scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Pharmacology and Experimental Therapeutics in 2021"


Journal ArticleDOI
TL;DR: Cannabigerol is currently being marketed as a dietary supplement and, as with cannabidiol (CBD), many claims are being made about its benefits and little research has been performed on this unregulated molecule.
Abstract: Medical cannabis and individual cannabinoids, such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), are receiving growing attention in both the media and the scientific literature. The Cannabis plant, however, produces over 100 different cannabinoids, and cannabigerol (CBG) serves as the precursor molecule for the most abundant phytocannabinoids. CBG exhibits affinity and activity characteristics between Δ9-THC and CBD at the cannabinoid receptors but appears to be unique in its interactions with α-2 adrenoceptors and 5-hydroxytryptamine (5-HT1A). Studies indicate that CBG may have therapeutic potential in treating neurologic disorders (e.g., Huntington disease, Parkinson disease, and multiple sclerosis) and inflammatory bowel disease, as well as having antibacterial activity. There is growing interest in the commercial use of this unregulated phytocannabinoid. This review focuses on the unique pharmacology of CBG, our current knowledge of its possible therapeutic utility, and its potential toxicological hazards. SIGNIFICANCE STATEMENT: Cannabigerol is currently being marketed as a dietary supplement and, as with cannabidiol (CBD) before, many claims are being made about its benefits. Unlike CBD, however, little research has been performed on this unregulated molecule, and much of what is known warrants further investigation to identify potential areas of therapeutic uses and hazards.

73 citations


Journal ArticleDOI
TL;DR: The relationship between µ-opioid receptor (MOR) efficacy and effects of mitragynine and 7-hydroxymitragynines are not fully established as mentioned in this paper.
Abstract: Relationships between µ-opioid receptor (MOR) efficacy and effects of mitragynine and 7-hydroxymitragynine are not fully established. We assessed in vitro binding affinity and efficacy and discriminative stimulus effects together with antinociception in rats. The binding affinities of mitragynine and 7-hydroxymitragynine at MOR (Ki values 77.9 and 709 nM, respectively) were higher than their binding affinities at κ-opioid receptor (KOR) or δ-opioid receptor (DOR). [35S]guanosine 5'-O-[γ-thio]triphosphate stimulation at MOR demonstrated that mitragynine was an antagonist, whereas 7-hydroxymitragynine was a partial agonist (Emax = 41.3%). In separate groups of rats discriminating either morphine (3.2 mg/kg) or mitragynine (32 mg/kg), mitragynine produced a maximum of 72.3% morphine-lever responding, and morphine produced a maximum of 65.4% mitragynine-lever responding. Other MOR agonists produced high percentages of drug-lever responding in the morphine and mitragynine discrimination assays: 7-hydroxymitragynine (99.7% and 98.1%, respectively), fentanyl (99.7% and 80.1%, respectively), buprenorphine (99.8% and 79.4%, respectively), and nalbuphine (99.4% and 98.3%, respectively). In the morphine and mitragynine discrimination assays, the KOR agonist U69,593 produced maximums of 72.3% and 22.3%, respectively, and the DOR agonist SNC 80 produced maximums of 34.3% and 23.0%, respectively. 7-Hydroxymitragynine produced antinociception; mitragynine did not. Naltrexone antagonized all of the effects of morphine and 7-hydroxymitragynine; naltrexone antagonized the discriminative stimulus effects of mitragynine but not its rate-decreasing effects. Mitragynine increased the potency of the morphine discrimination yet decreased morphine antinociception. Here we illustrate striking differences in MOR efficacy, with mitragynine having less than 7-hydroxymitragynine. SIGNIFICANCE STATEMENT: At human µ-opioid receptor (MOR) in vitro, mitragynine has low affinity and is an antagonist, whereas 7-hydroxymitragynine has 9-fold higher affinity than mitragynine and is an MOR partial agonist. In rats, intraperitoneal mitragynine exhibits a complex pharmacology including MOR agonism; 7-hydroxymitragynine has higher MOR potency and efficacy than mitragynine. These results are consistent with 7-hydroxymitragynine being a highly selective MOR agonist and with mitragynine having a complex pharmacology that combines low efficacy MOR agonism with activity at nonopioid receptors.

41 citations


Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper showed that apigenin, a kind of flavonoid, has antihyperlipidemic properties in mice and hepatocyte, and they concluded that AP could substantially improve the disorder of lipid metabolism, and its mechanism might be related to the decrease of sterol regulatory element-binding protein 1c, SREBP-2, and downstream genes, the inhibition of ERS, and the reduction of blood lipids and insulin resistance.
Abstract: Insulin resistance (IR) is the common basis of diabetes and cardiovascular diseases, and its development is closely associated with lipid metabolism disorder. Flavonoids have definite chemical defense effects, including anti-inflammatory effects, anticancer effects, and antimutation effects. However, the function and mechanism of apigenin (AP, a kind of flavonoid) in IR are still unclear. In our study, intracellular fat accumulation model cells and high-fat diet (HFD)-fed model mice were established using palmitate (PA) and HFD. Mechanistically, we first demonstrated that AP could notably downregulate sterol regulatory element-binding protein 1c (SREBP-1c), sterol regulatory element-binding protein 2 (SREBP-2), fatty acid synthase, stearyl-CoA desaturase 1, and 3-hydroxy-3-methyl-glutaryl-CoA reductase in PA-induced hyperlipidemic cells and mice. Functionally, we verified that AP could markedly reduce lipid accumulation in PA-induced hyperlipidemic cells and decrease the body weight, visceral fat weight, IR, and lipid accumulation in HFD-induced hyperlipidemic mice. Besides, we showed that PA could significantly downregulate endoplasmic reticulum stress (ERS)-related proteins and inhibit ERS. Furthermore, we proved that AP could reduce blood lipids by inhibiting ERS in PA-induced hyperlipidemic cells. Meanwhile, 4-phenyl butyric acid (also called ERS alleviator), like AP, could significantly reduce blood lipids and alleviate IR in HFD-fed model mice. Therefore, we concluded that AP could substantially improve the disorder of lipid metabolism, and its mechanism might be related to the decrease of SREBP-1c, SREBP-2, and downstream genes, the inhibition of ERS, and the reduction of blood lipids and IR. SIGNIFICANCE STATEMENT: Apigenin, a nontoxic and naturally sourced flavonoid, has antihyperlipidemic properties in mice and hepatocyte. This study highlights a new mechanism of apigenin and proposes that these hypolipidemic effects are associated with the mitigation of endoplasmic reticulum stress and insulin resistance in diet-induced obesity. This study might provide translational insight into the prevention and treatment of apigenin in hyperlipidemia-related diseases.

24 citations


Journal ArticleDOI
TL;DR: Testing the ability of a broad-spectrum neuraminidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA) to modulate the in vivo response to acute intratracheal bleomycin challenge as an experimental model of pulmonary fibrosis indicates that NEU1-selective inhibition offers a potential therapeutic intervention for pulmonary fibrotic diseases.
Abstract: Pulmonary fibrosis remains a serious biomedical problem with no cure and an urgent need for better therapies. Neuraminidases (NEUs), including NEU1, have been recently implicated in the mechanism of pulmonary fibrosis by us and others. We now have tested the ability of a broad-spectrum neuraminidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA), to modulate the in vivo response to acute intratracheal bleomycin challenge as an experimental model of pulmonary fibrosis. A marked alleviation of bleomycin-induced body weight loss and notable declines in accumulation of pulmonary lymphocytes and collagen deposition were observed. Real-time polymerase chain reaction analyses of human and mouse lung tissues and primary human lung fibroblast cultures were also performed. A predominant expression and pronounced elevation in the levels of NEU1 mRNA were observed in patients with idiopathic pulmonary fibrosis and bleomycin-challenged mice compared with their corresponding controls, whereas NEU2, NEU3, and NEU4 were expressed at far lower levels. The levels of mRNA for the NEU1 chaperone, protective protein/cathepsin A (PPCA), were also elevated by bleomycin. Western blotting analyses demonstrated bleomycin-induced elevations in protein expression of both NEU1 and PPCA in mouse lungs. Two known selective NEU1 inhibitors, C9-pentyl-amide-DANA (C9-BA-DANA) and C5-hexanamido-C9-acetamido-DANA, dramatically reduced bleomycin-induced loss of body weight, accumulation of pulmonary lymphocytes, and deposition of collagen. Importantly, C9-BA-DANA was therapeutic in the chronic bleomycin exposure model with no toxic effects observed within the experimental timeframe. Moreover, in the acute bleomycin model, C9-BA-DANA attenuated NEU1-mediated desialylation and shedding of the mucin-1 ectodomain. These data indicate that NEU1-selective inhibition offers a potential therapeutic intervention for pulmonary fibrotic diseases. SIGNIFICANCE STATEMENT Neuraminidase-1–selective therapeutic targeting in the acute and chronic bleomycin models of pulmonary fibrosis reverses pulmonary collagen deposition, accumulation of lymphocytes in the lungs, and the disease-associated loss of body weight—all without observable toxic effects. Such therapy is as efficacious as nonspecific inhibition of all neuraminidases in these models, thus indicating the central role of neuraminidase-1 as well as offering a potential innovative, specifically targeted, and safe approach to treating human patients with a severe malady: pulmonary fibrosis.

20 citations


Journal ArticleDOI
TL;DR: AM833 (cagrilintide) is a lipidated amylin analog that is undergoing clinical trials as a nonselective AMYR and protein-coupled receptor (CTR) agonist.
Abstract: Obesity and associated comorbidities are a major health burden, and novel therapeutics to help treat obesity are urgently needed. There is increasing evidence that targeting the amylin receptors (AMYRs), heterodimers of the calcitonin G protein-coupled receptor (CTR) and receptor activity-modifying proteins, improves weight control and has the potential to act additively with other treatments such as glucagon-like peptide-1 receptor agonists. Recent data indicate that AMYR agonists, which can also independently activate the CTR, may have improved efficacy for treating obesity, even though selective activation of CTRs is not efficacious. AM833 (cagrilintide) is a novel lipidated amylin analog that is undergoing clinical trials as a nonselective AMYR and CTR agonist. In the current study, we have investigated the pharmacology of AM833 across 25 endpoints and compared this peptide with AMYR selective and nonselective lipidated analogs (AM1213 and AM1784), and the clinically used peptide agonists pramlintide (AMYR selective) and salmon CT (nonselective). We also profiled human CT and rat amylin as prototypical selective agonists of CTR and AMYRs, respectively. Our results demonstrate that AM833 has a unique pharmacological profile across diverse measures of receptor binding, activation, and regulation. SIGNIFICANCE STATEMENT: AM833 is a novel nonselective agonist of calcitonin family receptors that has demonstrated efficacy for the treatment of obesity in phase 2 clinical trials. This study demonstrates that AM833 has a unique pharmacological profile across diverse measures of receptor binding, activation, and regulation when compared with other selective and nonselective calcitonin receptor and amylin receptor agonists. The present data provide mechanistic insight into the actions of AM833.

20 citations


Journal ArticleDOI
TL;DR: In this paper, the authors highlight recent progress in stem cell research and the translational applications and challenges of iPSCs, NSCs, and MSCs as treatment strategies for Alzheimer's disease.
Abstract: Alzheimer's disease (AD) is a neurodegenerative disease with complex pathologic and biologic characteristics. Extracellular β-amyloid deposits, such as senile plaques, and intracellular aggregation of hyperphosphorylated tau, such as neurofibrillary tangles, remain the main neuropathological criteria for the diagnosis of AD. There is currently no effective treatment of the disease, and many clinical trials have failed to prove any benefits of new therapeutics. More recently, there has been increasing interest in harnessing the potential of stem cell technologies for drug discovery, disease modeling, and cell therapies, which have been used to study an array of human conditions, including AD. The recently developed and optimized induced pluripotent stem cell (iPSC) technology is a critical platform for screening anti-AD drugs and understanding mutations that modify AD. Neural stem cell (NSC) transplantation has been investigated as a new therapeutic approach to treat neurodegenerative diseases. Mesenchymal stem cells (MSCs) also exhibit considerable potential to treat neurodegenerative diseases by secreting growth factors and exosomes, attenuating neuroinflammation. This review highlights recent progress in stem cell research and the translational applications and challenges of iPSCs, NSCs, and MSCs as treatment strategies for AD. Even though these treatments are still in relative infancy, these developing stem cell technologies hold considerable promise to combat AD and other neurodegenerative disorders. SIGNIFICANCE STATEMENT: Alzheimer's disease (AD) is a neurodegenerative disease that results in learning and memory defects. Although some drugs have been approved for AD treatment, fewer than 20% of patients with AD benefit from these drugs. Therapies based on stem cells, including induced pluripotent stem cells, neural stem cells, and mesenchymal stem cells, provide promising therapeutic strategies for AD.

19 citations


Journal ArticleDOI
TL;DR: In this paper, the acute effects of short-chain fatty acids (SCFAs) on cardiovascular physiology in vivo and ex vivo were examined. And they showed that SCFAs are an essential mechanism by which gut microbes influence host physiology.
Abstract: Short-chain fatty acids (SCFAs) are metabolites produced almost exclusively by the gut microbiota and are an essential mechanism by which gut microbes influence host physiology. Given that SCFAs induce vasodilation, we hypothesized that they might have additional cardiovascular effects. In this study, novel mechanisms of SCFA action were uncovered by examining the acute effects of SCFAs on cardiovascular physiology in vivo and ex vivo. Acute delivery of SCFAs in conscious radiotelemetry-implanted mice results in a simultaneous decrease in both mean arterial pressure and heart rate (HR). Inhibition of sympathetic tone by the selective β-1 adrenergic receptor antagonist atenolol blocks the acute drop in HR seen with acetate administration, yet the decrease in mean arterial pressure persists. Treatment with tyramine, an indirect sympathomimetic, also blocks the acetate-induced acute drop in HR. Langendorff preparations show that acetate lowers HR only after long-term exposure and at a smaller magnitude than seen in vivo. Pressure-volume loops after acetate injection show a decrease in load-independent measures of cardiac contractility. Isolated trabecular muscle preparations also show a reduction in force generation upon SCFA treatment, though only at supraphysiological concentrations. These experiments demonstrate a direct cardiac component of the SCFA cardiovascular response. These data show that acetate affects blood pressure and cardiac function through parallel mechanisms and establish a role for SCFAs in modulating sympathetic tone and cardiac contractility, further advancing our understanding of the role of SCFAs in blood pressure regulation. SIGNIFICANCE STATEMENT: Acetate, a short-chain fatty acid, acutely lowers heart rate (HR) as well as mean arterial pressure in vivo in radiotelemetry-implanted mice. Acetate is acting in a sympatholytic manner on HR and exerts negative inotropic effects in vivo. This work has implications for potential short-chain fatty acid therapeutics as well as gut dysbiosis-related disease states.

19 citations


Journal ArticleDOI
TL;DR: It is suggested thatNEU3 participates in fibrosis by desialylating LAP and releasing TGF-β1 and that the new class of NEU3 inhibitors are potential therapeutics for fibrosis.
Abstract: The active form of transforming growth factor-β1 (TGF-β1) plays a key role in potentiating fibrosis. TGF-β1 is sequestered in an inactive state by a latency-associated glycopeptide (LAP). Sialidases (also called neuraminidases (NEU)) cleave terminal sialic acids from glycoconjugates. The sialidase NEU3 is upregulated in fibrosis, and mice lacking Neu3 show attenuated bleomycin-induced increases in active TGF-β1 in the lungs and attenuated pulmonary fibrosis. Here we observe that recombinant human NEU3 upregulates active human TGF-β1 by releasing active TGF-β1 from its latent inactive form by desialylating LAP. Based on the proposed mechanism of action of NEU3, we hypothesized that compounds with a ring structure resembling picolinic acid might be transition state analogs and thus possible NEU3 inhibitors. Some compounds in this class showed nanomolar IC50 for recombinant human NEU3 releasing active human TGF-β1 from the latent inactive form. The compounds given as daily 0.1-1-mg/kg injections starting at day 10 strongly attenuated lung inflammation, lung TGF-β1 upregulation, and pulmonary fibrosis at day 21 in a mouse bleomycin model of pulmonary fibrosis. These results suggest that NEU3 participates in fibrosis by desialylating LAP and releasing TGF-β1 and that the new class of NEU3 inhibitors are potential therapeutics for fibrosis. SIGNIFICANCE STATEMENT: The extracellular sialidase NEU3 appears to be a key driver of pulmonary fibrosis. The significance of this report is that 1) we show the mechanism (NEU3 desialylates the latency-associated glycopeptide protein that keeps the profibrotic cytokine transforming growth factor-β1 (TGF-β1) in an inactive state, causing active TGF-β1 release), 2) we then use the predicted NEU3 mechanism to identify nM IC50 NEU3 inhibitors, and 3) these new NEU3 inhibitors are potent therapeutics in a mouse model of pulmonary fibrosis.

18 citations


Journal ArticleDOI
TL;DR: In this paper, CB-5083 was shown to have a dose-dependent but reversible inhibitory action on PDE6, an essential enzyme in retinal photoreceptor function, but no long-term consequences on retinal function or structure.
Abstract: CB-5083 is an inhibitor of p97/valosin-containing protein (VCP), for which phase I trials for cancer were terminated because of adverse effects on vision, such as photophobia and dyschromatopsia. Lower dose CB-5083 could combat inclusion body myopathy with early-onset Paget disease and frontotemporal dementia or multisystem proteinopathy caused by gain-of-function mutations in VCP. We hypothesized that the visual impairment in the cancer trial was due to CB-5083's inhibition of phosphodiesterase (PDE)-6, which mediates signal transduction in photoreceptors. To test our hypothesis, we used in vivo and ex vivo electroretinography (ERG) in mice and a PDE6 activity assay of bovine rod outer segment (ROS) extracts. Additionally, histology and optical coherence tomography were used to assess CB-5083's long-term ocular toxicity. A single administration of CB-5083 led to robust ERG signal deterioration, specifically in photoresponse kinetics. Similar recordings with known PDE inhibitors sildenafil, tadalafil, vardenafil, and zaprinast showed that only vardenafil had as strong an effect on the ERG signal in vivo as did CB-5083. In the biochemical assay, CB-5083 inhibited PDE6 activity with a potency higher than sildenafil but lower than that of vardenafil. Ex vivo ERG revealed a PDE6 inhibition constant of 80 nM for CB-5083, which is 7-fold smaller than that for sildenafil. Finally, we showed that the inhibitory effect of CB-5083 on visual function is reversible, and its chronic administration does not cause permanent retinal anomalies in aged VCP-disease model mice. Our results warrant re-evaluation of CB-5083 as a clinical therapeutic agent. We recommend preclinical ERG recordings as a routine drug safety screen. SIGNIFICANCE STATEMENT: This report supports the use of a valosin-containing protein (VCP) inhibitor drug, CB-5083, for the treatment of neuromuscular VCP disease despite CB-5083's initial clinical failure for cancer treatment due to side effects on vision. The data show that CB-5083 displays a dose-dependent but reversible inhibitory action on phosphodiesterase-6, an essential enzyme in retinal photoreceptor function, but no long-term consequences on retinal function or structure.

18 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compared the cytotoxicity, antioxidative activity, and mechanisms of cytoprotection of piceatannol compared with those of resveratrol.
Abstract: Resveratrol affords protection against reactive oxygen species (ROS)-related diseases via activation of SIRT1, an NAD+-dependent deacetylase. However, the low bioavailability of resveratrol limits its therapeutic applications. Since piceatannol is a hydroxyl analog of resveratrol with higher bioavailability, it could be an alternative to resveratrol. In this study, we compared the cytotoxicity, antioxidative activity, and mechanisms of cytoprotection of piceatannol with those of resveratrol. In C2C12 cells incubated with piceatannol, electrospray ionization mass spectrometry analysis showed that piceatannol was present in the intracellular fraction. A high concentration (50 μM) of piceatannol, but not resveratrol, induced mitochondrial depolarization and apoptosis. However, piceatannol at 10 μM inhibited the increase in mitochondrial ROS level induced by antimycin A, and this ROS reduction was greater than that by resveratrol. The reduction in hydrogen peroxide–induced ROS by piceatannol was also greater than that by resveratrol or vitamin C. Piceatannol reduced antimycin A–induced apoptosis more than did resveratrol. SIRT1 knockdown abolished the antiapoptotic activity of resveratrol, whereas it blocked only half of the antiapoptotic activity of piceatannol. Piceatannol, but not resveratrol, induced heme oxygenase-1 (HO1) expression, which was blocked by knockdown of the transcription factor NRF2, but not by SIRT1 knockdown. HO1 knockdown partially blocked the reduction of ROS by piceatannol. Furthermore, the antiapoptotic action of piceatannol was abolished by HO1 knockdown. Our results suggest that the therapeutic dose of piceatannol protects cells against mitochondrial ROS more than does resveratrol via SIRT1- and NRF2/HO1–dependent mechanisms. The activation of NRF2/HO1 could be an advantage of piceatannol compared with resveratrol for cytoprotection. Significance Statement This study showed that piceatannol and resveratrol were different in cytotoxicity, oxidant-scavenging activities, and mechanisms of cytoprotection. Protection by piceatannol against apoptosis induced by reactive oxygen species was superior to that by resveratrol. In addition to the sirtuin 1–dependent pathway, piceatannol exerted nuclear factor erythroid 2–related factor 2/heme oxygenase-1–mediated antioxidative and antiapoptotic effects, which could be an advantage of piceatannol compared with resveratrol.

18 citations


Journal ArticleDOI
TL;DR: In this article, the authors extensively review many of the cell types and mechanisms of METH-induced dysregulation of the central nervous and peripheral immune systems, and show that concurrent disruption of bidirectional communication between dopaminergic neurons and glia in the CNS and immune cell dysregulation gives rise to a constellation of dysfunctional neuronal, cell, and tissue types.
Abstract: Methamphetamine (METH) is a potent psychostimulant that increases extracellular monoamines, such as dopamine and norepinephrine, and affects multiple tissue and cell types in the central nervous system (CNS) and peripheral immune cells. The reinforcing properties of METH underlie its significant abuse potential and dysregulation of peripheral immunity and central nervous system functions. Together, the constellation of METH’s effects on cellular targets and regulatory processes has led to immune suppression and neurodegeneration in METH addicts and animal models of METH exposure. Here we extensively review many of the cell types and mechanisms of METH-induced dysregulation of the central nervous and peripheral immune systems. SIGNIFICANCE STATEMENT Emerging research has begun to show that methamphetamine regulates dopaminergic neuronal activity. In addition, METH affects non-neuronal brain cells, such as microglia and astrocytes, and immunological cells of the periphery. Concurrent disruption of bidirectional communication between dopaminergic neurons and glia in the CNS and peripheral immune cell dysregulation gives rise to a constellation of dysfunctional neuronal, cell, and tissue types. Therefore, understanding the pathophysiology of METH requires consideration of the multiple targets at the interface between basic and clinical neuroscience.

Journal ArticleDOI
TL;DR: The abundant kratom indole alkaloid mitragynine was shown to be a time-dependent inhibitor of hepatic and intestinal cytochrome P450 3A activity, and was predicted to increase systemic exposure to the probe drug substrate midazolam by 5.7-fold.
Abstract: Preparations from the leaves of the kratom plant (Mitragyna speciosa) are consumed for their opioid-like effects. Several deaths have been associated with kratom used concomitantly with some drugs. Pharmacokinetic interactions are potential underlying mechanisms of these fatalities. Accumulating in vitro evidence has demonstrated select kratom alkaloids, including the abundant indole alkaloid mitragynine, as reversible inhibitors of several cytochromes P450 (CYPs). The objective of this work was to refine the mechanistic understanding of potential kratom-drug interactions by considering both reversible and time-dependent CYP inhibition (TDI) in the liver and intestine. Mitragynine was tested against CYP2C9 (diclofenac 4′-hydroxylation), CYP2D6 (dextromethorphan O-demethylation), and CYP3A (midazolam 1′-hydroxylation) activities in human liver microsomes (HLMs) and CYP3A activity in human intestinal microsomes (HIMs). Comparing the absence to presence of NADPH during pre-incubation of mitragynine with HLMs or HIMs, an ~7-fold leftward shift in IC50 (~20 to 3 μM) towards CYP3A resulted, prompting determination of TDI parameters (HLMs: KI, 4.1 {plus minus} 0.9 μM; kinact, 0.068 {plus minus} 0.01 min-1; HIMs: KI, 4.2 {plus minus} 2.5 μM; kinact, 0.079 {plus minus} 0.02 min-1). Mitragynine caused no leftward shift in IC50 towards CYP2C9 (~40 μM) and CYP2D6 (~1 μM) but was a strong competitive inhibitor of CYP2D6 (Ki, 1.17 {plus minus} 0.07 μM). Using a recommended mechanistic static model, mitragynine (2-g kratom dose) was predicted to increase dextromethorphan and midazolam area under the plasma concentration-time curve (AUC) by 1.06 and 5.69-fold, respectively. The predicted midazolam AUC ratio exceeded the recommended cut-off (1.25), which would have been missed if TDI was not considered. Significance Statement Kratom, a botanical natural product increasingly consumed for its opioid-like effects, may precipitate potentially serious pharmacokinetic interactions with drugs. The abundant kratom indole alkaloid, mitragynine, was shown to be a time-dependent inhibitor of hepatic and intestinal cytochrome P450 3A activity. A mechanistic static model predicted mitragynine to increase systemic exposure to the probe drug substrate midazolam by 5.7-fold, necessitating further evaluation via dynamic models and clinical assessment to advance understanding of consumer safety associated with kratom use.


Journal ArticleDOI
TL;DR: In this paper, the selective retinoic acid receptor (RAR) β2 agonist AC261066 was shown to attenuate the development of contractile dysfunction and maladaptive remodeling in post-ischemic heart failure.
Abstract: We previously demonstrated that the selective retinoic acid receptor (RAR) β2 agonist AC261066 reduces oxidative stress in an ex vivo murine model of ischemia/reperfusion. We hypothesized that by decreasing oxidative stress and consequent fibrogenesis, AC261066 could attenuate the development of contractile dysfunction in post-ischemic heart failure (HF). We tested this hypothesis in vivo using an established murine model of myocardial infarction (MI), obtained by permanent occlusion of the left anterior descending coronary artery. Treating mice with AC261066 in drinking water significantly attenuated the post-MI deterioration of echocardiographic indices of cardiac function, diminished remodeling, and reduced oxidative stress, as evidenced by a decrease in malondialdehyde level and p38 mitogen-activated protein kinase expression in cardiomyocytes. The effects of AC261066 were also associated with a decrease in interstitial fibrosis, as shown by a marked reduction in collagen deposition and α-smooth muscle actin expression. In cardiac murine fibroblasts subjected to hypoxia, AC261066 reversed hypoxia-induced decreases in superoxide dismutase 2 and angiopoietin-like 4 transcriptional levels as well as the increase in NADPH oxidase 2 mRNA, demonstrating that the post-MI cardioprotective effects of AC261066 are associated with an action at the fibroblast level. Thus, AC261066 alleviates post-MI cardiac dysfunction by modulating a set of genes involved in the oxidant/antioxidant balance. These AC261066 responsive genes diminish interstitial fibrogenesis and remodeling. Since MI is a recognized major cause of HF, our data identify RARβ2 as a potential pharmacological target in the treatment of HF. SIGNIFICANCE STATEMENT A previous report showed that the selective retinoic acid receptor (RAR) β2 agonist AC261066 reduces oxidative stress in an ex vivo murine model of ischemia/reperfusion. This study shows that AC261066 attenuates the development of contractile dysfunction and maladaptive remodeling in post-ischemic heart failure (HF) by modulating a set of genes involved in oxidant/antioxidant balance. Since myocardial infarction is a recognized major cause of HF, these data identify RARβ2 as a potential pharmacological target in the treatment of HF.

Journal ArticleDOI
TL;DR: In this paper, a novel G6PD inhibitor (N-[(3β,5α)-17-oxoandrostan-3yl]sulfamide; 1.5 mg kg−1) was injected daily during exposure to hypoxia (Hx + SU).
Abstract: Pulmonary hypertension (PH) is a disease of hyperplasia of pulmonary vascular cells. The pentose phosphate pathway (PPP)—a fundamental glucose metabolism pathway—is vital for cell growth. Because treatment of PH is inadequate, our goal was to determine whether inhibition of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, prevents maladaptive gene expression that promotes smooth muscle cell (SMC) growth, reduces pulmonary artery remodeling, and normalizes hemodynamics in experimental models of PH. PH was induced in mice by exposure to 10% oxygen (Hx) or weekly injection of vascular endothelial growth factor receptor blocker [Sugen5416 (SU); 20 mg kg−1] during exposure to hypoxia (Hx + SU). A novel G6PD inhibitor (N-[(3β,5α)-17-oxoandrostan-3-yl]sulfamide; 1.5 mg kg−1) was injected daily during exposure to Hx. We measured right ventricle (RV) pressure and left ventricle pressure-volume relationships and gene expression in lungs of normoxic, Hx, and Hx + SU and G6PD inhibitor–treated mice. RV systolic and end-diastolic pressures were higher in Hx and Hx + SU than normoxic control mice. Hx and Hx + SU decreased expression of epigenetic modifiers (writers and erasers), increased hypomethylation of the DNA, and induced aberrant gene expression in lungs. G6PD inhibition decreased maladaptive expression of genes and SMC growth, reduced pulmonary vascular remodeling, and decreased right ventricle pressures compared with untreated PH groups. Pharmacologic inhibition of G6PD activity, by normalizing activity of epigenetic modifiers and DNA methylation, efficaciously reduces RV pressure overload in Hx and Hx + SU mice and preclinical models of PH and appears to be a safe pharmacotherapeutic strategy. SIGNIFICANCE STATEMENT The results of this study demonstrated that inhibition of a metabolic enzyme efficaciously reduces pulmonary hypertension. For the first time, this study shows that a novel inhibitor of glucose-6-phosphate dehydrogenase, the rate-limiting enzyme in the fundamental pentose phosphate pathway, modulates DNA methylation and alleviates pulmonary artery remodeling and dilates pulmonary artery to reduce pulmonary hypertension.

Journal ArticleDOI
TL;DR: This investigation into the role of lysosomal volume dynamics in lysOSomotropic drug disposition, including the ability of HCQ to modify its own disposition, advances the understanding of how chemically similar agents may distribute on the cellular level and examines a key area of lYSosomal-mediated multiple drug resistance and drug-drug interaction.
Abstract: Lysosomes act as a cellular drug sink for weakly basic, lipophilic (lysosomotropic) xenobiotics, with many instances of lysosomal trapping associated with multiple drug resistance. Lysosomotropic agents have also been shown to activate master lysosomal biogenesis transcription factor EB (TFEB) and ultimately lysosomal biogenesis. We investigated the role of lysosomal biogenesis in the disposition of hydroxychloroquine (HCQ), a hallmark lysosomotropic agent, and observed that modulating the lysosomal volume of human breast cancer cell lines can account for differences in disposition of HCQ. Through use of an in vitro pharmacokinetic (PK) model, we characterized total cellular uptake of HCQ within the duration of static equilibrium (1 hour), as well as extended exposure to HCQ that is subject to dynamic equilibrium (>1 hour), wherein HCQ increases the size of the lysosomal compartment through swelling and TFEB-induced lysosomal biogenesis. In addition, we observe that pretreatment of cell lines with TFEB-activating agent Torin1 contributed to an increase of whole-cell HCQ concentrations by 1.4- to 1.6-fold, which were also characterized by the in vitro PK model. This investigation into the role of lysosomal volume dynamics in lysosomotropic drug disposition, including the ability of HCQ to modify its own disposition, advances our understanding of how chemically similar agents may distribute on the cellular level and examines a key area of lysosomal-mediated multiple drug resistance and drug-drug interaction. Significance Statement Hydroxychloroquine is able to modulate its own cellular pharmacokinetic uptake by increasing the cellular lysosomal volume fraction through activation of lysosomal biogenesis master transcription factor EB and through lysosomal swelling. This concept can be applied to many other lysosomotropic drugs that activate transcription factor EB, such as doxorubicin and other tyrosine kinase inhibitor drugs, as these drugs may actively increase their own sequestration within the lysosome to further exacerbate multiple drug resistance and lead to potential acquired resistance.

Journal ArticleDOI
TL;DR: The present data show that OATP-mediated drug transport is a critical mechanism in facilitating neuroprotective drug disposition across endothelial barriers of the blood-brain barrier and emphasizes the need to consider endothelial transporter kinetics and regulation during preclinical drug development.
Abstract: Our in vivo rodent studies have shown that organic anion transporting polypeptide (Oatp) 1a4 is critical for blood-to-brain transport of statins, drugs that are effective neuroprotectants. Additionally, transforming growth factor-β (TGF-β) signaling via the activin receptor-like kinase 1 (ALK1) receptor regulates Oatp1a4 functional expression. The human ortholog of Oatp1a4 is OATP1A2. Therefore, the translational significance of our work requires demonstration that OATP1A2 can transport statins and is regulated by TGF-β/ALK1 signaling. Cellular uptake and monolayer permeability of atorvastatin, pravastatin, and rosuvastatin were investigated in vitro using human umbilical vein endothelial cells (HUVECs). Regulation of OATP1A2 by the TGF-β/ALK1 pathway was evaluated using bone morphogenetic protein 9 (BMP-9), a selective ALK1 agonist, and LDN193189, an ALK1 antagonist. We showed that statin accumulation in HUVECs requires OATP1A2-mediated uptake but is also affected by efflux transporters (i.e., P-glycoprotein, breast cancer resistance protein). Absorptive flux (i.e., apical-to-basolateral) for all statins was higher than secretory flux (i.e., basolateral-to-apical) and was decreased by an OATP inhibitor (i.e., estrone-3-sulfate). OATP1A2 protein expression, statin uptake, and cellular monolayer permeability were increased by BMP-9 treatment. This effect was attenuated in the presence of LDN193189. Apical-to-basolateral statin transport across human endothelial cellular monolayers requires functional expression of OATP1A2, which can be controlled by therapeutically targeting TGF-β/ALK1 signaling. Taken together with our previous work, the present data show that OATP-mediated drug transport is a critical mechanism in facilitating neuroprotective drug disposition across endothelial barriers of the blood-brain barrier. SIGNIFICANCE STATEMENT: Transporter data derived from rodent models requires validation in human models. Using human umbilical vein endothelial cells, this study has shown that statin transport is mediated by OATP1A2. Additionally, we demonstrated that OATP1A2 is regulated by transforming growth factor-β/activin receptor-like kinase 1 signaling. This work emphasizes the need to consider endothelial transporter kinetics and regulation during preclinical drug development. Furthermore, our forward-thinking approach can identify effective therapeutics for diseases for which drug development has been challenging (i.e., neurological diseases).

Journal ArticleDOI
TL;DR: It is concluded that inhaled CaSR NAMs are likely a single, safe, and effective topical therapy for human asthma, abolishing AHR, suppressing airways inflammation, and abrogating some features of airway remodeling.
Abstract: Asthma is still an incurable disease and there is a recognised need for novel small molecule therapies for people with asthma, especially those poorly controlled by current treatments. We previously demonstrated that calcium-sensing receptor negative allosteric modulators (CaSR NAMs), calcilytics, uniquely suppress both airway hyperresponsiveness (AHR) and inflammation in human cells and murine asthma surrogates. Here we assess the feasibility of repurposing four CaSR NAMs, originally developed for oral therapy for osteoporosis and previously tested in the clinic, as a novel, single and comprehensive topical anti-asthma therapy. We address the hypotheses, using murine asthma surrogates, that topically-delivered CaSR NAMs (i) abolish AHR; (ii) are unlikely to cause unwanted systemic effects; (iii) are suitable for topical application; (iv) inhibit airways inflammation to the same degree as the current standard of care, inhaled corticosteroid (ICS), and furthermore inhibit airways remodelling. All four CaSR NAMs inhibited poly-L-arginine-induced AHR in naive mice, and suppressed both AHR and airways inflammation in a murine surrogate of acute asthma, confirming class specificity. Repeated exposure to inhaled CaSR NAMs did not alter blood pressure, heart rate or serum calcium concentrations. Optimal candidates for repurposing were identified based on anti-AHR/inflammatory activities, PK/PD, formulation and micronization studies. Whereas both inhaled CaSR NAMs and inhaled corticosteroids reduced airways inflammation, only the former prevented goblet cell hyperplasia in a chronic asthma model. We conclude that inhaled CaSR NAMs are likely a single, safe and effective topical therapy for human asthma, abolishing AHR, suppressing airways inflammation and abrogating some features of airways remodelling.

Journal ArticleDOI
TL;DR: In this article, the authors studied cardiac effects of recently published novel histamine H2 receptor (H2R) agonists in the heart of mice that overexpress the human H2-TG mice and in isolated electrically driven muscle preparations from patients undergoing cardiac surgery.
Abstract: In an integrative approach, we studied cardiac effects of recently published novel H2 receptor agonists in the heart of mice that overexpress the human H2 receptor (H2-TG mice) and littermate wild type (WT) control mice and in isolated electrically driven muscle preparations from patients undergoing cardiac surgery. Under our experimental conditions, the H2 receptor agonists UR-Po563, UR-MB-158, and UR-MB-159 increased force of contraction in left atrium from H2-TG mice with pEC50 values of 8.27, 9.38, and 8.28, respectively, but not in WT mice. Likewise, UR-Po563, UR-MB-158, and UR-MB-159 increased the beating rate in right atrium from H2-TG mice with pEC50 values of 9.01, 9.24, and 7.91, respectively, but not from WT mice. These effects could be antagonized by famotidine, a H2 receptor antagonist. UR-Po563 (1 µM) increased force of contraction in Langendorff-perfused hearts from H2-TG but not WT mice. Similarly, UR-Po563, UR-MB-158, or UR-MB-159 increased the left ventricular ejection fraction in echocardiography of H2-TG mice. Finally, UR-Po563 increased force of contraction in isolated human right atrial muscle strips. The contractile effects of UR-Po563 in H2-TG mice were accompanied by an increase in the phosphorylation state of phospholamban. In summary, we report here three recently developed agonists functionally stimulating human cardiac H2 receptors in vitro and in vivo. We speculate that these compounds might be of some merit to treat neurologic disorders if their cardiac effects are blocked by concomitantly applied receptor antagonists that cannot pass through the blood-brain barrier or might be useful to treat congestive heart failure in patients. SIGNIFICANCE STATEMENT Recently, a new generation of histamine H2 receptor (H2R) agonists has been developed as possible treatment option for Alzheimer’s disease. Here, possible cardiac (side) effects of these novel H2R agonists have been evaluated.

Journal ArticleDOI
TL;DR: In this article, the effects of mecamylamine, a nonselective nAChR antagonist, and varenicline, a partial agonist for α4β2* nACHRs, on cotinine and nicotine self-administration were determined.
Abstract: Nicotine is the major addictive component in tobacco. Cotinine is the major metabolite of nicotine and a weak agonist for nicotinic acetylcholine receptors (nAChRs). Nicotine supports self-administration in rodents. However, it remains undetermined whether cotinine can be self-administered. This study aimed to characterize cotinine self-administration in rats, to compare effects of cotinine to those of nicotine, and to determine potential involvement of nAChRs in cotinine's effects. Adult Wistar rats were trained to self-administer cotinine or nicotine (0.0075, 0.015, 0.03, or 0.06 mg/kg per infusion) under fixed-ratio (FR) and progressive-ratio (PR) schedules. Blood nicotine and cotinine levels were determined after the last FR session. Effects of mecamylamine, a nonselective nAChR antagonist, and varenicline, a partial agonist for α4β2* nAChRs, on cotinine and nicotine self-administration were determined. Rats readily acquired cotinine self-administration, responded more on active lever, and increased motivation to self-administer cotinine when the reinforcement requirement increased. Blood cotinine levels ranged from 77 to 792 ng/ml. Nicotine induced more infusions at lower doses during FR schedules and greater breakpoints at higher doses during the PR schedule than cotinine. There was no difference in cotinine self-administration between male and female rats. Mecamylamine and varenicline attenuated nicotine but not cotinine self-administration. These results indicate that cotinine was self-administered by rats. These effects of cotinine were less robust than nicotine and exhibited no sex difference. nAChRs appeared to be differentially involved in self-administration of nicotine and cotinine. These results suggest cotinine may play a role in the development of nicotine use and misuse. SIGNIFICANCE STATEMENT: Nicotine addiction is a serious public health problem. Cotinine is the major metabolite of nicotine, but its involvement in nicotine reinforcement remains elusive. Our findings indicate that cotinine, at doses producing clinically relevant blood cotinine levels, supported intravenous self-administration in rats. Cotinine self-administration was less robust than nicotine. Mecamylamine and varenicline attenuated nicotine but not cotinine self-administration. These results suggest cotinine may play a role in the development of nicotine use and misuse.

Journal ArticleDOI
TL;DR: It is hypothesized that BBB endothelium distinguishes between Aβ40 and Aβ42, distinctly modulates their trafficking kinetics between plasma and brain, and thereby contributes to the maintenance of healthy A β42/Aβ40 ratios.
Abstract: Blood-brain barrier (BBB) endothelial cells lining the cerebral microvasculature maintain dynamic equilibrium between soluble amyloid-β (Aβ) levels in the brain and plasma. The BBB dysfunction prevalent in Alzheimer disease contributes to the dysregulation of plasma and brain Aβ and leads to the perturbation of the ratio between Aβ42 and Aβ40, the two most prevalent Aβ isoforms in patients with Alzheimer disease. We hypothesize that BBB endothelium distinguishes between Aβ40 and Aβ42, distinctly modulates their trafficking kinetics between plasma and brain, and thereby contributes to the maintenance of healthy Aβ42/Aβ40 ratios. To test this hypothesis, we investigated Aβ40 and Aβ42 trafficking kinetics in hCMEC/D3 monolayers (human BBB cell culture model) in vitro as well as in mice in vivo. Although the rates of uptake of fluorescein-labeled Aβ40 and Aβ42 (F-Aβ40 and F-Aβ42) were not significantly different on the abluminal side, the luminal uptake rate of F-Aβ42 was substantially higher than F-Aβ40. Since higher plasma Aβ levels were shown to aggravate BBB dysfunction and trigger cerebrovascular disease, we systematically investigated the dynamic interactions of luminal [125I]Aβ peptides and their trafficking kinetics at BBB using single-photon emission computed tomography/computed tomography imaging in mice. Quantitative modeling of the dynamic imaging data thus obtained showed that the rate of uptake of toxic [125I]Aβ42 and its subsequent BBB transcytosis is significantly higher than [125I]Aβ40. It is likely that the molecular mechanisms underlying these kinetic differences are differentially affected in Alzheimer and cerebrovascular diseases, impact plasma and brain levels of Aβ40 and Aβ42, engender shifts in the Aβ42/Aβ40 ratio, and unleash downstream toxic effects. SIGNIFICANCE STATEMENT: Dissecting the binding and uptake kinetics of Aβ40 and Aβ42 at the BBB endothelium will facilitate the estimation of Aβ40 versus Aβ42 exposure to the BBB endothelium and allow assessment of the risk of BBB dysfunction by monitoring Aβ42 and Aβ40 levels in plasma. This knowledge, in turn, will aid in elucidating the role of these predominant Aβ isoforms in aggravating BBB dysfunction and cerebrovascular disease.

Journal ArticleDOI
Mark Szendrey1, Jun Guo1, Wentao Li1, Tonghua Yang1, Shetuan Zhang1 
TL;DR: In this paper, the effects of chloroquine, hydroxychloroquine (HCl), azithromycin, and remdesivir on hERG channels were studied.
Abstract: Drug-induced long QT syndrome (LQTS) is an established cardiac side effect of a wide range of medications and represents a significant concern for drug safety. The rapidly and slowly activating delayed rectifier K+ currents, mediated by channels encoded by the human ether-a-go-go-related gene (hERG) and KCNQ1 + KCNE1, respectively, are two main currents responsible for ventricular repolarization. The common cause for drugs to induce LQTS is through impairing the hERG channel. For the recent emergence of COVID-19, caused by severe acute respiratory syndrome coronavirus 2, several drugs have been investigated as potential therapies; however, there are concerns about their QT prolongation risk. Here, we studied the effects of chloroquine, hydroxychloroquine, azithromycin, and remdesivir on hERG channels. Our results showed that although chloroquine acutely blocked hERG current (IhERG), with an IC50 of 3.0 µM, hydroxychloroquine acutely blocked IhERG 8-fold less potently, with an IC50 of 23.4 µM. Azithromycin and remdesivir did not acutely affect IhERG When these drugs were added at 10 µM to the cell culture medium for 24 hours, remdesivir increased IhERG by 2-fold, which was associated with an increased mature hERG channel expression. In addition, these four drugs did not acutely or chronically affect KCNQ1 + KCNE1 channels. Our data provide insight into COVID-19 drug-associated LQTS and cardiac safety concerns. SIGNIFICANCE STATEMENT: This work demonstrates that, among off-label potential COVID-19 treatment drugs chloroquine, hydroxychloroquine, azithromycin, and remdesivir, the former two drugs block hERG potassium channels, whereas the latter two drugs do not. All four drugs do not affect KCNQ1 + KCNE1. As hERG and KCNQ1 + KCNE1 are two main K+ channels responsible for ventricular repolarization, and most drugs that induce long QT syndrome (LQTS) do so by impairing hERG channels, these data provide insight into COVID-19 drug-associated LQTS and cardiac safety concerns.

Journal ArticleDOI
Jared E. Lopes1, Lei Sun1, Heather L. Flick1, Erin A. Murphy1, Heather C. Losey1 
TL;DR: Nemvaleukin alfa as mentioned in this paper is a novel cytokine created by the fusion of circularly permuted interleukin-2 to the IL-2Rα subunit of the IL 2 receptor (IL 2R) complex that confers selectivity for the intermediate affinity IL 2R expressed on CD8+ T cells and natural killer (NK) cells.
Abstract: Nemvaleukin alfa (nemvaleukin, ALKS 4230) is a novel cytokine created by the fusion of circularly permuted interleukin-2 (IL-2) to the IL-2Rα subunit of the IL-2 receptor (IL-2R) complex that confers selectivity for the intermediate-affinity IL-2R expressed on CD8+ T cells and natural killer (NK) cells. The pharmacokinetics and selective pharmacodynamic properties of nemvaleukin have been demonstrated using in vitro and in vivo mouse models. The pharmacokinetic/pharmacodynamic effects of nemvaleukin on immune cell subtypes were evaluated in cynomolgus monkeys after intravenous and subcutaneous administration to inform dose selection and predict pharmacodynamic effects in humans. Male drug-naive cynomolgus monkeys (N = 15) were administered either single-dose (0.3 mg/kg i.v.; 0.3 mg/kg or 1.0 mg/kg s.c.) or repeated doses (0.1 mg/kg i.v. on days 1–5 or 0.5 mg/kg s.c. on days 1 and 4) of nemvaleukin. Serial blood samples were collected for pharmacokinetic assessment, immunophenotyping by flow cytometry, and profiling of serum cytokines. Repeat-dose subcutaneous administration of nemvaleukin with less frequent dosing resulted in total systemic exposure and trough serum concentrations comparable to those seen with intravenous administration, with lower peak serum concentrations. Transient elevation of interferon-γ and IL-6 peaked at 2 and 8 hours after intravenous and subcutaneous administration, respectively. Selective expansion of immunoprotective central memory, effector memory, terminal effector CD8+ T cells, and CD56+ NK cells, and minimal expansion of immunosuppressive CD4+CD25+FoxP3+ regulatory T cells was observed after both intravenous and subcutaneous administration. These data support the ongoing clinical evaluation of intravenous and subcutaneous nemvaleukin. SIGNIFICANCE STATEMENT Administration of the novel interleukin-2 receptor agonist nemvaleukin alfa to cynomolgus monkeys resulted in selective expansion of immune effector cells, including CD8+ T and natural killer cells with minimal effects on immunosuppressive CD4+ regulatory T cells, confirming the design of nemvaleukin and highlighting its potential as a cancer immunotherapy. Subcutaneous administration of nemvaleukin achieved systemic exposure and immunostimulatory effects similar to those observed after more frequent intravenous dosing and may represent a practical alternative in a clinical setting.

Journal ArticleDOI
TL;DR: The finding that the KATP channels in lymphatic muscle cells may be unique from their counterparts in arterial muscle implies that designing arterial-selective KCOs may avoid activation of lymphatic KatP channels and peripheral edema.
Abstract: Pharmacological openers of ATP-sensitive potassium (KATP) channels are effective antihypertensive agents, but off-target effects, including severe peripheral edema, limit their clinical usefulness. It is presumed that the arterial dilation induced by KATP channel openers (KCOs) increases capillary pressure to promote filtration edema. However, KATP channels also are expressed by lymphatic muscle cells (LMCs), raising the possibility that KCOs also attenuate lymph flow to increase interstitial fluid. The present study explored the effect of KCOs on lymphatic contractile function and lymph flow. In isolated rat mesenteric lymph vessels (LVs), the prototypic KATP channel opener cromakalim (0.01-3 µmol/l) progressively inhibited rhythmic contractions and calculated intraluminal flow. Minoxidil sulfate and diazoxide (0.01-100 µmol/l) had similar effects at clinically relevant plasma concentrations. High-speed in vivo imaging of the rat mesenteric lymphatic circulation revealed that superfusion of LVs with cromakalim and minoxidil sulfate (0.01-10 µmol/l) maximally decreased lymph flow in vivo by 38.4% and 27.4%, respectively. Real-time polymerase chain reaction and flow cytometry identified the abundant KATP channel subunits in LMCs as the pore-forming Kir6.1/6.2 and regulatory sulfonylurea receptor 2 subunits. Patch-clamp studies detected cromakalim-elicited unitary K+ currents in cell-attached patches of LMCs with a single-channel conductance of 46.4 pS, which is a property consistent with Kir6.1/6.2 tetrameric channels. Addition of minoxidil sulfate and diazoxide elicited unitary currents of similar amplitude. Collectively, our findings indicate that KCOs attenuate lymph flow at clinically relevant plasma concentrations as a potential contributing mechanism to peripheral edema. SIGNIFICANCE STATEMENT: ATP-sensitive potassium (KATP) channel openers (KCOs) are potent antihypertensive medications, but off-target effects, including severe peripheral edema, limit their clinical use. Here, we demonstrate that KCOs impair the rhythmic contractions of lymph vessels and attenuate lymph flow, which may promote edema formation. Our finding that the KATP channels in lymphatic muscle cells may be unique from their counterparts in arterial muscle implies that designing arterial-selective KCOs may avoid activation of lymphatic KATP channels and peripheral edema.

Journal ArticleDOI
TL;DR: This report provides comprehensive physiologic modeling of chloroquine distribution in tissues and overall disposition in rat and human that reveals expected complexities and inferences related to its subcellular association with various tissue components.
Abstract: A semimechanistic physiologically based pharmacokinetic (PBPK) model for chloroquine (CQ), a highly lysosomotropic weak base, was applied to digitized rat and human concentration versus time data. The PBPK model in rat featured plasma and red blood cell (RBC) concentrations, extensive and apparent nonlinear tissue distribution, fitted hepatic and renal intrinsic clearances, and a plasma half-life of about 1 day. Tissue-to-plasma CQ ratios at 50 hours after dosing were highest in lung, kidney, liver, and spleen (182-318) and lower in heart, muscle, brain, eye, and skin (11-66). The RBC-to-plasma ratio of 11.6 was assumed to reflect cell lipid partitioning. A lysosome-based extended model was used to calculate subcellular CQ concentrations based on tissue mass balances, fitted plasma, interstitial and free cytosol concentrations, and literature-based pH and pKa values. The CQ tissue component concentrations ranked as follows: lysosome > > acidic phospholipid > plasma = interstitial = cytosol ≥ neutral lipids. The extensive lysosome sequestration appeared to change over time and was attributed to lowering pH values caused by proton pump influx of hydrogen ions. The human-to-rat volume of distribution (Vss) ratio of 7 used to scale rat tissue partitioning to human along with estimation of hepatic clearance allowed excellent fitting of oral-dose PK (150-600 mg) of CQ with a 50-day half-life in humans. The prolonged PK of chloroquine was well characterized for rat and human with this PBPK model. The calculated intratissue concentrations and lysosomal effects have therapeutic relevance for CQ and other cationic drugs. SIGNIFICANCE STATEMENT: Sequestration in lysosomes is a major factor controlling the pharmacokinetics and pharmacology of chloroquine and other cationic drugs. This report provides comprehensive physiologic modeling of chloroquine distribution in tissues and overall disposition in rat and human that reveals expected complexities and inferences related to its subcellular association with various tissue components.

Journal ArticleDOI
TL;DR: In this article, the effects of leucine-rich kinase 2 (LRRK2) inhibition on lung histomorphology were investigated in mice. But, the results showed that lung changes were mild and readily reversible.
Abstract: Gain-of-function mutations in leucine-rich kinase 2 (LRRK2) are associated with increased incidence of Parkinson disease (PD); thus, pharmacological inhibition of LRRK2 kinase activity is postulated as a disease-modifying treatment of PD. Histomorphological changes in lungs of nonhuman primates (NHPs) treated with small-molecule LRRK2 kinase inhibitors have brought the safety of this treatment approach into question. Although it remains unclear how LRRK2 kinase inhibition affects the lung, continued studies in NHPs prove to be both cost- and resource-prohibitive. To develop a tractable alternative animal model platform, we dosed male mice in-diet with the potent, highly selective LRRK2 kinase inhibitor MLi-2 and induced histomorphological changes in lung within 1 week. Oral bolus dosing of MLi-2 at a frequency modeled to provide steady-state exposure equivalent to that achieved with in-diet dosing induced type II pneumocyte vacuolation, suggesting pulmonary changes require sustained LRRK2 kinase inhibition. Treating mice with MLi-2 in-diet for up to 6 months resulted in type II pneumocyte vacuolation that progressed only modestly over time and was fully reversible after withdrawal of MLi-2. Immunohistochemical analysis of lung revealed a significant increase in prosurfactant protein C staining within type II pneumocytes. In the present study, we demonstrated the kinetics for onset, progression, and rapid reversibility of chronic LRRK2 kinase inhibitor effects on lung histomorphology in rodents and provide further evidence for the derisking of safety and tolerability concerns for chronic LRRK2 kinase inhibition in PD. SIGNIFICANCE STATEMENT We have defined a mouse model by which the on-target lung effects of leucine-rich kinase 2 (LRRK2) kinase inhibition can be monitored, whereas previous in vivo testing relied solely on nonhuman primates. Data serve to derisk long-term treatment with LRRK2 kinase inhibitors, as all lung changes were mild and readily reversible.

Journal ArticleDOI
TL;DR: In this article, the authors found that connexin-43 (Cx43), an important contractile-associated protein, is dysregulated in spontaneous preterm labor myometrium and that pharmacologic inhibition of Cx43 and its S-nitrosation with 18β-glycyrrhetinic acid and nebivolol, respectively, significantly blunts contraction in human myometrial tissue.
Abstract: Currently available tocolytics are ineffective at significantly delaying preterm birth. This is due in part to our failure to better understand the mechanisms that drive spontaneous preterm labor (sPTL). Cyclic nucleotides are not the primary contributors to myometrial quiescence, but instead nitric oxide (NO)-mediated protein S-nitrosation (SNO) is integral to the relaxation of the tissue. Connexin-43 (Cx43), a myometrial "contractile-associated protein" that functions as either a gap junction channel or an hemichannel (HC), was the focus of this study. Protein analysis determined that Cx43 is downregulated in sPTL myometrium. Furthermore, Cx43 is S-nitrosated by NO, which correlates with an increase of phosphorylated Cx43 at serine 368 (Cx43-pS368 -gap junction inhibition) as well as an increase in the HC open-state probability (quiescence). Pharmacologic inhibition of Cx43 with 18β-glycyrrhetinic acid (18β-GA) exhibits a negative inotropic effect on the myometrium in a dose-dependent manner, as does administration of nebivolol, an NO synthase activator that increases total protein SNOs. When 18β-GA and nebivolol were coadministered at their IC50 values, the effect on contractile dynamics was additive and all but eliminated contractions. The development of new tocolytics demands a better understanding of the underlying mechanisms of sPTL. Here it has been shown that 18β-GA and nebivolol leverage dysregulated pathways in the myometrium, resulting in a novel approach for the treatment of sPTL. SIGNIFICANCE STATEMENT: Although there are many known causes of preterm labor (PTL), the mechanisms of "spontaneous" PTL (sPTL) remain obfuscated, which is why treating this condition is so challenging. Here we have identified that connexin-43 (Cx43), an important contractile-associated protein, is dysregulated in sPTL myometrium and that the pharmacologic inhibition of Cx43 and its S-nitrosation with 18β-glycyrrhetinic acid and nebivolol, respectively, significantly blunts contraction in human myometrial tissue, presenting a novel approach to tocolysis that leverages maladjusted pathways in women who experience sPTL.

Journal ArticleDOI
TL;DR: In this article, Brivaracetam and levetiracetam were evaluated in an etiologically realistic rat posttraumatic epilepsy model optimized for efficient drug testing, and the antiepileptogenic/disease-modifying potential of the drug was assessed.
Abstract: Mounting evidence suggests the synaptic vesicle glycoprotein 2A (SV2A) targeted by levetiracetam may contribute to epileptogenesis. Levetiracetam has shown anti-inflammatory, antioxidant, neuroprotective and possible antiepileptogenic effects in brain injury and seizure/epilepsy models, and a phase 2 study has signaled a possible clinical antiepileptogenic effect. Brivaracetam shows greater affinity and specificity for SV2A than levetiracetam and broader preclinical anti-seizure effects. Thus, we assessed the antiepileptogenic/disease-modifying potential of brivaracetam in an etiologically realistic rat posttraumatic epilepsy model optimized for efficient drug testing. Brivaracetam delivery protocols were designed to maintain clinical moderate-to-high plasma levels in young (5-week-old) male Sprague-Dawley rats for four weeks. Treatment protocols were rapidly screened in 4-week experiments using small groups of animals to ensure against rigorous testing of futile treatment protocols. The antiepileptogenic effects of brivaracetam treatment initiated 30min, 4hr and 8hr after rostral parasagittal fluid percussion injury (rpFPI) were then compared to vehicle-treated controls in a fully powered blind and randomized 16-week validation. Seizures were evaluated by video-electrocorticography using a 5-electrode epidural montage. Endpoint measures included incidence, frequency, duration and spread of seizures. Group sizes and recording durations were supported by published power analyses. Three months after treatment ended, rats treated with brivaracetam starting at 4 hr post-FPI (the best-performing protocol) experienced a 38% decrease in overall incidence of seizures, 59% decrease in seizure frequency, 67% decrease in time spent seizing, and a 45% decrease in the proportion of spreading seizures that was independent of duration-based seizure definition. Thus, brivaracetam shows both antiepileptogenic and disease-modifying properties after rpFPI. Significance Statement The rpFPI model, which likely incorporates epileptogenic mechanisms operating after human head injury, can be used to efficiently screen investigational treatment protocols and assess antiepileptogenic/disease-modifying effects. Our studies 1) support a role for SV2A in epileptogenesis, 2) suggest that brivaracetam and other drugs targeting SV2A should be considered for human clinical trials of prevention of post-traumatic epilepsy after head injury and 3) provide data to inform the design of treatment protocols for clinical trials.

Journal ArticleDOI
TL;DR: In this paper, the effect of itraconazole (200mg solution QD, 4 days), a strong CYP3A4 and P-gp inhibitor, on pharmacokinetics of ipatasertib (100-mg single dose).
Abstract: Ipatasertib is a pan-AKT inhibitor in development for the treatment of cancer. Ipatasertib was metabolized by CYP3A4 to its major metabolite, M1 (G-037720), and was a P-gp substrate and OATP1B1/1B3 inhibitor in vitro. A phase I drug-drug interaction (DDI) study (n = 15) was conducted in healthy subjects to evaluate the effect of itraconazole (200-mg solution QD, 4 days), a strong CYP3A4 and P-gp inhibitor, on pharmacokinetics of ipatasertib (100-mg single dose). Itraconazole increased the Cmax and AUC0-∞ of ipatasertib by 2.3- and 5.5-fold, respectively, increased the half-life by 53%, and delayed the tmax by 1 hour. The Cmax and AUC0-72h of its metabolite M1 (G-037720) reduced by 91% and 68%, respectively. This study confirmed that CYP3A4 plays a major role in ipatasertib clearance. Furthermore, the interaction of ipatasertib with coproporphyrin (CP) I and CPIII, the two endogenous substrates of OATP1B1/1B3, was evaluated in this study. CPI and CPIII plasma levels were unchanged in the presence of ipatasertib, both at exposures of 100 mg and at higher exposures in combination with itraconazole. This indicated no in vivo inhibition of OATP1B1/1B3 by ipatasertib. Additionally, it was shown that CPI and CPIII were not P-gp substrates in vitro, and itraconazole had no effect on CPI and CPIII concentrations in vivo. The latter is an important finding because it will simplify interpretation of future DDI studies using CPI/CPIII as OATP1B1/1B3 biomarkers. SIGNIFICANCE STATEMENT This drug-drug interaction study in healthy volunteers demonstrated that CYP3A4 plays a major role in ipatasertib clearance, and that ipatasertib is not an organic anion transporting polypeptide 1B1/1B3 inhibitor. Furthermore, it was demonstrated that itraconazole, an inhibitor of CYP3A4 and several transporters, did not affect CPI/CPIII levels in vivo. This increases the understanding and application of these endogenous substrates as well as itraconazole in complex drug interaction studies.

Journal ArticleDOI
TL;DR: In this article, the authors compared the ability of naloxone and methocinnamox (MCAM) to reverse and prevent ventilatory depression by fentanyl and compared the duration of action of MCAM intravenously and subcutaneously in two procedures: ventilation and warmwater tail withdrawal.
Abstract: Opioid use disorder affects over 2 million Americans with an increasing number of deaths due to overdose from the synthetic opioid fentanyl and its analogs. The Food and Drug Administration-approved opioid receptor antagonist naloxone (e.g., Narcan) is used currently to treat overdose; however, a short duration of action limits its clinical utility. Methocinnamox (MCAM) is a long-lasting opioid receptor antagonist that may reverse and prevent the ventilatory-depressant effects of fentanyl. This study compared the ability of naloxone (0.0001-10 mg/kg) and MCAM (0.0001-10 mg/kg) to reverse and prevent ventilatory depression by fentanyl and compared the duration of action of MCAM intravenously and subcutaneously in two procedures: ventilation and warm-water tail withdrawal. In male Sprague-Dawley rats (N = 8), fentanyl (0.0032-0.178 mg/kg, i.v.) decreased minute volume in a dose- and time-dependent manner with a dose of 0.178 mg/kg decreasing VE to less than 40% of control. MCAM and naloxone reversed the ventilatory-depressant effects of 0.178 mg/kg fentanyl in a dose-related manner. The day after antagonist administration, MCAM but not naloxone attenuated the ventilatory-depressant effects of fentanyl. The duration of action of MCAM lasted up to 3 days and at least 2 weeks after intravenous and subcutaneous administration, respectively. MCAM attenuated the antinociceptive effects of fentanyl, with antagonism lasting up to 5 days and more than 2 weeks after intravenous and subcutaneous administration, respectively. Reversal and prolonged antagonism by MCAM might provide an effective treatment option for the opioid crisis, particularly toxicity from fentanyl and related highly potent analogs. SIGNIFICANCE STATEMENT: This study demonstrates that like naloxone, methocinnamox (MCAM) reverses the ventilatory-depressant effects of fentanyl in a time- and dose-related manner. However, unlike naloxone, the duration of action of MCAM was greater than 2 weeks when administered subcutaneously and up to 5 days when administered intravenously. These data suggest that MCAM might be particularly useful for rescuing individuals from opioid overdose, including fentanyl overdose, as well as protecting against the reemergence of ventilatory depression (renarconization).