomorphs, Buriolestes schultzi, from the Upper Triassic (Carnian-c. 233 Ma) of Brazil. The endocranial anatomy of this animal sheds light on the ancestral condition of the brain of sauropodomorphs, revealing an elongated olfactory tract combined to a relatively small pituitary gland and well-developed flocculus of the cerebellum. These traits change drastically across the evolutionary history of sauropodomorphs, reaching the opposite morphology in Jurassic times. Furthermore, we present here the first calculations of the Reptile Encephalization Quotient (REQ) for a Triassic dinosaur. The REQ of B. schultzi is lower than that of Jurassic theropods, but higher than that of later sauropodomorphs. The combination of cerebral, dental, and postcranial data suggest that B. schultzi was an active small predator, able to track moving prey.

Journal ArticleDOI
TL;DR: In this article, a method for exosome isolation in mesenchymal stem cells (MSCs) has been proposed to detect exosomes released into adipose-derived MSC conditioned cell culture medium.
Abstract: Mesenchymal stem cells (MSCs) are the subject of intense research as they are a potential therapeutic tool for several clinical applications. The new MSCs action models are focused on the use of MSC-derived secretome which contains several growth factors, cytokines, microRNAs, and extracellular vesicles such as exosomes. Exosomes have recently emerged as a component with great potential involved as mediators in cellular communication. The isolation and identification of exosomes has made it possible for them to be used in cell-free therapies. The purposes of this study are: (i) to detect exosomes released into adipose-derived MSC conditioned cell culture medium, (ii) to identify exosome morphology, and (iii) to carry out a complete characterization of said exosomes. Moreover, it is aimed at determining which method for exosome isolation would be best to use. Precipitation has been identified as a highly useful method of exosome isolation since it provides higher efficiency and purity values than other methods. A broad characterization of the exosomes present in the MSC-conditioned medium was also carried out. This work fills a gap in the existing literature on bioactive molecules which have attracted a great deal of interest due to their potential use in cellular therapies.

Journal ArticleDOI
TL;DR: In this paper, the rotational range of motion (ROM) of a cadaveric joint was estimated using marker-based X-ray Reconstruction of Moving Morphology (RMM).
Abstract: Paleobiologists typically exclude impossible joint poses from reconstructions of extinct animals by estimating the rotational range of motion (ROM) of fossil joints. However, this ubiquitous practice carries the assumption that osteological estimates of ROM consistently overestimate true joint mobility. Because studies founded on ROM-based exclusion have contributed substantially to our understanding of functional and locomotor evolution, it is critical that this assumption be tested. Here, we evaluate whether ROM-based exclusion is, as currently implemented, a reliable strategy. We measured the true mobilities of five intact cadaveric joints using marker-based X-ray Reconstruction of Moving Morphology and compared them to virtual osteological estimates of ROM made allowing (a) only all three rotational, (b) all three rotational and one translational, and (c) all three rotational and all three translational degrees of freedom. We found that allowing combinations of motions in all six degrees of freedom is necessary to ensure that true mobility is always successfully captured. In other words, failing to include joint translations in ROM analyses results in the erroneous exclusion of many joint poses that are possible in life. We therefore suggest that the functional and evolutionary conclusions of existing paleobiological reconstructions may be weakened or even overturned when all six degrees of freedom are considered. We offer an expanded methodological framework for virtual ROM estimation including joint translations and outline recommendations for future ROM-based exclusion studies.

Journal ArticleDOI
TL;DR: This work presents the first 3D geometric morphometric study focusing on bovid limb long bones, using anatomical landmarks as well as curve and surface sliding semi‐landmarks to accurately describe the stylopod and zeugopod bones.
Abstract: Limb long bones are essential to an animal's locomotion, and are thus expected to be heavily influenced by factors such as mass or habitat. Because they are often the only organs preserved in the fossil record, understanding their adaptive trends is key to reconstructing the paleobiology of fossil taxa. In this regard, the Bovidae has always been a prized group of study. This family is extremely diverse in terms of both mass and habitat, and it is expected that their bones will possess adaptations to both factors. Here, we present the first 3D geometric morphometric study focusing on bovid limb long bones. We used anatomical landmarks as well as curve and surface sliding semi-landmarks to accurately describe the stylopod and zeugopod bones. We included 50 species from ten of the twelve currently recognized tribes of bovids, ranging from 4.6 to 725 kg, and living in open plains, forests, mountains, or anywhere in-between. Shape data were correlated with the mean mass of the species and its habitat, even when taking into account the phylogenetic history of our sample. Bones pertaining to heavy species are more robust, adapted for a better repartition of stronger forces. Articulations are especially affected, being proportionally much larger in heavier species. Muscle insertion areas are unevenly affected. Insertion areas of muscles implied in body support and propulsion show a strong increase in their robustness when compared to insertion areas of muscles acting on the limb mostly when it is off the ground. Habitat influences the shape of the humerus, the radius-ulna, and the femur, but not of the tibia, whether the phylogeny is taken into account or not. Specific habitats tend to be associated with particular features on the bones. Articulations are proportionally wider in open-habitat species, and the insertion areas of muscles involved in limb extension and propulsion are wider, reflecting the fact that open habitat species are more cursorial and rely on fast running to avoid predators. Forest and mountain species generally present similar adaptations for increased manoeuvrability, such as a round femoral head, and generally have more gracile bones.

Journal ArticleDOI
TL;DR: The history of reconstructions for Parasaurolophus walkeri is reviewed, showing how erroneous misconceptions have been perpetuated over time or have led to the development of new hypotheses, including the wide neck model supported in the current research.
Abstract: Paleopathology, or the study of ancient injuries and diseases, can enable the ecology and life history of extinct taxa to be deciphered. Large-bodied ornithopods are the dinosaurs with the highest frequencies of paleopathology reported to-date. Among these, the crested hadrosaurid Parasaurolophus walkeri is one of the most famous, largely due to its dramatic elongated and tubular nasal crest. The holotype of Parasaurolophus walkeri at the Royal Ontario Museum, Canada, displays several paleopathologies that have not been discussed in detail previously: a dental lesion in the left maxilla, perhaps related to periodontal disease; callus formation associated with fractures in three dorsal ribs; a discoidal overgrowth above dorsal neural spines six and seven; a cranially oriented spine in dorsal seven, that merges distally with spine six; a V-shaped gap between dorsal spines seven and eight; and a ventral projection of the pubic process of the ilium which covers, and is fused with, the lateral side of the iliac process of the pubis. These lesions suggest that the animal suffered from one or more traumatic events, with the main one causing a suite of injuries to the anterior aspect of the thorax. The presence of several lesions in a single individual is a rare observation and, in comparison with a substantial database of hadrosaur paleopathological lesions, has the potential to reveal new information about the biology and behavior of these ornithopods. The precise etiology of the iliac abnormality is still unclear, although it is thought to have been an indirect consequence of the anterior trauma. The discoidal overgrowth above the two neural spines also seems to be secondary to the severe trauma inflicted on the ribs and dorsal spines, and probably represents post-traumatic ossification of the base of the nuchal ligament. The existence of this structure has previously been considered in hadrosaurs and dinosaurs more generally through comparison of origin and insertion sites in modern diapsids (Rhea americana, Alligator mississippiensis, Iguana iguana), but its presence, structure, and origin-attachment sites are still debated. The V-shaped gap is hypothesized as representing the point between the stresses of the nuchal ligament, pulling the anterior neural spines forward, and the ossified tendons pulling the posterior neural spines backward. Different reconstructions of the morphology of the structure based on the pathological conditions affecting the neural spines of ROM 768 are proposed. Finally, we review the history of reconstructions for Parasaurolophus walkeri showing how erroneous misconceptions have been perpetuated over time or have led to the development of new hypotheses, including the wide neck model supported in the current research.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the developmental origin, morphology, and function of different populations of glia found in the peripheral nervous system, including: myelinating Schwann cells, Remak Schwann Cells, repair Schwann Cell, satellite glia, boundary cap-derived glia.
Abstract: Recent years have seen an evolving appreciation for the role of glial cells in the nervous system. As we move away from the typical neurocentric view of neuroscience, the complexity and variability of central nervous system glia is emerging, far beyond the three main subtypes: astrocytes, oligodendrocytes, and microglia. Yet the diversity of the glia found in the peripheral nervous system remains rarely discussed. In this review, we discuss the developmental origin, morphology, and function of the different populations of glia found in the peripheral nervous system, including: myelinating Schwann cells, Remak Schwann cells, repair Schwann cells, satellite glia, boundary cap-derived glia, perineurial glia, terminal Schwann cells, glia found in the skin, olfactory ensheathing cells, and enteric glia. The morphological and functional heterogeneity of glia found in the periphery reflects the diverse roles the nervous system performs throughout the body. Further, it highlights a complexity that should be appreciated and considered when it comes to a complete understanding of the peripheral nervous system in health and disease.

Journal ArticleDOI
TL;DR: A histological study of micro‐damaged CEPs harvested from human lumbar intervertebral discs and its clinical implications were performed and a new classification of human lUMBar micro-damagedCEPs was presented.
Abstract: The cartilaginous endplate (CEP) is a thin layer of hyaline cartilage, and plays an important role in the diffusion of nutrients into the intervertebral discs. Its damage may seriously affect the disc degeneration, and result in low back pain (LBP). However, the structural features of damaged CEPs have not been well characterized, and this hinders our understanding of the etiology of disc degeneration and pain. To present the structural features of micro-damaged CEPs in patients with disc degeneration and LBP that might even be regarded as an initial factor for disc degeneration, we performed a histological study of micro-damaged CEPs harvested from human lumbar intervertebral discs and analyzed its clinical implications. Human lumbar CEPs were excised from 35 patients (mean age 60.91 years) who had disc degeneration and LBP. Control tissue was obtained from 15 patients (mean age 54.67 years) with lumbar vertebral burst fractures. LBP and disability were assessed clinically, and all patients underwent anterior vertebral body fusion surgery. CEPs together with some adjacent nucleus pulposus (NP) were sectioned at 4 µm, and stained using HE JOA: p = 0.0205; JOABPEQ: p = 0.0034) were significantly higher in those with micro-damaged CEPs (N = 14) than in those with non-damaged CEPs (N = 21). CEP damage was significantly associated with elevated MMP3 (p = 0.043), MMP13 (p = 0.0191), ADAMTS5 (p = 0.0253), TNF-α (p = 0.0011), and Substance P (p = 0.0028), and with reduced Sox9 (p = 0.0212), aggrecan (p = 0.0127), and type II collagen (p = 0.0139). In conclusion, we presented a new classification of human lumbar micro-damaged CEPs. Furthermore, we verify disc degeneration, innervation, and discogenic pain in micro-damaged CEPs.

Journal ArticleDOI
TL;DR: In this paper, a deep learning-based segmentation of calcified cartilage (CC) was proposed for 3D assessment of 3D cartilage morphology using micro-computed tomography images.
Abstract: Structural dynamics of calcified cartilage (CC) are poorly understood. Conventionally, CC structure is analyzed using histological sections. Micro-computed tomography (µCT) allows for three-dimensional (3D) imaging of mineralized tissues; however, the segmentation between bone and mineralized cartilage is challenging. Here, we present state-of-the-art deep learning segmentation for µCT images to assess 3D CC morphology. The sample includes 16 knees from 12 New Zealand White rabbits dissected into osteochondral samples from six anatomical regions: lateral and medial femoral condyles, lateral and medial tibial plateaus, femoral groove, and patella (n = 96). The samples were imaged with µCT and processed for conventional histology. Manually segmented CC from the images was used to train segmentation models with different encoder-decoder architectures. The models with the greatest out-of-fold evaluation Dice score were selected. CC thickness was compared across 24 regions, co-registered between the imaging modalities using Pearson correlation and Bland-Altman analyses. Finally, the anatomical CC thickness variation was assessed via a Linear Mixed Model analysis. The best segmentation models yielded average Dice of 0.891 and 0.807 for histology and µCT segmentation, respectively. The correlation between the co-registered regions was strong (r = 0.897, bias = 21.9 µm, standard deviation = 21.5 µm). Finally, both methods could separate the CC thickness between the patella, femoral, and tibial regions (p < 0.001). As a conclusion, the proposed µCT analysis allows for ex vivo 3D assessment of CC morphology. We demonstrated the biomedical relevance of the method by quantifying CC thickness in different anatomical regions with a varying mean thickness. CC was thickest in the patella and thinnest in the tibial plateau. Our method is relatively straightforward to implement into standard µCT analysis pipelines, allowing the analysis of CC morphology. In future research, µCT imaging might be preferable to histology, especially when analyzing dynamic changes in cartilage mineralization. It could also provide further understanding of 3D morphological changes that may occur in mineralized cartilage, such as thickening of the subchondral plate in osteoarthritis and other joint diseases.

Journal ArticleDOI
TL;DR: In this article, the cortical and trabecular structures of the capitate of a knuckle-walking and suspensory hominoid were quantified using a whole-bone methodology.
Abstract: Morphological variation in the hominoid capitate has been linked to differences in habitual locomotor activity due to its importance in movement and load transfer at the midcarpal joint proximally and carpometacarpal joints distally. Although the shape of bones and their articulations are linked to joint mobility, the internal structure of bones has been shown experimentally to reflect, at least in part, the loading direction and magnitude experienced by the bone. To date, it is uncertain whether locomotor differences among hominoids are reflected in the bone microarchitecture of the capitate. Here, we apply a whole-bone methodology to quantify the cortical and trabecular architecture (separately and combined) of the capitate across bipedal (modern Homo sapiens), knuckle-walking (Pan paniscus, Pan troglodytes, Gorilla sp.), and suspensory (Pongo sp.) hominoids (n = 69). It is hypothesized that variation in bone microarchitecture will differentiate these locomotor groups, reflecting differences in habitual postures and presumed loading force and direction. Additionally, it is hypothesized that trabecular and cortical architecture in the proximal and distal regions, as a result of being part of mechanically divergent joints proximally and distally, will differ across these portions of the capitate. Results indicate that the capitate of knuckle-walking and suspensory hominoids is differentiated from bipedal Homo primarily by significantly thicker distal cortical bone. Knuckle-walking taxa are further differentiated from suspensory and bipedal taxa by more isotropic trabeculae in the proximal capitate. An allometric analysis indicates that size is not a significant determinate of bone variation across hominoids, although sexual dimorphism may influence some parameters within Gorilla. Results suggest that internal trabecular and cortical bone is subjected to different forces and functional adaptation responses across the capitate (and possibly other short bones). Additionally, while separating trabecular and cortical bone is normal protocol of current whole-bone methodologies, this study shows that when applied to carpals, removing or studying the cortical bone separately potentially obfuscates functionally relevant signals in bone structure.

Journal ArticleDOI
TL;DR: This reconstruction of fossil rodent locomotor behaviour supported previous inferences that arboreality was likely an ancestral trait for this group, and early members of the Sciuroidea clade are reconstructed to be more agile than ischyromyids, in the range of extant arboreal squirrels.
Abstract: Reconstructing locomotor behaviour for fossil animals is typically done with postcranial elements. However, for species only known from cranial material, locomotor behaviour is difficult to reconstruct. The semicircular canals (SCCs) in the inner ear provide insight into an animal's locomotor agility. A relationship exists between the size of the SCCs relative to body mass and the jerkiness of an animal's locomotion. Additionally, studies have also demonstrated a relationship between SCC orthogonality and angular head velocity. Here, we employ two metrics for reconstructing locomotor agility, radius of curvature dimensions and SCC orthogonality, in a sample of twelve fossil rodents from the families Ischyromyidae, Sciuridae and Aplodontidae. The method utilizing radius of curvature dimensions provided a reconstruction of fossil rodent locomotor behaviour that is more consistent with previous studies assessing fossil rodent locomotor behaviour compared to the method based on SCC orthogonality. Previous work on ischyromyids suggests that this group displayed a variety of locomotor modes. Members of Paramyinae and Ischyromyinae have relatively smaller SCCs and are reconstructed to be relatively slower compared to members of Reithroparamyinae. Early members of the Sciuroidea clade including the sciurid Cedromus wilsoni and the aplodontid Prosciurus relictus are reconstructed to be more agile than ischyromyids, in the range of extant arboreal squirrels. This reconstruction supports previous inferences that arboreality was likely an ancestral trait for this group. Derived members of Sciuridae and Aplodontidae vary in agility scores. The fossil squirrel Protosciurus cf. rachelae is inferred from postcranial material as arboreal, which is in agreement with its high agility, in the range of extant arboreal squirrels. In contrast, the fossil aplodontid Mesogaulus paniensis has a relatively low agility score, similar to the fossorial Aplodontia rufa, the only living aplodontid rodent. This result is in agreement with its postcranial reconstruction as fossorial and with previous indications that early aplodontids were more arboreal than their burrowing descendants.

Journal ArticleDOI
TL;DR: Detailed homologies of pedal muscles among sauropsids were established based on dissections and literature reviews of adult conditions, and the present new hypothesis postulates that the avian m.
Abstract: Archosaurs displayed an evolutionary trend toward increasing bipedalism in their evolutionary history, that is, forelimbs tend to be reduced in contrast to the development of hindlimbs becoming major weight-bearing and locomotor appendages. The archosaurian locomotion has been extensively discussed based on their limb morphology because the latter reflects their locomotor modes very well. However, despite some attempts of reconstructing the hindlimb musculature in Archosauria, that of the most distal portion, the pes, has often been neglected. In order to rectify this trend, detailed homologies of pedal muscles among sauropsids were established based on dissections and literature reviews of adult conditions. As a result, homologies of some pedal muscles between non-avian sauropsids and avians were revised, challenging classical hypotheses. The present new hypothesis postulates that the avian m. tibialis cranialis and non-avian m. extensor digitorum longus, as well as the avian m. extensor digitorum longus and non-avian m. tibialis anterior, are homologous with each other, respectively. This is more plausible because it requires no drastical change in the attachment sites between the avian and non-avian homologues unlike the classical hypothesis. Many interosseous muscles in non-archosaurian sauropsids that have long been regarded as a part of short digital extensors or flexors are also divided into multiple distinct muscles so that they can be homologized with short pedal muscles among all sauropsids. In addition, osteological correlates of attachments are identified for most of the pedal muscles, contributing to future attempts of reconstruction of this muscle system in fossil archosaurs.

Journal ArticleDOI
TL;DR: In this paper, the authors assessed long-term in vivo bone labeling of subordinate individuals, as well as the patterns of bone resorption and bone remodeling in a large sample including reproductive and non-reproductive individuals (n = 70) over 268 undecalcified thin cross-sections from the midshaft of humerus, ulna, femur and tibia.
Abstract: The pattern of bone remodeling of one of the most peculiar mammals in the world, the naked mole-rat (NMR), was assessed NMRs are known for their long lifespans among rodents and for having low metabolic rates We assessed long-term in vivo bone labeling of subordinate individuals, as well as the patterns of bone resorption and bone remodeling in a large sample including reproductive and non-reproductive individuals (n = 70) Over 268 undecalcified thin cross-sections from the midshaft of humerus, ulna, femur and tibia were analyzed with confocal fluorescence and polarized light microscopy Fluorochrome analysis revealed low osteogenesis, scarce bone resorption and infrequent formation of secondary osteons (Haversian systems) (ie, slow bone turnover), thus most likely reflecting the low metabolic rates of this species Secondary osteons occurred regardless of reproductive status However, considerable differences in the degree of bone remodeling were found between breeders and non-breeders Pre-reproductive stages (subordinates) exhibited quite stable skeletal homeostasis and bone structure, although the attainment of sexual maturity and beginning of reproductive cycles in female breeders triggered a series of anabolic and catabolic processes that up-regulate bone turnover, most likely associated with the increased metabolic rates of reproduction Furthermore, bone remodeling was more frequently found in stylopodial elements compared to zeugopodial elements Despite the limited bone remodeling observed in NMRs, the variation in the pattern of skeletal homeostasis (interelement variation) reported here represents an important aspect to understand the skeletal dynamics of a small mammal with low metabolic rates Given the relevance of the remodeling process among mammals, this study also permitted the comparison of such process with the well-documented histomorphology of extinct therapsids (ie, mammalian precursors), thus evidencing that bone remodeling and its endocortical compartmentalization represent ancestral features among the lineage that gave rise to mammals It is concluded that other factors associated with development (and not uniquely related to biomechanical loading) can also have an important role in the development of bone remodeling

Journal ArticleDOI
TL;DR: This work identifies the fusion sequence of pterosaur notarial elements, demonstrating the order of ossification in vertebral bodies and neural spines based on fossils and extant birds and reports the occurrence of a notarium in Ardeadactylus longicollum, the oldest occurrence of this structure in pterosaurs.
Abstract: The notarium is the structure formed by fusion of the dorsal vertebrae which occurred independently in pterosaurs and birds. This ankylosis usually involves two to six elements and in many cases, also includes the last cervical vertebra. Fusion can occur in different degrees, uniting the vertebral centra, the neural spines, the transverse processes, the ventral processes, or a combination of these sites. A detailed assessment of the fusion process of pterosaur dorsal vertebrae is still lacking. Here we identify the fusion sequence of pterosaur notarial elements, demonstrating the order of ossification in vertebral bodies and neural spines based on fossils and extant birds. In both Pterosauria and Aves, the notarium generally develops in a antero-posterior direction, but the actual order of each fusion locus may present slight variations. Based on our data, we were able to identify seven developmental stages in the notarium formation, with broad implications for the prediction of ontogenetic stages for the Pterosauria. In addition, we report the occurrence of a notarium in Ardeadactylus longicollum (Kimmeridgian, Southern Germany), the oldest occurrence of this structure in pterosaurs.

Journal ArticleDOI
TL;DR: A high histodiversity of bone matrices and the formation of secondary osteons in NMRs is described, which indicates that postnatal osteogenesis and its consequent cortical stratification most likely represents a plesiomorphic thermometabolic strategy among endotherms which has been suggested to be regulated by endogenous rhythms.
Abstract: Lacking fur, living in eusocial colonies and having the longest lifespan of any rodent, makes naked mole-rats (NMRs) rather peculiar mammals. Although they exhibit a high degree of polymorphism, skeletal plasticity and are considered a novel model to assess the effects of delayed puberty on the skeletal system, scarce information on their morphogenesis exists. Here, we examined a large ontogenetic sample (n = 76) of subordinate individuals to assess the pattern of bone growth and bone microstructure of fore- and hindlimb bones by using histomorphological techniques. Over 290 undecalcified thin cross-sections from the midshaft of the humerus, ulna, femur, and tibia from pups, juveniles and adults were analyzed with polarized light microscopy. Similar to other fossorial mammals, NMRs exhibited a systematic cortical thickening of their long bones, which clearly indicates a conserved functional adaptation to withstand the mechanical strains imposed during digging, regardless of their chisel-tooth predominance. We describe a high histodiversity of bone matrices and the formation of secondary osteons in NMRs. The bones of pups are extremely thin-walled and grow by periosteal bone formation coupled with considerable expansion of the medullary cavity, a process probably tightly regulated and adapted to optimize the amount of minerals destined for skeletal development, to thus allow the female breeder to produce a higher number of pups, as well as several litters. Subsequent cortical thickening in juveniles involves high amounts of endosteal bone apposition, which contrasts with the bone modeling of other mammals where a periosteal predominance exists. Adults have bone matrices predominantly consisting of parallel-fibered bone and lamellar bone, which indicate intermediate to slow rates of osteogenesis, as well as the development of poorly vascularized lamellar-zonal tissues separated by lines of arrested growth (LAGs) and annuli. These features reflect the low metabolism, low body temperature and slow growth rates reported for this species, as well as indicate a cyclical pattern of osteogenesis. The presence of LAGs in captive individuals was striking and indicates that postnatal osteogenesis and its consequent cortical stratification most likely represents a plesiomorphic thermometabolic strategy among endotherms which has been suggested to be regulated by endogenous rhythms. However, the generalized presence of LAGs in this and other subterranean taxa in the wild, as well as recent investigations on variability of environmental conditions in burrow systems, supports the hypothesis that underground environments experience seasonal fluctuations that may influence the postnatal osteogenesis of animals by limiting the extension of burrow systems during the unfavorable dry seasons and therefore the finding of food resources. Additionally, the intraspecific variation found in the formation of bone tissue matrices and vascularization suggested a high degree of developmental plasticity in NMRs, which may help explaining the polymorphism reported for this species. The results obtained here represent a valuable contribution to understanding the relationship of several aspects involved in the morphogenesis of the skeletal system of a mammal with extraordinary adaptations.

Journal ArticleDOI
TL;DR: Rasia et al. as mentioned in this paper presented a paper on the evolution of the human brain in the context of vertebras, which was published by the Consejo Nacional de Investigaciones Cientificas and Tecnicas.
Abstract: Fil: Rasia, Luciano Luis. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Division Paleontologia Vertebrados; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - La Plata; Argentina

Journal ArticleDOI
TL;DR: It is proposed that Atractaspis and scolecophidians fall along a morphological continuum, characterized by differing degrees of paedomorphosis, and a combination of heterochrony and miniaturization provides a mechanism for the derivation of the scoleCophidian skull from an ancestral fossorial alethinophidian morphotype.
Abstract: Comparative osteological analyses of extant organisms provide key insight into major evolutionary transitions and phylogenetic hypotheses. This is especially true for snakes, given their unique morphology relative to other squamates and the persistent controversy regarding their evolutionary origins. However, the osteology of several major snake groups remains undescribed, thus hindering efforts to accurately reconstruct the phylogeny of snakes. One such group is the Atractaspididae, a family of fossorial colubroids. We herein present the first detailed description of the atractaspidid skull, based on fully segmented micro-computed tomography (micro-CT) scans of Atractaspis irregularis. The skull of Atractaspis presents a highly unique morphology influenced by both fossoriality and paedomorphosis. This paedomorphosis is especially evident in the jaws, palate, and suspensorium, the major elements associated with macrostomy (large-gaped feeding in snakes). Comparison to scolecophidians-a group of blind, fossorial, miniaturized snakes-in turn sheds light on current hypotheses of snake phylogeny. Features of both the naso-frontal joint and the morphofunctional system related to macrostomy refute the traditional notion that scolecophidians are fundamentally different from alethinophidians (all other extant snakes). Instead, these features support the controversial hypothesis of scolecophidians as "regressed alethinophidians," in contrast to their traditional placement as the earliest-diverging snake lineage. We propose that Atractaspis and scolecophidians fall along a morphological continuum, characterized by differing degrees of paedomorphosis. Altogether, a combination of heterochrony and miniaturization provides a mechanism for the derivation of the scolecophidian skull from an ancestral fossorial alethinophidian morphotype, exemplified by the nonminiaturized and less extreme paedomorph Atractaspis.

Journal ArticleDOI
TL;DR: This article examined the anatomy of the lung and bronchial tree of 10 American alligators (Alligator mississippiensis) and 11 ostrich (Struthio camelus) across an ontogenetic series using traditional and micro-computed tomography (µCT), 3D digital models, and morphometry.
Abstract: The avian lung is highly specialized and is both functionally and morphologically distinct from that of their closest extant relatives, the crocodilians. It is highly partitioned, with a unidirectionally ventilated and immobilized gas-exchanging lung, and functionally decoupled, compliant, poorly vascularized ventilatory air-sacs. To understand the evolutionary history of the archosaurian respiratory system, it is essential to determine which anatomical characteristics are shared between birds and crocodilians and the role these shared traits play in their respective respiratory biology. To begin to address this larger question, we examined the anatomy of the lung and bronchial tree of 10 American alligators (Alligator mississippiensis) and 11 ostriches (Struthio camelus) across an ontogenetic series using traditional and micro-computed tomography (µCT), three-dimensional (3D) digital models, and morphometry. Intraspecific variation and left to right asymmetry were present in certain aspects of the bronchial tree of both taxa but was particularly evident in the cardiac (medial) region of the lungs of alligators and the caudal aspect of the bronchial tree in both species. The cross-sectional area of the primary bronchus at the level of the major secondary airways and cross-sectional area of ostia scaled either isometrically or negatively allometrically in alligators and isometrically or positively allometrically in ostriches with respect to body mass. Of 15 lung metrics, five were significantly different between the alligator and ostrich, suggesting that these aspects of the lung are more interspecifically plastic in archosaurs. One metric, the distances between the carina and each of the major secondary airways, had minimal intraspecific or ontogenetic variation in both alligators and ostriches, and thus may be a conserved trait in both taxa. In contrast to previous descriptions, the 3D digital models and CT scan data demonstrate that the pulmonary diverticula pneumatize the axial skeleton of the ostrich directly from the gas-exchanging pulmonary tissues instead of the air sacs. Global and specific comparisons between the bronchial topography of the alligator and ostrich reveal multiple possible homologies, suggesting that certain structural aspects of the bronchial tree are likely conserved across Archosauria, and may have been present in the ancestral archosaurian lung.

Journal ArticleDOI
TL;DR: In this paper, a translational review of the trigeminal nerve is presented, in order to improve the understanding of cranial sensory perception and to spark a new field of exploration for headache and other brain diseases.
Abstract: Supratentorial sensory perception, including pain, is subserved by the trigeminal nerve, in particular, by the branches of its ophthalmic division, which provide an extensive innervation of the dura mater and of the major brain blood vessels. In addition, contrary to previous assumptions, studies on awake patients during surgery have demonstrated that the mechanical stimulation of the pia mater and small cerebral vessels can also produce pain. The trigeminovascular system, located at the interface between the nervous and vascular systems, is therefore perfectly positioned to detect sensory inputs and influence blood flow regulation. Despite the fact that it remains only partially understood, the trigeminovascular system is most probably involved in several pathologies, including very frequent ones such as migraine, or other severe conditions, such as subarachnoid haemorrhage. The incomplete knowledge about the exact roles of the trigeminal system in headache, blood flow regulation, blood barrier permeability and trigemino-cardiac reflex warrants for an increased investigation of the anatomy and physiology of the trigeminal system. This translational review aims at presenting comprehensive information about the dural and brain afferents of the trigeminovascular system, in order to improve the understanding of trigeminal cranial sensory perception and to spark a new field of exploration for headache and other brain diseases.

Journal ArticleDOI
TL;DR: In this paper, the presence and location of sympathetic paravascular and discrete structures in human lymph nodes was investigated. And the authors found that the presence of varicosities in a portion of these nerves, independently to their compartment, suggested a local regulatory function for these nerves.
Abstract: Various lymph node functions are regulated by the sympathetic nervous system as shown in rodent studies. If human lymph nodes show a comparable neural regulation, their afferent nerves could represent a potential therapeutic target to treat, for example, infectious or autoimmune disease. Little information is available on human lymph node innervation and the aim of this study is to establish a comprehensive and accurate representation of the presence and location of sympathetic nerves in human lymph nodes. Since previous studies mention sympathetic paravascular nerves to occasionally extent into T cell-rich regions, the relation of these nerves with T cells was studied as well. A total number of 15 inguinal lymph nodes were resected from six donated human cadavers. Lymph node sections were stained with HE and a double T/B cell staining for evaluation of their morphology and to screen for general pathologies. A triple stain was used to identify blood vessels, sympathetic nerves and T cells, and, to study the presence and location of sympathetic nerves and their relation to T cells. To evaluate whether the observed nerves were en route to other structures or were involved in local processes, adjacent slides were stained with a marker for varicosities (synaptophysin), which presence is suggestive for synaptic activity. All lymph nodes contained sympathetic nerves, both as paravascular and discrete structures. In 15/15 lymph nodes, nerves were observed in their capsule, medulla and hilum, whereas only 13/15 lymph nodes contained nerves in their cortex. The amount of sympathetic nerves varied between compartments and between and within individuals. In general, if a lymph node contained more paravascular nerves in a specific compartment, more discrete nerves were observed as well. Occasionally, discrete nerves were observed in relation to T cells in lymphoid tissues of the cortex and medulla. Furthermore, discrete nerves were frequently present in the capsule and hilum. The presence of varicosities in a portion of these nerves, independently to their compartment, suggested a local regulatory function for these nerves. Human lymph nodes contain sympathetic nerves in their capsule, trabeculae, cortex, medulla and hilum, both as paravascular or as discrete structures. Discrete nerves were observed in relation to T cells and non-T cell-rich areas such as the hilar and capsular connective tissue. The presence of discrete structures suggests neural regulation of structures other than blood vessels, which was further supported by the presence of varicosities in a portion of these nerves. These observations are of relevance in further understanding neural regulation of lymph node immune responses and in the development of neuromodulatory immune therapies.

Journal ArticleDOI
TL;DR: Investigating sound production in another Indo‐Pacific species, the longhorn cowfish Lactoria cornuta, finds that L. cornuta was more sensitive to frequencies ranging between at least 100 and 400 Hz with thresholds of 128–143 dB re 1 µPa over this range, meaning that they are sensitive to the frequencies produced by conspecifics.
Abstract: The ability to produce sounds has been reported in various Ostraciidae but not deeply studied. In some Ostracion species, two different sound-producing muscles allow these boxfishes to produce two different kinds of sounds in a sequence. This study investigates sound production in another Indo-Pacific species, the longhorn cowfish Lactoria cornuta that also possesses two pairs of sonic muscles associated with the swim bladder: extrinsic sonic muscles (ESMs) and intrinsic sonic muscles (ISMs). The cowfish produces two kinds of sounds called hums and clicks. Hums are made of trains of low amplitude pulses that last for long periods of time, suggesting that they are produced by fatigue-resistant muscles, whereas clicks correspond to shorter sounds with greater amplitude than the hums, suggesting that they result from more powerful contractions. Ultra-structural differences are found between extrinsic and intrinsic sonic muscles. According to features such as long sarcomeres, long I-bands, a high number of mitochondria, and a proliferation of sarcoplasmic reticulum (SR), ESMs would be able to produce fast, strong, and short contractions corresponding to clicks (the shortest sounds with the greatest amplitude). ISMs have the thinnest cells, the smallest number of myofilaments that have long I-bands, the highest volume of mitochondria, and well-developed SR supporting these muscles; these features should generate fast and prolonged contractions that could correspond to the hums that can be produced over long periods of time. A concluding figure shows clear comparisons of the different fibers that were studied in L. cornuta. This study also compared the call features of each sound with the cowfish's hearing ability and supports L. cornuta was more sensitive to frequencies ranging between at least 100 and 400 Hz with thresholds of 128-143 dB re 1 µPa over this range, meaning that they are sensitive to the frequencies produced by conspecifics.