scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Bacteriology in 1990"


Journal ArticleDOI
TL;DR: A novel approach that uses the polymerase chain reaction (PCR) for rapid simplified restriction typing and mapping of DNA from many different isolates is described, which ought to have wide applicability for clinical detection and other studies.
Abstract: Detailed restriction analyses of many samples often require substantial amounts of time and effort for DNA extraction, restriction digests, Southern blotting, and hybridization. We describe a novel approach that uses the polymerase chain reaction (PCR) for rapid simplified restriction typing and mapping of DNA from many different isolates. DNA fragments up to 2 kilobase pairs in length were efficiently amplified from crude DNA samples of several pathogenic Cryptococcus species, including C. neoformans, C. albidus, C. laurentii, and C. uniguttulatus. Digestion and electrophoresis of the PCR products by using frequent-cutting restriction enzymes produced complex restriction phenotypes (fingerprints) that were often unique for each strain or species. We used the PCR to amplify and analyze restriction pattern variation within three major portions of the ribosomal DNA (rDNA) repeats from these fungi. Detailed mapping of many restriction sites within the rDNA locus was determined by fingerprint analysis of progressively larger PCR fragments sharing a common primer site at one end. As judged by PCR fingerprints, the rDNA of 19 C. neoformans isolates showed no variation for four restriction enzymes that we surveyed. Other Cryptococcus spp. showed varying levels of restriction pattern variation within their rDNAs and were shown to be genetically distinct from C. neoformans. The PCR primers used in this study have also been successfully applied for amplification of rDNAs from other pathogenic and nonpathogenic fungi, including Candida spp., and ought to have wide applicability for clinical detection and other studies.

4,187 citations


Journal ArticleDOI
TL;DR: Fluorescent-dye-conjugated oligonucleotides were used to classify 14 Fibrobacter strains by fluorescence microscopy and the direct detection of F. intestinalis in mouse cecum samples demonstrated the application of this technique to the characterization of complex natural samples.
Abstract: Fluorescent-dye-conjugated oligonucleotides were used to classify 14 Fibrobacter strains by fluorescence microscopy. On the basis of partial 16S rRNA sequences of six Fibrobacter strains, four hybridization probes were designed to discriminate between the species Fibrobacter succinogenes and Fibrobacter intestinalis and to identify F. succinogenes subsp. succinogenes. After in situ hybridization to whole cells of the six sequenced strains, epifluorescence microscopy confirmed probe specificity. The four probes were then used to make presumptive species and subspecies assignments of eight additional Fibrobacter strains not previously characterized by comparative sequencing. These assignments were confirmed by comparative sequencing of the 16S rRNA target regions from the additional organisms. Single-mismatch discrimination between certain probe and nontarget sequences was demonstrated, and fluorescent intensity was shown to be enhanced by hybridization to multiple probes of the same specificity. The direct detection of F. intestinalis in mouse cecum samples demonstrated the application of this technique to the characterization of complex natural samples.

2,272 citations


Journal ArticleDOI
TL;DR: The cloning system described here will be particularly useful for the construction of hybrid bacteria that stably maintain inserted genes, perhaps in competitive situations, and that do not carry antibiotic resistance markers characteristic of most available cloning vectors.
Abstract: A simple procedure for cloning and stable insertion of foreign genes into the chromosomes of gram-negative eubacteria was developed by combining in two sets of plasmids (i) the transposition features of Tn10 and Tn5; (ii) the resistances to the herbicide bialaphos, to mercuric salts and organomercurial compounds, and to arsenite, and (iii) the suicide delivery properties of the R6K-based plasmid pGP704. The resulting constructions contained unique NotI or SfiI sites internal to either the Tn10 or the Tn5 inverted repeats. These sites were readily used for cloning DNA fragments with the help of two additional specialized cloning plasmids, pUC18Not and pUC18Sfi. The newly derived constructions could be maintained only in donor host strains that produce the R6K-specified pi protein, which is an essential replication protein for R6K and plasmids derived therefrom. Donor plasmids containing hybrid transposons were transformed into a specialized lambda pir lysogenic Escherichia coli strain with a chromosomally integrated RP4 that provided broad-host-range conjugal transfer functions. Delivery of the donor plasmids into selected host bacteria was accomplished through mating with the target strain. Transposition of the hybrid transposon from the delivered suicide plasmid to a replicon in the target cell was mediated by the cognate transposase encoded on the plasmid at a site external to the transposon. Since the transposase function was not maintained in target cells, such cells were not immune to further transposition rounds. Multiple insertions in the same strain are therefore only limited by the availability of distinct selection markers. The utility of the system was demonstrated with a kanamycin resistance gene as a model foreign insert into Pseudomonas putida and a melanin gene from Streptomyces antibioticus into Klebsiella pneumoniae. Because of the modular nature of the functional parts of the cloning vectors, they can be easily modified and further selection markers can be incorporated. The cloning system described here will be particularly useful for the construction of hybrid bacteria that stably maintain inserted genes, perhaps in competitive situations (e.g., in open systems and natural environments), and that do not carry antibiotic resistance markers characteristic of most available cloning vectors (as is currently required of live bacterial vaccines). Images

1,655 citations


Journal ArticleDOI
TL;DR: A collection of Tn5-derived minitransposons has been constructed that simplifies substantially the generation of insertion mutants, in vivo fusions with reporter genes, and the introduction of foreign DNA fragments into the chromosome of a variety of gram-negative bacteria, including the enteric bacteria and typical soil bacteria like Pseudomonas species.
Abstract: A collection of Tn5-derived minitransposons has been constructed that simplifies substantially the generation of insertion mutants, in vivo fusions with reporter genes, and the introduction of foreign DNA fragments into the chromosome of a variety of gram-negative bacteria, including the enteric bacteria and typical soil bacteria like Pseudomonas species The minitransposons consist of genes specifying resistance to kanamycin, chloramphenicol, streptomycin-spectinomycin, and tetracycline as selection markers and a unique NotI cloning site flanked by 19-base-pair terminal repeat sequences of Tn5 Further derivatives also contain lacZ, phoA, luxAB, or xylE genes devoid of their native promoters located next to the terminal repeats in an orientation that affords the generation of gene-operon fusions The transposons are located on a R6K-based suicide delivery plasmid that provides the IS50R transposase tnp gene in cis but external to the mobile element and whose conjugal transfer to recipients is mediated by RP4 mobilization functions in the donor

1,504 citations


Journal ArticleDOI
TL;DR: Two anthranilate synthase gene pairs have been identified in Pseudomonas aeruginosa and introduction of an inactivated trpE gene into a phnA mutant abolished residual pyocyanin production, suggesting that thetrpE trpG gene products are capable of providing some anthranILate for pycyanin synthesis.
Abstract: Two anthranilate synthase gene pairs have been identified in Pseudomonas aeruginosa. They were cloned, sequenced, inactivated in vitro by insertion of an antibiotic resistance gene, and returned to P. aeruginosa, replacing the wild-type gene. One anthranilate synthase enzyme participates in tryptophan synthesis; its genes are designated trpE and trpG. The other anthranilate synthase enzyme, encoded by phnA and phnB, participates in the synthesis of pyocyanin, the characteristic phenazine pigment of the organism. trpE and trpG are independently transcribed; homologous genes have been cloned from Pseudomonas putida. The phenazine pathway genes phnA and phnB are cotranscribed. The cloned phnA phnB gene pair complements trpE and trpE(G) mutants of Escherichia coli. Homologous genes were not found in P. putida PPG1, a non-phenazine producer. Surprisingly, PhnA and PhnB are more closely related to E. coli TrpE and TrpG than to Pseudomonas TrpE and TrpG, whereas Pseudomonas TrpE and TrpG are more closely related to E. coli PabB and PabA than to E. coli TrpE and TrpG. We replaced the wild-type trpE on the P. aeruginosa chromosome with a mutant form having a considerable portion of its coding sequence deleted and replaced by a tetracycline resistance gene cassette. This resulted in tryptophan auxotrophy; however, spontaneous tryptophan-independent revertants appeared at a frequency of 10(-5) to 10(6). The anthranilate synthase of these revertants is not feedback inhibited by tryptophan, suggesting that it arises from PhnAB. phnA mutants retain a low level of pyocyanin production. Introduction of an inactivated trpE gene into a phnA mutant abolished residual pyocyanin production, suggesting that the trpE trpG gene products are capable of providing some anthranilate for pyocyanin synthesis.

771 citations


Journal ArticleDOI
TL;DR: The most important function of carotenoid pigments, especially beta-carotene in higher plants, is to protect organisms against photooxidative damage, and this work has elucidated for the first time the pathway for biosynthesis of theseCarotenoids at the level of enzyme-catalyzed reactions, using bacterial carOTenoid biosynthesis genes.
Abstract: The most important function of carotenoid pigments, especially beta-carotene in higher plants, is to protect organisms against photooxidative damage (G. Britton, in T. W. Goodwin, ed., Plant Pigments--1988, 1988; N. I. Krinsky, in O. Isler, H. Gutmann, and U. Solms, ed., Carotenoids--1971, 1971). beta-Carotene also functions as a precursor of vitamin A in mammals (G. A. J. Pitt, in I. Osler, H. Gutmann, and U. Solms, ed., Carotenoids--1971, 1971). The enzymes and genes which mediate the biosynthesis of cyclic carotenoids such as beta-carotene are virtually unknown. We have elucidated for the first time the pathway for biosynthesis of these carotenoids at the level of enzyme-catalyzed reactions, using bacterial carotenoid biosynthesis genes. These genes were cloned from a phytopathogenic bacterium, Erwinia uredovora 20D3 (ATCC 19321), in Escherichia coli and located on a 6,918-bp fragment whose nucleotide sequence was determined. Six open reading frames were found and designated the crtE, crtX, crtY, crtI, crtB, and crtZ genes in reference to the carotenoid biosynthesis genes of a photosynthetic bacterium, Rhodobacter capsulatus; only crtZ had the opposite orientation from the others. The carotenoid biosynthetic pathway in Erwinia uredovora was clarified by analyzing carotenoids accumulated in E. coli transformants in which some of these six genes were expressed, as follows: geranylgeranyl PPiCrtB----prephytoene PPiCrtE----phytoeneCrtI---- lycopeneCrtY----beta-caroteneCrtZ----zeaxanthinCrtX--- -zeaxanthin-beta- diglucoside. The carotenoids in this pathway appear to be close to those in higher plants rather than to those in bacteria. Also significant is that only one gene product (CrtI) for the conversion of phytoene to lycopene is required, a conversion in which four sequential desaturations should occur via the intermediates phytofluene, zeta-carotene, and neurosporene.

599 citations


Journal ArticleDOI
TL;DR: An avirulent phoP mutant was 1,000-fold more sensitive to acid than its virulence parent, suggesting a correlation between acid tolerance and virulence, and the Mg2(+)-dependent proton-translocating ATPase was found to play an important role in acid tolerance.
Abstract: Salmonella typhimurium can encounter a wide variety of environments during its life cycle. One component of the environment which will fluctuate widely is pH. In nature, S. typhimurium can experience and survive dramatic acid stresses that occur in diverse ecological niches ranging from pond water to phagolysosomes. However, in vitro the organism is very sensitive to acid. To provide an explanation for how this organism survives acid in natural environments, the adaptive ability of S. typhimurium to become acid tolerant was tested. Logarithmically grown cells (pH 7.6) shifted to mild acid (pH 5.8) for one doubling as an adaptive procedure were 100 to 1,000 times more resistant to subsequent strong acid challenge (pH 3.3) than were unadapted cells shifted directly from pH 7.6 to 3.3. This acidification tolerance response required protein synthesis and appears to be a specific defense mechanism for acid. No cross protection was noted for hydrogen peroxide, SOS, or heat shock. Two-dimensional polyacrylamide gel electrophoretic analysis of acid-regulated polypeptides revealed 18 proteins with altered expression, 6 of which were repressed while 12 were induced by mild acid shifts. An avirulent phoP mutant was 1,000-fold more sensitive to acid than its virulent phoP+ parent, suggesting a correlation between acid tolerance and virulence. The Mg2(+)-dependent proton-translocating ATPase was also found to play an important role in acid tolerance. Mutants (unc) lacking this activity were unable to mount an acid tolerance response and were extremely acid sensitive. In contrast to these acid-sensitive mutants, a constitutively acid-tolerant mutant (atr) was isolated from wild-type LT2 after prolonged acid exposure. This mutant overexpressed several acidification tolerance response polypeptides. The data presented reveal an important acidification defense modulon with broad significance toward survival in biologically hostile environments.

573 citations


Journal ArticleDOI
TL;DR: A new nomenclature is proposed to distinguish the histological areas in alfalfa nodules which account for and are correlated with the multiple stages of bacteroid development.
Abstract: Bacteroid differentiation was examined in developing and mature alfalfa nodules elicited by wild-type or Fix- mutant strains of Rhizobium meliloti. Ultrastructural studies of wild-type nodules distinguished five steps in bacteroid differentiation (types 1 to 5), each being restricted to a well-defined histological region of the nodule. Correlative studies between nodule development, bacteroid differentiation, and acetylene reduction showed that nitrogenase activity was always associated with the differentiation of the distal zone III of the nodule. In this region, the invaded cells were filled with heterogeneous type 4 bacteroids, the cytoplasm of which displayed an alternation of areas enriched with ribosomes or with DNA fibrils. Cytological studies of complementary halves of transversally sectioned mature nodules confirmed that type 4 bacteroids were always observed in the half of the nodule expressing nitrogenase activity, while the presence of type 5 bacteroids could never be correlated with acetylene reduction. Bacteria with a transposon Tn5 insertion in pSym fix genes elicited the development of Fix- nodules in which bacteroids could not develop into the last two ultrastructural types. The use of mutant strains deleted of DNA fragments bearing functional reiterated pSym fix genes and complemented with recombinant plasmids, each carrying one of these fragments, strengthened the correlation between the occurrence of type 4 bacteroids and acetylene reduction. A new nomenclature is proposed to distinguish the histological areas in alfalfa nodules which account for and are correlated with the multiple stages of bacteroid development.

553 citations


Journal ArticleDOI
TL;DR: The hypothesis that msDNA-synthesizing systems, including reverse transcriptase genes, were acquired recently and independently in different lineages of E. coli is supported.
Abstract: Multicopy single-stranded DNA (msDNA), a branched DNA-RNA molecule, has been shown in Escherichia coli B and clinical strain Cl-1 to be synthesized by reverse transcriptase. We report that 13% of the strains of the ECOR collection, a sample of 72 E. coli isolates representing the breadth of genetic variation of the species, produce msDNA. Three of the four major subspecific groups include msDNA-producing strains. Screening of 25 isolates that are genetically related to msDNA-producing clinical strains uncovered 22 additional msDNA-producing strains. A phylogenetic tree based on allelic variation detected electrophoretically at 20 enzyme-encoding loci revealed two major clusters and several deep branches composed of strains that synthesize msDNA. Although E. coli K-12 does not harbor msDNA, other closely related strains of the K-12 family do. The results support the hypothesis that msDNA-synthesizing systems, including reverse transcriptase genes, were acquired recently and independently in different lineages of E. coli. Images

548 citations


Journal ArticleDOI
TL;DR: Use of the sacB gene provides a simple, effective, positive selection for double recombinants in Anabaena sp.
Abstract: Use of the sacB gene (J. L. Ried and A. Collmer, Gene 57:239-246, 1987) provides a simple, effective, positive selection for double recombinants in Anabaena sp. strain PCC 7120, a filamentous cyanobacterium. This gene, which encodes the secretory levansucrase of Bacillus subtilis, was inserted into the vector portion of a suicide plasmid bearing a mutant version of a chromosomal gene. Cells of colonies in which such a plasmid had integrated into the Anabaena chromosome through single recombination were plated on solid medium containing 5% sucrose. Under this condition, the presence of the sacB gene is lethal. A small fraction of the cells from initially sucrose-sensitive colonies became sucrose resistant; the majority of these sucrose-resistant derivatives had undergone a second recombinational event in which the sacB-containing vector had been lost and the wild-type form of the chromosomal gene had been replaced by the mutant form. By the use of this technique, we mutated two selected genes in the chromosome of Anabaena sp. strain PCC 7120. The conditionally lethal nature of the sacB gene was also used to detect insertion sequences from this Anabaena strain. Sucrose-resistant colonies derived from cells bearing a sacB-containing autonomously replicating plasmid were analyzed. Five different, presumed insertion sequences were found to have inserted into the sacB gene of the plasmids in these colonies. One of them, denoted IS892, was characterized by physical mapping. It is 1.7 kilobases in size and is present in at least five copies in the genome of Anabaena sp. strain PCC 7120.

479 citations


Journal ArticleDOI
TL;DR: Results suggest that the NorA polypeptide may constitute a membrane-associated active efflux pump of hydrophilic quinolones in S. aureus and Escherichia coli.
Abstract: The norA gene cloned from chromosomal DNA of quinolone-resistant Staphylococcus aureus TK2566 conferred relatively high resistance to hydrophilic quinolones such as norfloxacin, enoxacin, ofloxacin, and ciprofloxacin, but only low or no resistance at all to hydrophobic ones such as nalidixic acid, oxolinic acid, and sparfloxacin in S. aureus and Escherichia coli. The 2.7-kb DNA fragment containing the norA gene had a long open reading frame coding for 388 amino acid residues with a molecular weight of 42,265, which was consistent with the experimental value of about 49,000 obtained on DNA-directed translation. The deduced NorA polypeptide has 12 hydrophobic membrane-spanning regions and is partly homologous to tetracycline resistance protein and sugar transport proteins. The uptake of a hydrophilic quinolone, enoxacin, by S. aureus harboring a plasmid carrying the norA gene was about 50% that by the parent strain lacking the plasmid, but it increased to almost the same level as that by the latter strain with carbonyl cyanide m-chlorophenyl hydrazone. On the other hand, the uptake of a hydrophobic quinolone, sparfloxacin, was similar in the two strains. These results suggest that the NorA polypeptide may constitute a membrane-associated active efflux pump of hydrophilic quinolones.

Journal ArticleDOI
TL;DR: It is shown that small numbers of PhoPC bacteria can be used as a live attenuated vaccine to protect against mouse typhoid and protected mice against challenge with 10(5) 50% lethal doses of wild-type organisms, suggesting that important protective antigens are regulated by the PhoP-PhoQ virulence regulon.
Abstract: The phoP genetic locus is a two-component regulatory system (phoP-phoQ) that controls the expression of genes essential for Salmonella typhimurium virulence and survival within macrophages. Strains with a phoP constitutive mutation (phenotype PhoPC) showed up to 10-fold greater expression of phoP-activated genes (pag loci) than did strains with a wild-type phoP locus (phenotype PhoP+). While the phoP constitutive mutation resulted in increased expression of pag loci, it also dramatically reduced the expression of other protein species. Comparison of the protein content of PhoP+ and PhoPC strains by two-dimensional protein gel electrophoresis demonstrated that at least 40 separate protein species were changed in expression as a result of this mutation. The PhoPC S. typhimurium were found to be attenuated for virulence and survival within macrophages. This finding suggests that a balanced PhoP-PhoQ regulatory response, which allows expression of phoP-repressed as well as -activated genes, is required for full virulence of S. typhimurium. We have further shown that small numbers of PhoPC bacteria can be used as a live attenuated vaccine to protect against mouse typhoid. As few as 15 PhoPC bacteria protected mice against challenge with 10(5) 50% lethal doses of wild-type organisms, suggesting that important protective antigens are regulated by the PhoP-PhoQ virulence regulon.

Journal ArticleDOI
TL;DR: This study examined the transcriptional interaction among the flagellar operons by combined use of Mu d1(Apr Lac) cts62 and Tn10 insertion mutants in the flagllar genes and found that the fliD defect enhanced expression of the class III operons.
Abstract: In Salmonella typhimurium, nearly 50 genes are involved in flagellar formation and function and constitute at least 13 different operons. In this study, we examined the transcriptional interaction among the flagellar operons by combined use of Mu d1(Apr Lac) cts62 and Tn10 insertion mutants in the flagellar genes. The results showed that the flagellar operons can be divided into three classes: class I contains only the flhD operon, which is controlled by the cAMP-CAP complex and is required for expression of all of the other flagellar operons; class II contains seven operons, flgA, flgB, flhB, fliA, fliE, fliF, and fliL, which are under control of class I and are required for the expression of class III; class III contains five operons, flgK, fliD fliC, motA, and tar. This ordered cascade of transcription closely parallels the assembly of the flagellar structure. In addition, we found that the fliD defect enhanced expression of the class III operons. This suggests that the fliD gene product may be responsible for repression of the class III operons in the mutants in the class II genes. These results are compared with the cascade model of the flagellar regulon of Escherichia coli proposed previously (Y. Komeda, J. Bacteriol. 170:1575-1581, 1982).

Journal ArticleDOI
TL;DR: The polar pili of Pseudomonas aeruginosa are composed of monomers of the pilin structural subunits and a 4.0-kilobase-pair region of DNA adjacent to the pilIn structural gene was found to be essential for formation of pili.
Abstract: The polar pili of Pseudomonas aeruginosa are composed of monomers of the pilin structural subunits. The biogenesis of pili involves the synthesis of pilin precursor, cleavage of a six-amino-acid leader peptide, membrane translocation, and assembly of monomers into a filamentous structure extending from the bacterial surface. This report describes three novel genes necessary for the formation of pili. DNA sequences adjacent to pilA, the pilin structural gene, were cloned and mutagenized with transposon Tn5. Each of the insertions were introduced into the chromosome of P. aeruginosa PAK by gene replacement. The effect of the Tn5 insertions in the bacterial chromosome on pilus assembly was assessed by electron microscopy and sensitivity of mutants to a pilus-specific bacteriophage. The resultant mutants were also tested for synthesis and membrane localization of the pilin antigen in order to define the genes required for maturation, export, and assembly of pilin. A 4.0-kilobase-pair region of DNA adjacent to the pilin structural gene was found to be essential for formation of pili. This region was sequenced and found to contain three open reading frames coding for 62-, 38- to 45-, and 28- to 32-kilodalton proteins (pilB, pilC, and pilD, respectively). Three proteins of similar molecular weight were expressed in Escherichia coli from the 4.0-kilobase-pair fragment flanking pilA with use of a T7 promoter-polymerase expression system. The results of the analyses of the three genes and the implications for pilin assembly and maturation are discussed.

Journal ArticleDOI
TL;DR: It is concluded that some condition(s) specific to the internal environment of the light organ is necessary for maximal autoinduction of luminescence in the symbionts of this squid-bacterial association.
Abstract: Bioluminescent marine bacteria of the species Vibrio fischeri are the specific light organ symbionts of the sepiolid squid Euprymna scolopes. Although they share morphological and physiological characteristics with other strains of V. fischeri, when cultured away from the light organ association the E. scolopes symbionts depress their maximal luminescence over 1,000-fold. The primary cause of this reduced luminescence is the underproduction by these bacteria of luciferase autoinducer, a molecule involved in the positive transcriptional regulation of the V. fischeri lux operon. Such an absence of visible light production outside of the symbiotic association has not been previously reported among light organ symbionts of this or any other species of luminous bacteria. Levels of luminescence approaching those of the E. scolopes bacteria in the intact association can be restored by the addition of exogenous autoinducer to bacteria in laboratory culture and are affected by the presence of cyclic AMP. We conclude that some condition(s) specific to the internal environment of the light organ is necessary for maximal autoinduction of luminescence in the symbionts of this squid-bacterial association.

Journal ArticleDOI
TL;DR: A new regulon, controlled by soxR, mediating at least part of the global response to superoxide in E. coli is defined, which is likely to be at the level of transcription.
Abstract: The nfo (endonuclease IV) gene of Escherichia coli is induced by superoxide generators such as paraquat (methyl viologen). An nfo'-lacZ operon fusion was used to isolate extragenic mutations affecting its expression. The mutations also affected the expression of glucose 6-phosphate dehydrogenase, Mn2(+)-superoxide dismutase (sodA), and three lacZ fusions to soi (superoxide-inducible) genes of unknown function. The mutations were located 2 kilobases clockwise of ssb at 92 min on the current linkage map. One set of mutations, in a new gene designated soxR, caused constitutive overexpression of nfo and the other genes. It included insertions or deletions affecting the carboxyl end of a 17-kilodalton polypeptide. In a soxR mutant, the expression of sodA, unlike that of nfo, was also regulated independently by oxygen tension. Two other mutants were isolated in which the target genes were noninducible; they had an increased sensitivity to killing by superoxide-generating compounds. One had a Tn10 insertion in or near soxR; the other had a multigene deletion encompassing soxR. Therefore, the region functions as a positive regulator because it encodes one or more products needed for the induction of nfo. Regulation is likely to be at the level of transcription because the mutations were able to affect the expression of an nfo'-lac operon fusion that contained the ribosome-binding site for lacZ. Some mutant plasmids that failed to suppress (or complement) constitutivity in trans had insertion mutations several hundred nucleotides upstream of soxR in the general region of a gene for a 13-kilodalton protein encoded by the opposite strand, raising the possibility of a second regulatory gene in this region. The result define a new regulon, controlled by soxR, mediating at least part of the global response to superoxide in E. coli.

Journal ArticleDOI
TL;DR: The HtrA protein was shown to be a specific endopeptidase which was inhibited by diisopropylfluorophosphate, suggesting that Htr a is a serine protease.
Abstract: As a preliminary step in the understanding of the function of the Escherichia coli HtrA (DegP) protein, which is indispensable for bacterial survival only at elevated temperatures, the protein was purified and partially characterized. The HtrA protein was purified from cells carrying the htrA gene cloned into a multicopy plasmid, resulting in its overproduction. The sequence of the 13 N-terminal amino acids of the purified HtrA protein was determined and was identical to the one predicted for the mature HtrA protein by the DNA sequence of the cloned gene. Moreover, the N-terminal sequence showed that the 48-kilodalton HtrA protein is derived by cleavage of the first 26 amino acids of the pre-HtrA precursor polypeptide and that the point of cleavage follows a typical target sequence recognized by the leader peptidase enzyme. The HtrA protein was shown to be a specific endopeptidase which was inhibited by diisopropylfluorophosphate, suggesting that HtrA is a serine protease.

Journal ArticleDOI
TL;DR: Growing cells of Campylobacter coli and C. jejuni were naturally transformed by naked DNA without the requirement for any special treatment, and transformation into plasmid-free cells was very rare.
Abstract: Growing cells of Campylobacter coli and C. jejuni were naturally transformed by naked DNA without the requirement for any special treatment. Transformation frequencies for homologous chromosomal DNA were approximately 10(-3) transformants per recipient cell in C. coli and 10(-4) in C. jejuni. Maximum competence was found in the early log phase of growth. Campylobacters preferentially took up their own DNA in comparison with Escherichia coli chromosomal DNA, which was taken up very poorly. Three new Campylobacter spp.-to-E. coli shuttle plasmids, which contained additional cloning sites and selectable markers, were constructed from the shuttle vector pILL550A. These plasmid DNAs were taken up by campylobacters much less efficiently than was homologous chromosomal DNA, and transformation into plasmid-free cells was very rare. However, with the use of recipients containing a homologous plasmid, approximately 10(-4) transformants per cell were obtained. The tetM determinant, originally obtained from Streptococcus spp. and not heretofore reported in Campylobacter spp., was isolated from an E. coli plasmid and was introduced, selecting for tetracycline resistance, by natural transformation into C. coli.

Journal ArticleDOI
TL;DR: A series of broad-host-range plasmids which use "visual screens" to detect promoter activity and are capable of replicating in a wide range of gram-negative bacteria.
Abstract: We have constructed a series of broad-host-range plasmids which use "visual screens" to detect promoter activity. These plasmids contain the pMB1 and pRO1600 origins of replication and are capable of replicating in a wide range of gram-negative bacteria. The genes encoding beta-galactosidase and alkaline phosphatase from Escherichia coli and bacterial luciferase from Vibrio harveyi supply the promoterless indicator genes. The constructs were tested in E. coli and Pseudomonas aeruginosa.

Journal ArticleDOI
TL;DR: The permeability barrier was shown to reduce drastically the stream of drug molecules entering the cell, allowing the rather low level of beta-lactamase (0.1 U/mg of protein with penicillin G) to decrease radically the concentration of the drug at the target; this explains the poor in vitro activities of the beta- lactams against M. chelonei.
Abstract: In order to define the permeability barrier to hydrophilic molecules in mycobacteria, we used as a model a smooth, beta-lactamase-producing strain of Mycobacterium chelonei. The rates of hydrolysis of eight cephalosporins by intact and sonicated cells were measured, and the permeability coefficient (P) was calculated from these rates by the method of Zimmermann and Rosselet (W. Zimmermann and A. Rosselet, Antimicrob. Agents Chemother. 12:368-372, 1977). P ranged from (0.9 +/- 0.3) x 10(-8) (benzothienylcephalosporin) to (10 +/- 3.3) x 10(-8) cm/s (cephaloridine); i.e., the P values were lower than those reported for Pseudomonas aeruginosa and Escherichia coli by 1 and 3 orders of magnitude, respectively. The permeability barrier was shown to reduce drastically the stream of drug molecules entering the cell, allowing the rather low level of beta-lactamase (0.1 U/mg of protein with penicillin G) to decrease radically the concentration of the drug at the target; this explains the poor in vitro activities of the beta-lactams against M. chelonei. We also estimated P for small, hydrophilic molecules (glucose, glycerol, glycine, leucine), by studying their uptake kinetics. The values found, ranging from 15 x 10(-8) to 490 x 10(-8) cm/s, were consistent again with a very low permeability of M. chelonei cell wall. The permeation of cephalosporins was not very dependent on the hydrophobicity of the molecules or on the temperature, suggesting a hydrophilic pathway of penetration for these molecules.

Journal ArticleDOI
TL;DR: The amino acid sequences of proteins encoded by tfdD and tfdE were found to be 63 and 53% identical to those of functionally similar enzymes encoded by clcB and clcD, respectively, from plasmid pAC27 of Pseudomonas putida, suggesting that the absence of a functional trans-chlorodienelactone isomerase may prevent P. putida(pAC27) from utilizing 3,5-dichlorocatechol.
Abstract: Growth of Alcaligenes eutrophus JMP134 on 2,4-dichlorophenoxyacetate requires a 2,4-dichlorphenol hydroxylase encoded by gene tfdB. Catabolism of either 2,4-dichlorophenoxyacetate or 3-chlorobenzoate involves enzymes encoded by the chlorocatechol oxidative operon consisting of tfdCDEF, which converts 3-chloro- and 3,5-dichlorocatechol to maleylacetate and chloromaleylacetate, respectively. Transposon mutagenesis has localized tfdB and tfdCDEF to EcoRI fragment B of plasmid pJP4 (R. H. Don, A. J. Wieghtman, H.-J. Knackmuss, and K. N. Timmis, J. Bacteriol. 161:85-90, 1985). We present the complete nucleotide sequence of tfdB and tfdCDEF contained within a 7,954-base-pair HindIII-SstI fragment from EcoRI fragment B. Sequence and expression analysis of tfdB in Escherichia coli suggested that 2,4-dichlorophenol hydroxylase consists of a single subunit of 65 kilodaltons. The amino acid sequences of proteins encoded by tfdD and tfdE were found to be 63 and 53% identical to those of functionally similar enzymes encoded by clcB and clcD, respectively, from plasmid pAC27 of Pseudomonas putida. P. putida(pAC27) can utilize 3-chlorocatechol but not dichlorinated catechols. A region of DNA adjacent to clcD in pAC27 was found to be 47% identical in amino acid sequence to tfdF, a gene important in catabolizing dichlorocatechols. The region in pAC27 does not appear to encode a protein, suggesting that the absence of a functional trans-chlorodienelactone isomerase may prevent P. putida(pAC27) from utilizing 3,5-dichlorocatechol.

Journal ArticleDOI
TL;DR: An oxidant pulse technique, with lactate as the electron donor, was used to study respiration-linked proton translocation in the manganese- and iron-reducing bacterium Shewanella putrefaciens MR-1.
Abstract: An oxidant pulse technique, with lactate as the electron donor, was used to study respiration-linked proton translocation in the manganese- and iron-reducing bacterium Shewanella putrefaciens MR-1. Cells grown anaerobically with fumarate or nitrate as the electron acceptor translocated protons in response to manganese (IV), fumarate, or oxygen. Cells grown anaerobically with fumarate also translocated protons in response to iron(III) and thiosulfate, whereas those grown with nitrate did not. Aerobically grown cells translocated protons only in response to oxygen. Proton translocation with all electron acceptors was abolished in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone (20 microM) and was partially to completely inhibited by the electron transport inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (50 microM).

Journal ArticleDOI
TL;DR: The expression of degQ was shown to be subject both to catabolite repression and DegS-DegU-mediated control, allowing an increase in the rate of synthesis of degZ under conditions of nitrogen starvation, consistent with the hypothesis that this control system responds to an environmental signal such as limitations of nitrogen, carbon, or phosphate sources.
Abstract: The rates of synthesis of a class of both secreted and intracellular degradative enzymes in Bacillus subtilis are controlled by a signal transduction pathway defined by at least four regulatory genes: degS, degU, degQ (formerly sacQ), and degR (formerly prtR). The DegS-DegU proteins show amino acid similarities with two-component procaryotic modulator-effector pairs such as NtrB-NtrC, CheA-CheY, and EnvZ-OmpR. By analogy with these systems, it is possible that DegS is a protein kinase which could catalyze the transfer of a phosphoryl moiety to DegU, which acts as a positive regulator. DegR and DegQ correspond to polypeptides of 60 and 46 amino acids, respectively, which also activate the synthesis of degradative enzymes. We show that the degS and degU genes are organized in an operon. The putative sigma A promoter of the operon was mapped upstream from degS. Mutations in degS and degU were characterized at the molecular level, and their effects on transformability and cell motility were studied. The expression of degQ was shown to be subject both to catabolite repression and DegS-DegU-mediated control, allowing an increase in the rate of synthesis of degQ under conditions of nitrogen starvation. These results are consistent with the hypothesis that this control system responds to an environmental signal such as limitations of nitrogen, carbon, or phosphate sources.

Journal ArticleDOI
TL;DR: Findings indicate that the sigma factor encoded by the rpoN gene is used by P. aeruginosa for transcription of a diverse set of genes that specify biosynthetic enzymes, degradative enzymes, and surface components, which include pili and flagella which are required for full virulence of the organism.
Abstract: The product of the rpoN gene is an alternative sigma factor of RNA polymerase which is required for transcription of a number of genes in members of the family Enterobacteriaceae, including those that specify enzymes of nitrogen assimilation, amino acid uptake, and degradation of a variety of organic molecules. We have previously shown that transcription of the pilin gene of Pseudomonas aeruginosa also requires RpoN (K. S. Ishimoto and S. Lory, Proc. Natl. Acad. Sci. USA 86:1954-1957, 1989) and have undertaken a more extensive survey of genes under RpoN control. Strains of P. aeruginosa that carry an insertionally inactivated rpoN gene were constructed and shown to be nonmotile because of the inability of these mutants to synthesize flagellin. The mutation in rpoN had no effect on expression of extracellular polypeptides, outer membrane proteins, and the alginate capsule. However, the rpoN mutants were glutamine auxotrophs and were defective in glutamine synthetase, indicating defects in nitrogen assimilation. In addition, the P. aeruginosa rpoN mutants were defective in urease activity. These findings indicate that the sigma factor encoded by the rpoN gene is used by P. aeruginosa for transcription of a diverse set of genes that specify biosynthetic enzymes, degradative enzymes, and surface components. These rpoN-controlled genes include pili and flagella which are required for full virulence of the organism. Images

Journal ArticleDOI
TL;DR: Stationary-phase Escherichia coli cultures showed enhanced osmotic resistance as compared with cultures in mid-logarithmic growth or preadapted to osmotics, and the osmotolerance that developed during starvation or osmosis adaptation required de novo protein synthesis.
Abstract: Stationary-phase Escherichia coli cultures showed enhanced osmotic resistance as compared with cultures in mid-logarithmic growth or preadapted to osmotic stress. The osmotolerance that developed during starvation or osmotic adaptation required de novo protein synthesis. Of the 22 polypeptides induced during osmotic shock, five were also starvation proteins.

Journal ArticleDOI
TL;DR: The phylogeny inferred reflects the traditional classification, with major branches of the phylogenetic tree in general correspondence to the four Runyon groups and with numerical classification analyses.
Abstract: Comparative 16S rRNA sequencing was used to infer the phylogenetic relationships among selected species of mycobacteria and related organisms. The phylogeny inferred reflects the traditional classification, with major branches of the phylogenetic tree in general correspondence to the four Runyon groups and with numerical classification analyses. All the mycobacterial species compared, with the exception of M. chitae, are closely related (average similarity values greater than 95%). The slow growers form a coherent line of descent, distinct from the rapid growers, within which the overt pathogens are clustered. The distant relationship between M. chitae and the remaining mycobacteria suggests that this organism is incorrectly classified with the mycobacteria. M. paratuberculosis 18 was indistinguishable from M. avium-M. intracellulare-M. scrofulaceum serovar 1 by this analysis.

Journal ArticleDOI
TL;DR: The amino acid sequences of these two proteins, deduced from the nucleotide sequence reported here, demonstrate their homology to environmentally responsive two-component regulators that have been reported in both gram-positive and gram-negative bacteria.
Abstract: Colanic acid capsule synthesis in Escherichia coli K-12 is regulated by RcsB and RcsC. The amino acid sequences of these two proteins, deduced from the nucleotide sequence reported here, demonstrate their homology to environmentally responsive two-component regulators that have been reported in both gram-positive and gram-negative bacteria. In our model, RcsC acts as the sensor and RcsB acts as the receiver or effector to stimulate capsule synthesis from cps genes. In addition, RcsC shows limited homology to the other effectors in its C terminus. Fusions of rcsC to phoA that resulted in PhoA+ strains demonstrated that RcsC is a transmembrane protein with a periplasmic N-terminal domain and cytoplasmic C-terminal domain. Additional control of this regulatory network is provided by the dependence on the alternate sigma factor, RpoN, for the synthesis of RcsB. The rcsB and rcsC genes, which are oriented convergently with their stop codons 196 base pairs apart, are separated by a long direct repeat including two repetitive extragenic palindromic sequences.

Journal ArticleDOI
TL;DR: Examination of beta-galactosidase activity coded from a chromosomal phi(sodA'-'lacZ) fusion suggests that metallated Fur protein acts as a transcriptional repressor of sodA (manganese superoxide dismutase [MnSOD]; high-affinity binding of pure, Mn2(+)-Fur protein to DNA fragments containing the sodA promoter strongly suggest that sodA is part of the iron uptake regulon.
Abstract: The ferric uptake regulation (fur) gene product participates in regulating expression of the manganese- and iron-containing superoxide dismutase genes of Escherichia coli. Examination of beta-galactosidase activity coded from a chromosomal phi(sodA'-'lacZ) fusion suggests that metallated Fur protein acts as a transcriptional repressor of sodA (manganese superoxide dismutase [MnSOD]). Gel retardation assays demonstrate high-affinity binding of pure, Mn2(+)-Fur protein to DNA fragments containing the sodA promoter. These data and the presence of an iron box sequence in its promoter strongly suggest that sodA is part of the iron uptake regulon. An sodB'-'lacZ fusion gene borne on either a low- or high-copy plasmid yielded approximately two- to threefold more beta-galactosidase activity in Fur+ compared with Fur- cells; the levels of activity depended only weakly on the growth phase and did not change during an extended stationary phase. Measurement of FeSOD activity in logarithmic growth phase and in overnight cultures of sodA and fur sodA backgrounds revealed that almost no FeSOD activity was expressed in Fur- strains, whereas wild-type levels were expressed in Fur+ cells. Fur+ and Fur- cells bearing the multicopy plasmid pHS1-4 (sodB+) expressed approximately sevenfold less FeSOD activity in the fur background, and staining of nondenaturing electrophoretic gels indicates that synthesis of FeSOD protein was greatly reduced in Fur- cells. Gel retardation assays show that Mn2(+)-Fur had a significantly higher affinity for the promoter fragment of sodB compared with that of random DNA sequences but significantly lower than for the promoter fragment of sodA. These observations suggest that the apparent positive regulation of sodB does not result exclusively from a direct interaction of holo (metallated) Fur itself with the sodB promoter. Nevertheless, the sodB gene also appears to be part of the iron uptake regulon but not in the classical manner of Fe-dependent repression.

Journal ArticleDOI
TL;DR: A correlation between 16S rRNA sequence similarity and percentage of DNA relatedness showed that these five deep lineages are related at levels below the minimum genus level suggested by Johnson (in Bergey's Manual of Systematic Bacteriology).
Abstract: The different nutritional properties of several Desulfovibrio desulfuricans strains suggest that either the strains are misclassified or there is a high degree of phenotypic diversity within the genus Desulfovibrio. The results of partial 16S rRNA and 23S rRNA sequence determinations demonstrated that Desulfovibrio desulfuricans ATCC 27774 and "Desulfovibrio multispirans" are closely related to the type strain (strain Essex 6) and that strains ATCC 7757, Norway 4, and El Agheila Z are not. Therefore, these latter three strains of Desulfovibrio desulfuricans are apparently misclassified. A comparative analysis of nearly complete 16S rRNA sequences in which we used a least-squares analysis method for evolutionary distances, an unweighted pair group method, a signature analysis method, and maximum parsimony was undertaken to further investigate the phylogeny of Desulfovibrio species. The species analyzed were resolved into two branches with origins deep within the delta subdivision of the purple photosynthetic bacteria. One branch contained five deep lineages, which were represented by (i) Desulfovibrio salexigens and Desulfovibrio desulfuricans El Agheila Z; (ii) Desulfovibrio africanus; (iii) Desulfovibrio desulfuricans ATCC 27774, Desulfomonas pigra, and Desulfovibrio vulgaris; (iv) Desulfovibrio gigas; and (v) Desulfomicrobium baculatus (Desulfovibrio baculatus) and Desulfovibrio desulfuricans Norway 4. A correlation between 16S rRNA sequence similarity and percentage of DNA relatedness showed that these five deep lineages are related at levels below the minimum genus level suggested by Johnson (in Bergey's Manual of Systematic Bacteriology, vol. 1, 1984). We propose that this branch should be grouped into a single family, the Desulfovibrionaceae. The other branch includes other genera of sulfate-reducing bacteria (e.g., Desulfobacter and Desulfococcus) and contains Desulfovibrio sapovorans and Desulfovibrio baarsii as separate, distantly related lineages.

Journal ArticleDOI
TL;DR: Fnr functions as an anaerobic repressor of both cyoABCDE and cydAB expression, and is proposed to be a second, as yet unidentified, regulatory element that must function either to activate cydab expression as oxygen becomes limiting or to repress cyd AB expression aerobically.
Abstract: The aerobic respiratory chain of Escherichia coli contains two terminal oxidases that catalyze the oxidation of ubiquinol-8 and the reduction of oxygen to water. They are the cytochrome o oxidase complex encoded by cyoABCDE and the cytochrome d oxidase complex encoded by cydAB. To determine how these genes are regulated in response to a variety of environmental stimuli, including oxygen, we examined their expression by using lacZ protein fusions in wild-type and fnr mutant strains of E. coli. Anaerobic growth resulted in a 140-fold repression of cyoA'-'lacZ expression relative to aerobic growth and a 3-fold increase in cydA'-'lacZ expression. Anaerobic repression of both fusions was mediated in part by the fnr gene product, as evidenced by a 30-fold derepression of cyoA'-'lacZ expression and a 4-fold derepression of cydA'-'lacZ expression in an fnr deletion strain. Supplying wild-type fnr in trans restored wild-type repression for both fusions. Fnr thus functions as an anaerobic repressor of both cyoABCDE and cydAB expression. Reduced-minus-oxidized difference spectrum analyses of cell membranes confirmed the effect of the fnr gene product on the production of cytochrome d oxidase in the cell. Based on the pattern of anaerobic cydAB expression observed, we propose the existence of a second, as yet unidentified, regulatory element that must function either to activate cydAB expression as oxygen becomes limiting or to repress cydAB expression aerobically. Whereas cytochrome o oxidase encoded by cyoABCDE appears to be produced only under oxygen-rich growth conditions, in keeping with its biochemical properties, cytochrome d oxidase is expressed moderately aerobically and is elevated yet further when oxygen becomes limiting so that the organism can cope better under oxygen starvation conditions. We also examined cyoABCDE and cydAB expression in response to growth on alternative carbon compounds and to changes in the culture medium pH and osmolarity.