scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Central South University in 2017"


Journal ArticleDOI
TL;DR: In this article, the authors proposed a rock burst prediction model based on genetic algorithms and extreme learning machine to evaluate the intensity of rock burst, the maximum shear stress, uniaxial compressive strength, uníaxial tensile strength and rock elastic energy index, and burst pit depth as output factor.
Abstract: Rock burst is a kind of geological disaster in rock excavation of high stress areas. To evaluate intensity of rock burst, the maximum shear stress, uniaxial compressive strength, uniaxial tensile strength and rock elastic energy index were selected as input factors, and burst pit depth as output factor. The rock burst prediction model was proposed according to the genetic algorithms and extreme learning machine. The effect of structural surface was taken into consideration. Based on the engineering examples of tunnels, the observed and collected data were divided into the training set, validation set and prediction set. The training set and validation set were used to train and optimize the model. Parameter optimization results are presented. The hidden layer node was 450, and the fitness of the predictions was 0.0197 under the optimal combination of the input weight and offset vector. Then, the optimized model is tested with the prediction set. Results show that the proposed model is effective. The maximum relative error is 4.71%, and the average relative error is 3.20%, which proves that the model has practical value in the relative engineering.

49 citations


Journal ArticleDOI
TL;DR: In this article, a hybrid numerical algorithm which combines differential transformation (DTM) and finite difference (FDM) methods is utilized to theoretically study the present problem, and the accuracy of this method solution is checked against the numerical solution.
Abstract: This work focuses on transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties. A hybrid numerical algorithm which combines differential transformation (DTM) and finite difference (FDM) methods is utilized to theoretically study the present problem. DTM and FDM are applied to the time and space domains of the problem, respectively. The accuracy of this method solution is checked against the numerical solution. Then, the effects of some applicable parameters were studied comparatively. Since a broad range of governing parameters are investigated, the results could be useful in a number of industrial and engineering applications.

49 citations


Journal ArticleDOI
TL;DR: In this article, the effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied.
Abstract: Heat transfer and entropy generation of developing laminar forced convection flow of water-Al2O3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.

45 citations


Journal ArticleDOI
TL;DR: In this paper, the stability of room coal pillars during their secondary mining for recovering coal was analyzed, and the shape of the stress distribution in the pillar transformed from the initial stable saddle shape to the final arch-shaped distribution of critical instability.
Abstract: The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mining method. During the damage progression of a single room coal pillar, the shape of the stress distribution in the pillar transformed from the initial stable saddle shape to the final arch-shaped distribution of critical instability. By combining the shapes of stress distribution in the coal pillars with the ultimate strength theory, the safe-stress value of coal pillar was obtained as 11.8 MPa. The mechanism of instability of coal pillar groups recovered by the caving mining method was explained by the domino effect. Since the room coal pillars mined and recovered by the traditional caving mining method were significantly influenced by the secondary mining during recovery, the coal pillars would go through a chain-type instability failure. Because of this limitation, the method of solid backfilling was proposed for mining and recovering room coal pillars, thus changing the transfer mechanism of stress caused by the secondary mining (recovery) of coal pillars. The mechanical model of the stope in the case of backfilling and recovering room coal pillars was built. The peak stress values inside coal pillars varied with the variance of backfilling ratio when the working face was advanced by 150 m. Furthermore, when the critical backfilling ratio was 80.6%, the instability failure of coal pillars would not occur during the solid backfill mining process. By taking Bandingliang Coal Mine as an example, the coal pillars’ stability of stope under this backfilling ratio was studied, and a project scheme was designed.

44 citations


Journal ArticleDOI
Man Jiang1, Haiying Li1, Xinyue Xu1, Shi-peng Xu1, Jian-rui Miao1 
TL;DR: Wang et al. as discussed by the authors studied the problem of metro passenger flow control under given total inbound demand, which considers passenger demand control and train capacity supply, and the decision variables are boarding limiting and stop-skipping strategies.
Abstract: Metro passenger flow control problem is studied under given total inbound demand in this work, which considers passenger demand control and train capacity supply. Relevant connotations are analyzed and a mathematical model is developed. The decision variables are boarding limiting and stop-skipping strategies and the objective is the maximal passenger profit. And a passenger original station choice model based on utility theory is built to modify the inbound passenger distribution among stations. Algorithm of metro passenger flow control scheme is designed, where two key technologies of stopping-station choice and headway adjustment are given and boarding limiting and train stopping-station scheme are optimized. Finally, a real case of Beijing metro is taken for example to verify validity. The results show that in the three scenarios with different ratios of normal trains to stop-skipping trains, the total limited passenger volume is the smallest and the systematic profit is the largest in scenario 3.

41 citations


Journal ArticleDOI
TL;DR: In this article, a consensus algorithm was used to solve coordinate control problems of multiple UAV formation in the case of leader-following, where the communication between the UUVs is difficult and it is easy to be interfered under the water, time delay is assumed to be time-varying during the members communicate with each other.
Abstract: The new method which uses the consensus algorithm to solve the coordinate control problems of multiple unmanned underwater vehicles (multi-UUVs) formation in the case of leader-following is adapted. As the communication between the UUVs is difficult and it is easy to be interfered under the water, time delay is assumed to be time-varying during the members communicate with each other. Meanwhile, the state feedback linearization method is used to transfer the nonlinear and coupling model of UUV into double-integrator dynamic. With this simplified double-integrator math model, the UUV formation coordinate control is regarded as consensus problem with time-varying communication delays. In addition, the position and velocity topologies are adapted to reduce the data volume in each data packet which is sent between members in formation. With two independent topologies designed, two cases of communication delay which are same and different are considered and the sufficient conditions are proposed and analyzed. The stability of the multi-UUVs formation is proven by using Lyapunov-Razumikhin theorem. Finally, the simulation results are presented to confirm and illustrate the theoretical results.

38 citations


Journal ArticleDOI
TL;DR: In this article, the authors used a self-developed test system to study the influence of rock types on permeability, a tight sandstone was selected as a contrast and the correlation of permeability and porosity can be described in a power law form.
Abstract: The seepage property of low-permeability rock is of significant importance for the design and safety analysis of underground cavities. By using a self-developed test system, both permeability and porosity of granite from an underground oil storage depot were measured. In order to study the influence of rock types on permeability, a tight sandstone was selected as a contrast. The experimental results suggested that the porosity of this granite is less than 5% and permeability is low to 10–20 m2 within the range of effective stress. During the loading process, both exponential relationship and power law can be utilized to describe the relationship between effective stress and permeability. However, power law matches the experimental data better during the unloading condition. The stress dependent porosity of granite during loading process can be described via an exponential relationship while the match between the model and experimental data can be improved by a power law in unloading paths. The correlation of permeability and porosity can be described in a power law form. Besides, granite shows great different evolution rules in permeability and porosity from sandstone. It is inferred that this difference can be attributed to the preparing of samples and different movements of microstructures subjected to effective stress.

37 citations


Journal ArticleDOI
TL;DR: In this article, the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal-rock combinations was investigated and the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation.
Abstract: Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents (dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.

37 citations


Journal ArticleDOI
TL;DR: In this paper, the authors studied the strength characteristics of loess soil reinforced by modified polypropylene (MPP) fiber and cement, samples were prepared with six different fiber contents, three different cement contents and three kinds of fiber length.
Abstract: The reinforcement and stabilization of loess soil are duscussed by using fibers as the reinforcement and cement as the stabilization materials. To study the strength characteristics of loess soil reinforced by modified polypropylene (MPP) fiber and cement, samples were prepared with six different fiber contents, three different cement contents, three different curing periods and three kinds of fiber length. The samples were tested under submergence and non-submergence conditions for the unconfined compressive strength (UCS), the splitting tensile strength and the compressive resilient modulus. The results indicated that combined reinforcement by PP fiber and cement could significantly improve the early strength of loess to 3.65–5.99 MPa in three days. With an increase in cement content, the specimens exhibited brittle fracture. However, the addition of fibers gradually modified the mode of fracture from brittle to ductile to plastic. The optimal dosage of fiber to reinforce loess was in the range of 0.3%–0.45% and the optimum fiber length was 12 mm, for which the unconfined compressive strength and tensile strength reached their maxima. Based on the analysis of failure properties, cement-reinforced loess specimens were susceptible to brittle damage under pressure, and the effect of modified polypropylene fiber as the connecting “bridge” could help the specimens achieve a satisfactory level of ductility when under pressure.

36 citations


Journal ArticleDOI
TL;DR: In this article, three warm mix additives (Sasobit, Rheofalt and Zycotherm) were used to modify 60-70 penetration grade base binder and the rutting potential of both modified and unmodified binders were evaluated through the multiple stress creep recovery (MSCR)-based parameter, nonrecoverable compliance (J nr) and recovery parameter (R).
Abstract: Permanent deformation or rutting, one of the most important distresses in flexible pavements, has long been a problem in asphalt mixtures and thus a great deal of research has been focused on the development of a rheological parameter that would address the rutting susceptibility of both unmodified and modified bituminous binders. In this research, three warm mix additives (Sasobit, Rheofalt and Zycotherm) were used to modify 60-70 penetration grade base binder. The rutting potential of both modified and unmodified binders were evaluated through the multiple stress creep recovery (MSCR)-based parameter, nonrecoverable compliance (J nr) and recovery parameter (R). Several performance tests carried on stone matrix asphalt (SMA) mixtures comprising different nominal maximum aggregate sizes (NMASs, 9.5, 12.5 and 19 mm), like Marshall stability, dynamic and static creep and Hamburg wheel tracking tests to evaluate their rutting performance. The objective of this work is to correlate MSCR test results to performance. Results indicate that for the range of the gradations investigated in this work, increasing the nominal maximum aggregate size of the gradation would increase the permanent deformation resistance of the SMA mixture. Addition of 3% sasobit to base binder leads an increase in J nr100 about 82%. Addition of 2% rheofalt to base binder leads an recovery increase of about 9.76 % and 27.44% in stress levels of 100 and 3200 Pa, respectively. The results reveal that rutting resistance of mixtures improves as J nr decreases. The use of the MSCR test in the rutting characterization of bituminous binders is highly recommended based on the results of this work.

32 citations


Journal ArticleDOI
TL;DR: A combination of a fuzzy multi-objective approach and bacterial foraging optimization (BFO) as a meta-heuristic algorithm is used to solve the simultaneous reconfiguration and optimal sizing of DGs and shunt capacitors in a distribution system.
Abstract: In distribution systems, network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits. Moreover, the problem of DG allocation and sizing is great important. In this work, a combination of a fuzzy multi-objective approach and bacterial foraging optimization (BFO) as a meta-heuristic algorithm is used to solve the simultaneous reconfiguration and optimal sizing of DGs and shunt capacitors in a distribution system. Each objective is transferred into fuzzy domain using its membership function. Then, the overall fuzzy satisfaction function is formed and considered a fitness function inasmuch as the value of this function has to be maximized to gain the optimal solution. The numerical results show that the presented algorithm improves the performance much more than other meta-heuristic algorithms. Simulation results found that simultaneous reconfiguration with DG and shunt capacitors allocation (case 5) has 77.41%, 42.15%, and 56.14% improvements in power loss reduction, load balancing, and voltage profile indices, respectively in 33-bus test system. This result found 87.27%, 35.82%, and 54.34% improvements of mentioned indices respectively for 69-bus system.

Journal ArticleDOI
TL;DR: In this article, the particle size distributions of broken coal and gangue under different impact velocities were researched according to the Rosin-Rammler distribution, and the relationship between separation indicators and impact velocity was discussed.
Abstract: Based on the separation and backfilling system of coal and gangue, the mineral material impact experiments were conducted utilizing the hardness difference between coal and gangue according to the uniaxial compression experiments. The broken coal and gangue particles were collected and screened by different size meshes. The particle size distributions of coal and gangue under different impact velocities were researched according to the Rosin-Rammler distribution. The relationships between separation indicators and impact velocities were discussed. It is found from experiments that there is a fully broken boundary of coal material. The experimental results indicate that the Rosin-Rammler distribution could accurately describe the particle size distribution of broken coal and gangue under different impact velocities, and there is a minimum overlap region when the impact velocity is 12.10 m/s which leads to the minimum mixed degree of coal and gangue, and consequently the benefit of coal and gangue separation.

Journal ArticleDOI
Yulei Liao1, Li Yiming1, Wang Leifeng1, Ye Li1, Quanquan Jiang1 
TL;DR: An improved S-surface control method based on rudder angle compensation is proposed, which can compensate the adverse effects from environmental forces and installation error and the feasibility and reliability of the designed control system are verified.
Abstract: The control system designing of unmanned wave glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. The control system for the “Ocean Rambler” UWG is studied in this work. A heading control method based on S-surface controller is designed. For the “rudder zero drift” problem in trials, an improved S-surface control method based on rudder angle compensation is proposed, which can compensate the adverse effects from environmental forces and installation error. The tank test and sea trial results prove that the proposed control method has favorable control performance, and the feasibility and reliability of the designed control system are also verified.

Journal ArticleDOI
Abstract: Strength of discontinuities with complex structure is an important topic in rock engineering. A large number of studies have shown that fractal is applicable in the description of this discontinuity. Using fractal interpolation method for the generation of rock joints, numerical experiments of shear tests of the jointed rock mass model were carried out using FLAC3D. The test results show that the real rock joints can be simulated by fractal curves obtained by fractal interpolation. The fractal dimension is an important factor for the characterization of jointed rock mass; test results show that the fractal dimension of rock joints can be related to the equivalent cohesion strength and shear strength of the rock mass. When the fractal dimension of the joint surface is less than critical dimension D c 1.404, the cohesion strength and shear strength of the rock mass increase as the fractal dimension increases; for larger fractal dimensions, all mechanical parameters decrease as the fractal dimension increases. Joint surfaces with different degrees of roughness were obtained by the fractal interpolation method. Three types of failure modes were observed in the tests: climbing slip failure, climbing gnawing fracture, and non-climbing gnawing fracture.

Journal ArticleDOI
TL;DR: In this paper, the effects of salt precipitation on the deterioration process of earthen soil specimens were evaluated in an environment cabinet for undergoing different wet-dry cycles and after each cycle, the ultrasound velocity measurements were employed to monitor the degradation process.
Abstract: Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building material. The present study aims at providing more laboratory evidence for evaluating the effects of salt precipitation on the deterioration process. In view of this, the remoulded soil specimens were mixed with three kinds of salts (i.e., NaCl, Na2SO4 and their mixture) with different salt concentrations, and the specimens were kept in environment cabinet for undergoing different wet-dry cycles. After each cycle, the ultrasound velocity measurements were employed to monitor the deterioration process. For the specimens that have suffered three wet-dry cycles, the mechanical properties (i.e. shear strength and compression strength) were determined to evaluate the degree of deterioration. Furthermore, considering the realistic conservation environment of earthen sites, mechanical stability of these specimens against sediment-carrying wind erosion was conducted in a wind tunnel. These experiments results indicate that the overall average velocities of the specimens after the third cycle are significantly lower than those subjected to only one cycle. Ultrasound velocity, mechanical strength and wind erosion rate decrease when salt content increases. However, the internal friction angle increases firstly, and then decreases with the increase in salt content added to the specimens. Na2SO4 contributes most of the surface deterioration, while NaCl plays little role in the deterioration. The damage potential of the salt mixture is less obvious and largely dependent on the crystallisation location.

Journal ArticleDOI
TL;DR: In this paper, a new hydration product of calcium aluminate chloride hydrate, also known as Friedel's salt, appeared in the PC+CH-stabilized chloride saline soils.
Abstract: In the field of soil stabilization, only calcium silicate hydrate (CSH) and ettringite (AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fill, an artificial chloride saline soil, and a non-saline soil were stabilized by Portland cement (PC) and PC with Ca(OH)2 (CH) with different contents. A series of unconfined compressive strength (UCS) tests of stabilized soil specimen after curing for 7 d and 28 d were carried out, and the hydration products and microstructure of the specimens were observed by X-ray diffractometry (XRD), scanning electronic microscopy (SEM), and energy-dispersive X-ray analysis (EDXA). The results showed that the strengths of PC+CH-stabilized chloride saline soils were much higher than those of PC-stabilized soils. A new hydration product of calcium aluminate chloride hydrate, also known as Friedel’s salt, appeared in the PC+CH-stabilized chloride saline soils. The solid-phase volume of Friedel’s salt expanded during the formation of the hydrate; this volume filled the pores in the stabilized soil. This pore-filling effect was the most important contribution to the significantly enhanced strength of the PC+CH-stabilized chloride saline soils. On the basis of this understanding, a new optimized stabilizer was designed according to the concept that the chloride in saline soil could be utilized as a component of the stabilizer. The strength of the chloride saline soils stabilized by the optimized stabilizer was even further increased compared with that of the PC+CH-stabilized soils.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters.
Abstract: This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system’s accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology’s usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.

Journal ArticleDOI
TL;DR: In this paper, the authors used scanning electron microscopy (SEM) images to investigate size, morphology and dispersion of nano silica particles, which may have an inherent potential to improve hot mix asphalt (HMA) self-healing.
Abstract: Nano silica due to its spherical shape, tiny size and higher density compared to bitumen, may have an inherent potential to improve hot mix asphalt (HMA) self-healing. In this research scanning electron microscopy (SEM) images were used to investigate size, morphology and dispersion of nano silica particles. Additionally, HMA self-healing mechanism was also examined by SEM. Furthermore, dynamic indirect tensile test (IDT) was used to evaluate HMA self-healing index. The SEM results indicated that bitumen mortar flowing into micro cracks may be one of the most important mechanisms of HMA self-healing. The experiment results also showed that modification of bitumen by nano silica promotes the ability of the HMA self-healing.

Journal ArticleDOI
TL;DR: In this article, a series of experiments were conducted based on the physical simulation test system of thermal and humid environment in high geothermal roadway, which was independently developed by China University of Mining and Technology.
Abstract: To explore the spatial-temporal evolution law of rock mass temperature in high geothermal roadway during mechanical ventilation, a series of experiments were conducted based on the physical simulation test system of thermal and humid environment in high geothermal roadway, which is a method independently developed by China University of Mining and Technology. The results indicate that during ventilation, the disturbed region of the temperature extends gradually from shallow area to deep area in the surrounding rock mass of the roadway. Meanwhile, the temperature increases as the exponential function from shallow area to deep, with steady decrease of the temperature gradient and heat flux. As the ventilation proceeds, the relationship between dimensionless temperature and dimensionless time approximately meets Hill function.

Journal ArticleDOI
TL;DR: In this article, a modified Johnson-Cook model was proposed to describe the flow behaviors of 7N01 aluminum alloy under dynamic conditions, and numerical simulations of the dynamic tensile tests were performed using ABAQUS.
Abstract: Tensile tests at different strain rates (0.0002, 0.002, 0.02, 1000 and 3000 s–1) were carried out for 7N01 aluminum alloy. Low strain rate experiments (0.0002, 0.002 and 0.02 s–1) were conducted using an electronic mechanical universal testing machine, while high strain rate experiments (1000, 3000 s-1) were carried out through a split Hopkinson tensile bar. The experimental results showed that 7N01 aluminum alloy is strain rate sensitive. By introducing a correction scheme of the strain rate hardening coefficient, a modified Johnson–Cook model was proposed to describe the flow behaviors of 7N01 aluminum alloy. The proposed model fitted the experimental data better than the original Johnson–Cook model in plastic flow under dynamic condition. Numerical simulations of the dynamic tensile tests were performed using ABAQUS with the modified Johnson–Cook model. Digital image correlation was used together with high-speed photography to study the mechanical characters of specimen at high strain rate. Good correlations between the experiments results, numerical predictions and DIC results are achieved. High accuracy of the modified Johnson-Cook model was validated.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the nature of blood flow through inclined catheterized arteries having a balloon (angioplasty) with time-varying overlapping stenosis by considering it as a Carreau nanofluid.
Abstract: This work is concerned with the analysis of blood flow through inclined catheterized arteries having a balloon (angioplasty) with time-variant overlapping stenosis. The nature of blood in small arteries is analyzed mathematically by considering it as a Carreau nanofluid. The highly nonlinear momentum equations of nanofluid model are simplified by considering the mild stenosis case. The formulated problem is solved by a homotopy perturbation expansion in terms of a variant of the Weissenberg number to obtain explicit forms for the axial velocity, the stream function, the pressure gradient, the resistance impedance and the wall shear stress distribution. These solutions depend on the Brownian motion number, thermophoresis number, local temperature Grashof number G r and local nanoparticle Grashof number B r . The results were also studied for various values of the physical parameters, such as the Weissenberg number W i , the power law index n, the taper angle Φ, the maximum height of stenosis δ*, the angle of inclination α, the maximum height of balloon σ*, the axial displacement of the balloon zd*, the flow rate F and the Froud number Fr. The obtained results show that the transmission of axial velocity curves through a Newtonian fluid (W i =0, n=1, G r =0, B r =0, N t =0, N b ≠0) is substantially lower than that through a Carreau nanofluid near the wall of balloon while the inverse occurs in the region between the balloon and stenosis. The streamlines have a clearly distinguished shifting toward the stenotic region and this shifting appears near the wall of the balloon, while it has almost disappeared near the stenotic wall and the trapping bolus in the case of horizontal arteries and Newtonian fluid (W i =0, n=1, G r =0, B r =0, N t =0, N b ≠0) does not appear but for the case of Carreau nanofluid bolus appears.

Journal ArticleDOI
TL;DR: Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement (SLA) violations.
Abstract: Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine (VM) consolidation algorithm named PVDE (prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement (SLA) violations.

Journal ArticleDOI
TL;DR: In this article, the authors used a compact tension model on a crack stop hole and compared the stress before and after, drilling the hole was compared in terms of stress concentration and stress gradient.
Abstract: Force analysis using a compact tension model, as recommended by ASTM, was carried out on a crack stop hole. The stress before, and after, drilling the hole was compared in terms of stress concentration and stress gradient. The optimum drilling location and diameter were studied through analysis of different locations and diameters. By analyzing the effects of flank holes and an additional hole, drilling advice was proposed and fatigue testing of the cracks in a steel bridge deck with a crack stop hole was conducted. The results show that the stress at the crack tip with a crack stop hole decreased, and the major principal stress around the hole was distributed accordingly. The optimum position of the crack stop hole centre was where the centre of the crack stop hole was situated behind the crack and the hole edge coincided with the crack tip. Therefore, hole diameters larger than 8 mm, or those weakening the section by 10%, were suggested as the best diameters. In terms of multi-hole crack stopping, a flank hole was not recommended. The optimum horizontal position of flank holes was at a distance of 1/4 of a single hole diameter from, and in front of, the single hole. Besides, the experiment showed that crack stop hole could only prevent cracks from growing and had no influence on crack growth rate.

Journal ArticleDOI
TL;DR: Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33- Bus system and to 45.43% for 69-Bus system.
Abstract: This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm (GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system.

Journal ArticleDOI
TL;DR: A multi-swarm multiobjective optimization algorithm (MSMOOA) is proposed to satisfy multiple conflicting objectives to improve the performance of multi-objective workflow scheduling in cloud system.
Abstract: In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm (MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms.

Journal ArticleDOI
TL;DR: In this paper, the microstructure and mechanical properties of explosively cladded commercially pure titanium (cpTi) with austenitic stainless steel (SS 304L) subjected to varied process parameters, viz., loading ratios (mass of explosive or mass of flyer plate) and preset angles.
Abstract: The present work pertains to the study of microstructure and mechanical properties of explosively cladded commercially pure titanium (cpTi) with austenitic stainless steel (SS 304L) subjected to varied process parameters, viz., loading ratios (mass of explosive or mass of flyer plate) and preset angles. The microstructural study reveals the transformation from straight to wavy interface while increasing loading ratios. Vickers hardness increases with loading ratios, and the maximum hardness is witnessed in the closer proximity of collision interface. Ram tensile and shear strength of explosive claddings are higher than that of parent plates. While the base plate fails in impact test, the flyer plate is deformed, indicating good impact strength. Increased mass of claddings, due to oxide formation, is witnessed in corrosion tests, which confirms the superiority of explosive claddings in corrosive environment. Triaxial weldability window, an analytical estimation for Ti−SS 304L explosive claddings, is developed and correlated.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the stability of tunnel floor in Hoek-Brown rock media with the functional catastrophe theory and derived analytical solutions of detaching curve, half collapse width on tunnel floor and the critical and maximum values of collapse thickness.
Abstract: Collapse shape of tunnel floor in Hoek-Brown rock media is investigated with the functional catastrophe theory. The stability of rock system in tunnel floor, which is determined by thickness, half collapse width, half length of cave and detaching curve, has great secure and economic significance in practical engineering. To investigate the failure mechanisms and the outline of detaching block, a reliable damage model is presumed by making reference to the limit analysis theory. The analytical solutions of detaching curve, half collapse width on tunnel floor and the critical and maximum values of collapse thickness are derived based on Hoek-Brown criterion and functional catastrophe theory. The result shows that 0.5 is a most probable condition for instability, and the shape of detaching curve is a part of parabola. It is reasonable by comparing with previous theory and analogous experiments. The effects of major factors on thickness and half collapse width are further discussed. Numerical calculations and parametric analysis are carried out to illustrate the effects of different parameters on the mechanism, which is significant to the stability analysis of tunnel floor in rock media.

Journal ArticleDOI
TL;DR: In this article, the formation, distribution and dissipation of transient saturated zone was studied based on the numerical simulation via finite element method, and the water infiltration process under rainfall conditions was studied in the present work.
Abstract: Rainfall, as one of the most significant factors triggering the residual soil slope failure, leads to not only the reduction of soil shear strength, but also the increase of soil weight and the decrease of matric suction as well. All these modifications in soil properties have important influence on the slope stability. The water infiltration and redistribution inside the slope are the preconditions of the slope stability under rainfall conditions. Based on the numerical simulation via finite element method, the water infiltration process under rainfall conditions was studied in the present work. The emphases are the formation, distribution and dissipation of transient saturated zone. As for the calculation parameters, the SWCC and the saturated permeability have been determined by pressure plate test and variable head test respectively. The entire process (formation, development, dissipation) of the transient saturated zone was studied in detail. The variations of volumetric water content, matric suction and hydraulic gradient inside the slope, and the eventually raise of groundwater table were characterized and discussed, too. The results show that the major cause of the formation of transient saturated zone is ascribed to the fact that the exudation velocity of rainwater on the wetting front is less than the infiltration velocity of rainfall; as a result, the water content of the soil increases. On the other hand, the formation and extension of transient saturated zone have a close relationship with rainfall intensity and duration. The results can help the geotechnical engineers for the deeper understanding of the failure of residual slope under rainfall condition. It is also suggested that the proper drainage system in the slope may be the cost-effective slope failure mitigation method.

Journal ArticleDOI
TL;DR: In this article, the authors used the relationship between the anchor truss and the roof strata to calculate the deformation of the roof in a coal seam with bedding separation under different support conditions.
Abstract: Cable truss systems have been widely applied in roadways with complicated conditions, such as the large cross-sections of deep wells, and high tectonic stress. However, they are rarely applied to roadways with extremely thick coal seams because the control mechanism of the system for the deformation of the roof and the separation between coal rock segments is not completely understood. By using the relationship between the support system and the roof strata, a mechanical model was established to calculate the deformation of the roof in a thick coal seam with bedding separation under different support conditions: with an anchor truss support and without support. On this basis, the research was used to deduce a method for computing the minimum pre-tightening forces in the anchor truss, the maximum amounts of subsidence and separation with, and without, anchor truss support under the roof, and the maximum subsidence and the decreasing amounts of the separation before and after adopting the anchor truss. Additionally, mechanical relationships between the minimum pre-tightening force and the anchoring force in the anchor were analyzed. By taking a typical roadway with thick coal roof as an example, the theoretical results mentioned above were applied in the analysis and testing of a roof supporting project in a roadway field to verify the accuracy of the theory: favorable experimental results were achieved. In addition, the relationships among other parameters were analyzed, including the minimum pre-tightening forces applied by the anchor truss, the angle of inclination of the anchor cable, and the array pitch. Meanwhile, the changing characteristics of the amounts of roof separation and subsidence with key parameters of the support system (such as array pitch, pre-tightening force, and inclination angle) were also analyzed. The research results revealed the acting mechanism of the anchor truss in control of roadway stability with a thick coal seam, providing a theoretical basis of its application in coal mining.

Journal ArticleDOI
TL;DR: A mathematical model of an EHB system, consisting of actuator and hydraulic sub-systems, is derived for describing the fundamental dynamics of the system and designing the controller, which achieves good pressure-tracking performance and maintains robustness to friction disturbances.
Abstract: This work presents an integrated pressure-tracking controller for a novel electro-hydraulic brake (EHB) system considering friction and hydraulic disturbances. To this end, a mathematical model of an EHB system, consisting of actuator and hydraulic sub-systems, is derived for describing the fundamental dynamics of the system and designing the controller. Due to sensor inaccuracy and measurement noise, a Kalman filter is constructed to estimate push rod stroke for generating desired master cylinder pressure. To improve pressure-tracking accuracy, a linear friction model is generated by linearizing the nonlinear Tustin friction model, and the unmodeled friction disturbances are assumed unknown but bounded. A sliding mode controller is designed for compensating friction disturbances, and the stability of the controller is investigated using the Lyapunov method. The performance of the proposed integrated controller is evaluated with a hardware-in-the-loop (HIL) test platform equipped with the EHB prototype. The test results demonstrate that the EHB system with the proposed integrated controller not only achieves good pressure-tracking performance, but also maintains robustness to friction disturbances.