scispace - formally typeset
Search or ask a question

Showing papers in "Microbiology spectrum in 2023"


Journal ArticleDOI
TL;DR: In this article , the authors examined the DNA content of OMVs produced by the opportunistic pathogen Pseudomonas aeruginosa grown in either planktonic or biofilm conditions.
Abstract: Bacterial membrane vesicles (BMVs) mediate interbacterial communication, and their ability to package DNA specifically contributes to biofilm formation, antibiotic resistance, and HGT between bacteria. However, the ability of P. aeruginosa OMVs to mediate HGT has not yet been demonstrated. ABSTRACT Outer membrane vesicles (OMVs) produced by Gram-negative bacteria package various cargo, including DNA that can be transferred to other bacteria or to host cells. OMV-associated DNA has been implicated in mediating horizontal gene transfer (HGT) between bacteria, which includes the dissemination of antibiotic resistance genes within and between bacterial species. Despite the known ability of OMVs to mediate HGT, the mechanisms of DNA packaging into OMVs remain poorly characterized, as does the effect of bacterial growth conditions on the DNA cargo composition of OMVs and their subsequent abilities to mediate HGT. In this study, we examined the DNA content of OMVs produced by the opportunistic pathogen Pseudomonas aeruginosa grown in either planktonic or biofilm conditions. Analysis of planktonic growth-derived OMVs revealed their ability to package and protect plasmid DNA from DNase degradation and to transfer plasmid-encoded antibiotic resistance genes to recipient, antibiotic-sensitive P. aeruginosa bacteria at a greater efficiency than transformation with plasmid alone. Comparisons of planktonic and biofilm-derived P. aeruginosa OMVs demonstrated that biofilm-derived OMVs were smaller but were associated with more plasmid DNA than planktonic-derived OMVs. Additionally, biofilm-derived P. aeruginosa OMVs were more efficient in the transformation of competent P. aeruginosa bacteria, compared to transformations with an equivalent number of planktonic-derived OMVs. The findings of this study highlight the importance of bacterial growth conditions for the packaging of DNA within P. aeruginosa OMVs and their ability to facilitate HGT, thus contributing to the spread of antibiotic resistance genes between P. aeruginosa bacteria. IMPORTANCE Bacterial membrane vesicles (BMVs) mediate interbacterial communication, and their ability to package DNA specifically contributes to biofilm formation, antibiotic resistance, and HGT between bacteria. However, the ability of P. aeruginosa OMVs to mediate HGT has not yet been demonstrated. Here, we reveal that P. aeruginosa planktonic and biofilm-derived OMVs can deliver plasmid-encoded antibiotic resistance to recipient P. aeruginosa. Additionally, we demonstrated that P. aeruginosa biofilm-derived OMVs were associated with more plasmid DNA compared to planktonic-derived OMVs and were more efficient in the transfer of plasmid DNA to recipient bacteria. Overall, this demonstrated the ability of P. aeruginosa OMVs to facilitate the dissemination of antibiotic resistance genes, thereby enabling the survival of susceptible bacteria during antibiotic treatment. Investigating the roles of biofilm-derived BMVs may contribute to furthering our understanding of the role of BMVs in HGT and the spread of antibiotic resistance in the environment.

5 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated the potency of the recently licensed drugs ceftazidime-avibactam (CZA), ceftolozane-tazobactam(C/T), and cefiderocol (FDC) as well as two novel preclinical antibiotics, darobactins B (DAR B) and B9, against clinical P. aeruginosa isolates derived from respiratory samples of CF patients.
Abstract: Antimicrobial resistance (AMR) represents an ever increasing threat to the health care system. Even recently licensed drugs are often not efficient for the treatment of infections caused by Gram-negative bacteria, like Pseudomonas aeruginosa, a causative agent of lung infections. To address this unmet medical need, innovative antibiotics, which possess a new mode of action, need to be developed. Here, the antibiogram of clinical isolates derived from cystic fibrosis patients was generated and new bicyclic heptapeptides, which inhibit the outer membrane protein BamA, exhibited strong activity, also against multidrug-resistant isolates. ABSTRACT The emergence and spread of antimicrobial resistance (AMR) in Gram-negative pathogens, such as carbapenem-resistant Pseudomonas aeruginosa, pose an increasing threat to health care. Patients with immunodeficiencies or chronic pulmonary disease, like cystic fibrosis (CF), are particularly vulnerable to Pseudomonas infections and depend heavily on antibiotic therapy. To broaden limited treatment options, this study evaluated the potency of the recently licensed drugs ceftazidime-avibactam (CZA), ceftolozane-tazobactam (C/T), and cefiderocol (FDC) as well as two novel preclinical antibiotics, darobactins B (DAR B) and B9 (DAR B9), against clinical P. aeruginosa isolates derived from respiratory samples of CF patients. We observed high levels of resistance to all three newly licensed drugs, with cefiderocol exhibiting the best activity. From the 66 investigated P. aeruginosa isolates, a total of 53% were resistant to CZA, 49% to C/T, and 30% to FDC. Strikingly, 52 of the evaluated isolates were obtained from CF patients prior to market introduction of the drugs. Thus, our results suggest that resistance to CZA, C/T, and FDC may be due to preexisting resistance mechanisms. On the other hand, our two novel preclinical compounds performed better than (CZA and C/T) or close to (FDC) the licensed drugs—most likely due to the novel mode of action. Thus, our results highlight the necessity of global consistency in the area of antibiotic stewardship to prevent AMR from further impairing the potency of antibiotics in clinical practice. Ultimately, this study demonstrates the urgency to support the development of novel antimicrobials, preferably with a new mode of action such as darobactins B and B9, two very promising antimicrobial compounds for the treatment of critically ill patients suffering from multidrug-resistant Gram-negative (MRGN) infections. IMPORTANCE Antimicrobial resistance (AMR) represents an ever increasing threat to the health care system. Even recently licensed drugs are often not efficient for the treatment of infections caused by Gram-negative bacteria, like Pseudomonas aeruginosa, a causative agent of lung infections. To address this unmet medical need, innovative antibiotics, which possess a new mode of action, need to be developed. Here, the antibiogram of clinical isolates derived from cystic fibrosis patients was generated and new bicyclic heptapeptides, which inhibit the outer membrane protein BamA, exhibited strong activity, also against multidrug-resistant isolates.

5 citations


Journal ArticleDOI
TL;DR: In this paper , the authors reported the isolation of a phage on an extensively antibiotic resistant ST2 A. baumannii isolate AB5001 that carries the KL3 CPS biosynthesis gene cluster predicting a K3-type CPS.
Abstract: Lytic bacteriophage have potential for the treatment of otherwise untreatable extensively antibiotic-resistant bacteria. For Acinetobacter baumannii, most phage exhibit specificity for the type of capsular polysaccharide (CPS) produced on the cell surface. ABSTRACT The type of capsular polysaccharide (CPS) on the cell surface of Acinetobacter baumannii can determine the specificity of lytic bacteriophage under consideration for therapeutic use. Here, we report the isolation of a phage on an extensively antibiotic resistant ST2 A. baumannii isolate AB5001 that carries the KL3 CPS biosynthesis gene cluster predicting a K3-type CPS. As the phage did not infect isolates carrying KL3 or KL22 and known to produce K3 CPS, the structure of the CPS isolated from A. baumannii AB5001 was determined. AB5001 produced a variant CPS form, K3-v1, that lacks the β-d-GlсpNAc side chain attached to the d-Galp residue in the K3 structure. Inspection of the KL3 sequence in the genomes of AB5001 and other phage-susceptible isolates with a KL3 locus revealed single-base deletions in gtr6, causing loss of the Gtr6 glycosyltransferase that adds the missing d-GlсpNAc side chain to the K3 CPS. Hence, the presence of this sugar profoundly restricts the ability of the phage to digest the CPS. The 41-kb linear double-stranded DNA (dsDNA) phage genome was identical to the genome of a phage isolated on a K37-producing isolate and thus was named APK37.1. APK37.1 also infected isolates carrying KL116. Consistent with this, K3-v1 resembles the K37 and K116 structures. APK37.1 is a Friunavirus belonging to the Autographiviridae family. The phage-encoded tail spike depolymerase DpoAPK37.1 was not closely related to Dpo encoded by other sequenced Friunaviruses, including APK37 and APK116. IMPORTANCE Lytic bacteriophage have potential for the treatment of otherwise untreatable extensively antibiotic-resistant bacteria. For Acinetobacter baumannii, most phage exhibit specificity for the type of capsular polysaccharide (CPS) produced on the cell surface. However, resistance can arise via mutations in CPS genes that abolish this phage receptor. Here, we show that single-base deletions in a CPS gene result in alteration of the final structure rather than deletion of the capsule layer and hence affect the ability of a newly reported podophage to infect strains producing the K3 CPS.

4 citations


Journal ArticleDOI
TL;DR: Despite COVID-19-related disruptions, a large proportion of older adults carried pneumococcus at least once during the 10-week study period, and prevalence was particularly high among those who had contact with school-aged children, but carriage was not limited to this group.
Abstract: Carriage of Streptococcus pneumoniae (pneumococcus) in the upper respiratory tract is considered a prerequisite to invasive pneumococcal disease. During the first year of the COVID-19 pandemic, markedly lower rates of invasive pneumococcal disease were reported worldwide. ABSTRACT Reported rates of invasive pneumococcal disease were markedly lower than normal during the 2020/2021 winter in the Northern Hemisphere, the first year after the start of the COVID-19 pandemic. However, little is known about rates of carriage of pneumococcus among adults during this period. Between October 2020-August 2021, couples in the Greater New Haven Area, USA, were enrolled if both individuals were aged 60 years and above and did not have any individuals under the age of 60 years living in the household. Saliva samples and questionnaires regarding social activities and contacts and medical history were obtained every 2 weeks for a period of 10 weeks. Following culture-enrichment, extracted DNA was tested using qPCR for pneumococcus-specific sequences piaB and lytA. Individuals were considered positive for pneumococcal carriage when Ct values for piaB were ≤40. Results. We collected 567 saliva samples from 95 individuals (47 household pairs and 1 singleton). Of those, 7.1% of samples tested positive for pneumococcus, representing 22/95 (23.2%) individuals and 16/48 (33.3%) households. Study participants attended few social events during this period. However, many participants continued to have regular contact with children. Individuals who had regular contact with preschool and school-aged children (i.e., 2 to 9 year olds) had a higher prevalence of carriage (15.9% versus 5.4%). Despite COVID-19-related disruptions, a large proportion of older adults continued to carry pneumococcus. Prevalence was particularly high among those who had contact with school-aged children, but carriage was not limited to this group. IMPORTANCE Carriage of Streptococcus pneumoniae (pneumococcus) in the upper respiratory tract is considered a prerequisite to invasive pneumococcal disease. During the first year of the COVID-19 pandemic, markedly lower rates of invasive pneumococcal disease were reported worldwide. Despite this, by testing saliva samples with PCR, we found that older adults continued to carry pneumococcus at pre-pandemic levels. Importantly, this study was conducted during a period when transmission mitigation measures related to the COVID-19 pandemic were in place. However, our observations are in line with reports from Israel and Belgium where carriage was also found to persist in children. In line with this, we observed that carriage prevalence was particularly high among the older adults in our study who maintained contact with school-aged children.

4 citations


Journal ArticleDOI
TL;DR: In this article , a simple CRISPR/Cas9 genome editing system that gave extremely high (>95%) gene-targeting frequencies in Aspergillus flavus was developed, which is readily applicable to other section Flavi species and aspergilli in other sections (Section” is a taxonomic rank between genus and species).
Abstract: CRISPR/Cas9 genome editing systems have been developed for many aspergilli. Reported gene-targeting efficiencies vary greatly and are dependent on delivery methods, repair mechanisms of induced double-stranded breaks, selection markers, and genetic backgrounds of transformation recipient strains. ABSTRACT For Aspergillus flavus, a pathogen of considerable economic and health concern, successful gene knockout work for more than a decade has relied nearly exclusively on using nonhomologous end-joining pathway (NHEJ)-deficient recipients via forced double-crossover recombination of homologous sequences. In this study, a simple CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease) genome editing system that gave extremely high (>95%) gene-targeting frequencies in A. flavus was developed. It contained a shortened Aspergillus nidulans AMA1 autonomously replicating sequence that maintained good transformation frequencies and Aspergillus oryzae ptrA as the selection marker for pyrithiamine resistance. Expression of the codon-optimized cas9 gene was driven by the A. nidulans gpdA promoter and trpC terminator. Expression of single guide RNA (sgRNA) cassettes was controlled by the A. flavus U6 promoter and terminator. The high transformation and gene-targeting frequencies of this system made generation of A. flavus gene knockouts with or without phenotypic changes effortless. Additionally, multiple-gene knockouts of A. flavus conidial pigment genes (olgA/copT/wA or olgA/yA/wA) were quickly generated by a sequential approach. Cotransforming sgRNA vectors targeting A. flavus kojA, yA, and wA gave 52%, 40%, and 8% of single-, double-, and triple-gene knockouts, respectively. The system was readily applicable to other section Flavi aspergilli (A. parasiticus, A. oryzae, A. sojae, A. nomius, A. bombycis, and A. pseudotamarii) with comparable transformation and gene-targeting efficiencies. Moreover, it gave satisfactory gene-targeting efficiencies (>90%) in A. nidulans (section Nidulantes), A. fumigatus (section Fumigati), A. terreus (section Terrei), and A. niger (section Nigri). It likely will have a broad application in aspergilli. IMPORTANCE CRISPR/Cas9 genome editing systems have been developed for many aspergilli. Reported gene-targeting efficiencies vary greatly and are dependent on delivery methods, repair mechanisms of induced double-stranded breaks, selection markers, and genetic backgrounds of transformation recipient strains. They are also mostly strain specific or species specific. This developed system is highly efficient and allows knocking out multiple genes in A. flavus efficiently either by sequential transformation or by cotransformation of individual sgRNA vectors if desired. It is readily applicable to section Flavi species and aspergilli in other sections (“section” is a taxonomic rank between genus and species). This cross-Aspergillus section system is for wild-type isolates and does not require homologous donor DNAs to be added, NHEJ-deficient strains to be created, or forced recycling of knockout recipients to be performed for multiple-gene targeting. Hence, it simplifies and expedites the gene-targeting process significantly.

4 citations


Journal ArticleDOI
TL;DR: In this paper , the authors describe the evaluation of four low-resource serotype-specific dengue tests for the detection of specific DENV serotypes in clinical sample matrices.
Abstract: The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. This study describes the evaluation of four rapid low-resource serotype-specific dengue tests for the detection of specific DENV serotypes in clinical sample matrices. ABSTRACT The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. The identification of specific dengue virus serotype 1 (DENV-1) to DENV-4 can help in understanding the transmission dynamics and spread of dengue disease. The four rapid low-resource serotype-specific dengue tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. Results are obtained directly from clinical sample matrices in 35 min, requiring only a heating block and pipettes for liquid handling. In addition, we demonstrate that the rapid sample preparation step inactivates DENV, improving laboratory safety. Human plasma and serum were spiked with DENV, and DENV was detected with analytical sensitivities of 333 to 22,500 median tissue culture infectious doses (TCID50)/mL. The analytical sensitivities in blood were 94,000 to 333,000 TCID50/mL. Analytical specificity testing confirmed that each test could detect multiple serotype-specific strains but did not respond to strains of other serotypes, closely related flaviviruses, or chikungunya virus. Clinical testing on 80 human serum samples demonstrated test specificities of between 94 and 100%, with a DENV-2 test sensitivity of 100%, detecting down to 0.004 PFU/μL, similar to the sensitivity of the PCR test; the other DENV tests detected down to 0.03 to 10.9 PFU/μL. Collectively, our data suggest that some of our rapid dengue serotyping tests provide a potential alternative to conventional labor-intensive RT-quantitative PCR (RT-qPCR) detection, which requires expensive thermal cycling instrumentation, technical expertise, and prolonged testing times. Our tests provide performance and speed without compromising specificity in human plasma and serum and could become promising tools for the detection of high DENV loads in resource-limited settings. IMPORTANCE The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. This study describes the evaluation of four rapid low-resource serotype-specific dengue tests for the detection of specific DENV serotypes in clinical sample matrices. The tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. These tests have several advantages compared to RT-qPCR detection, such as a simple workflow, rapid sample processing and turnaround times (35 min from sample preparation to detection), minimal equipment needs, and improved laboratory safety through the inactivation of the virus during the sample preparation step. The low-resource formats of these rapid dengue serotyping tests have the potential to support effective dengue disease surveillance and enhance the diagnostic testing capacity in resource-limited countries with both endemic dengue and intense coronavirus disease 2019 (COVID-19) transmission.

4 citations


Journal ArticleDOI
TL;DR: In this article , the authors used the retroelement sequencing tools TEcount and Telescope to analyze publicly available transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation (ChIP) sequencing data sets of macrophages treated with a wide range of agonists.
Abstract: The human endogenous retrovirus group K subgroup, HML-2, is known to be elevated in a long list of inflammation-associated diseases. However, a clear mechanism for HML-2 upregulation in response to inflammation has not been defined. ABSTRACT Human endogenous retroviruses (HERVs) comprise about 8.3% of the human genome and are capable of producing RNA molecules that can be sensed by pattern recognition receptors, leading to the activation of innate immune response pathways. The HERV-K (HML-2) subgroup is the youngest HERV clade with the highest degree of coding competence. Its expression is associated with inflammation-related diseases. However, the precise HML-2 loci, stimuli, and signaling pathways involved in these associations are not well understood or defined. To elucidate HML-2 expression on a locus-specific level, we used the retroelement sequencing tools TEcount and Telescope to analyze publicly available transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation (ChIP) sequencing data sets of macrophages treated with a wide range of agonists. We found that macrophage polarization significantly correlates with modulation of the expression of specific HML-2 proviral loci. Further analysis demonstrated that the provirus HERV-K102, located in an intergenic region of locus 1q22, constituted the majority of the HML-2 derived transcripts following pro-inflammatory (M1) polarization and was upregulated explicitly in response to interferon gamma (IFN-γ) signaling. We found that signal transducer and activator of transcription 1 and interferon regulatory factor 1 interact with a solo long terminal repeat (LTR) located upstream of HERV-K102, termed LTR12F, following IFN-γ signaling. Using reporter constructs, we demonstrated that LTR12F is critical for HERV-K102 upregulation by IFN-γ. In THP1-derived macrophages, knockdown of HML-2 or knockout of MAVS, an adaptor of RNA-sensing pathways, significantly downregulated genes containing interferon-stimulated response elements (ISREs) in their promoters, suggesting an intermediate role of HERV-K102 in the switch from IFN-γ signaling to the activation of type I interferon expression and, therefore, in a positive feedback loop to enhance pro-inflammatory signaling. IMPORTANCE The human endogenous retrovirus group K subgroup, HML-2, is known to be elevated in a long list of inflammation-associated diseases. However, a clear mechanism for HML-2 upregulation in response to inflammation has not been defined. In this study, we identify a provirus of the HML-2 subgroup, HERV-K102, which is significantly upregulated and constitutes the majority of the HML-2 derived transcripts in response to pro-inflammatory activation of macrophages. Moreover, we identify the mechanism of HERV-K102 upregulation and demonstrate that HML-2 expression enhances interferon-stimulated response element activation. We also demonstrate that this provirus is elevated in vivo and correlates with interferon gamma signaling activity in cutaneous leishmaniasis patients. This study provides key insights into the HML-2 subgroup and suggests that it may participate in enhancing pro-inflammatory signaling in macrophages and probably other immune cells.

4 citations


Journal ArticleDOI
TL;DR: In this article , the authors characterized the gut microbiota of a transgenic AD mouse model, fortnightly, from 4 to 52 weeks of age, to quantify the temporal dynamics in the microbial composition that correlate with the development of disease pathologies and host immune gene expression.
Abstract: Recent studies have demonstrated alterations in the gut microbiota composition in mice modeling Alzheimer’s disease (AD) pathologies; however, these studies have only included up to 4 time points. Our study is the first of its kind to characterize the gut microbiota of a transgenic AD mouse model, fortnightly, from 4 weeks of age to 52 weeks of age, to quantify the temporal dynamics in the microbial composition that correlate with the development of disease pathologies and host immune gene expression. ABSTRACT The gut microbiota-brain axis is suspected to contribute to the development of Alzheimer’s disease (AD), a neurodegenerative disease characterized by amyloid-β plaque deposition, neurofibrillary tangles, and neuroinflammation. To evaluate the role of the gut microbiota-brain axis in AD, we characterized the gut microbiota of female 3xTg-AD mice modeling amyloidosis and tauopathy and wild-type (WT) genetic controls. Fecal samples were collected fortnightly from 4 to 52 weeks, and the V4 region of the 16S rRNA gene was amplified and sequenced on an Illumina MiSeq. RNA was extracted from the colon and hippocampus, converted to cDNA, and used to measure immune gene expression using reverse transcriptase quantitative PCR (RT-qPCR). Diversity metrics were calculated using QIIME2, and a random forest classifier was applied to predict bacterial features that are important in predicting mouse genotype. Gene expression of glial fibrillary acidic protein (GFAP; indicating astrocytosis) was elevated in the colon at 24 weeks. Markers of Th1 inflammation (il6) and microgliosis (mrc1) were elevated in the hippocampus. Gut microbiota were compositionally distinct early in life between 3xTg-AD mice and WT mice (permutational multivariate analysis of variance [PERMANOVA], 8 weeks, P = 0.001, 24 weeks, P = 0.039, and 52 weeks, P = 0.058). Mouse genotypes were correctly predicted 90 to 100% of the time using fecal microbiome composition. Finally, we show that the relative abundance of Bacteroides species increased over time in 3xTg-AD mice. Taken together, we demonstrate that changes in bacterial gut microbiota composition at prepathology time points are predictive of the development of AD pathologies. IMPORTANCE Recent studies have demonstrated alterations in the gut microbiota composition in mice modeling Alzheimer’s disease (AD) pathologies; however, these studies have only included up to 4 time points. Our study is the first of its kind to characterize the gut microbiota of a transgenic AD mouse model, fortnightly, from 4 weeks of age to 52 weeks of age, to quantify the temporal dynamics in the microbial composition that correlate with the development of disease pathologies and host immune gene expression. In this study, we observed temporal changes in the relative abundances of specific microbial taxa, including the genus Bacteroides, that may play a central role in disease progression and the severity of pathologies. The ability to use features of the microbiota to discriminate between mice modeling AD and wild-type mice at prepathology time points indicates a potential role of the gut microbiota as a risk or protective factor in AD.

4 citations


Journal ArticleDOI
TL;DR: In this article , a short tandem repeat (STR) typing scheme was developed for C. tropicalis to enable fast, cost-effective, and high-resolution genotyping, which was found to correlate well to SNP calling by WGS.
Abstract: Candida tropicalis frequently causes candidemia in immunocompromised patients. C. tropicalis infections have a high mortality rate, and the yeast is able to cause outbreaks in health care facilities. Further, antifungal resistant isolates are on the rise. ABSTRACT Candida tropicalis is a clinically important yeast that causes candidemia in humans with a high mortality rate. The yeast primarily infects immunocompromised patients, and causes outbreaks in health care facilities. Antifungal resistant isolates have been reported. We developed a short tandem repeat (STR) typing scheme for C. tropicalis to enable fast, cost-effective, and high-resolution genotyping. For the development of the typing scheme, 6 novel STR markers were selected, combined into 2 multiplex PCRs. In total, 117 C. tropicalis isolates were typed, resulting in the identification of 104 different genotypes. Subsequently, the outcome of STR typing of 10 isolates was compared to single nucleotide polymorphism (SNP) calling from whole-genome sequencing (WGS). Isolates with more than 111 SNPs were differentiated by the typing assay. Two isolates, which were identical according to SNP analysis, were separated by STR typing in 1 marker. To test specificity, the STR typing was applied to 15 related yeast species, and we found no amplification of these targets. For reproducibility testing, 2 isolates were independently typed five times, which showed identical results in each experiment. In summary, we developed a reliable and multiplex STR genotyping for C. tropicalis, which was found to correlate well to SNP calling by WGS. WGS analysis from and extensive collection of isolates is required to establish the precise resolution of this STR assay. IMPORTANCE Candida tropicalis frequently causes candidemia in immunocompromised patients. C. tropicalis infections have a high mortality rate, and the yeast is able to cause outbreaks in health care facilities. Further, antifungal resistant isolates are on the rise. Genotyping is necessary to investigate potential outbreaks. Here, we developed and applied a STR genotyping scheme in order to rapidly genotype isolates with a high-resolution. WGS SNP outcomes were highly comparable with STR typing results. Altogether, we developed a rapid, high-resolution, and specific STR genotyping scheme for C. tropicalis.

3 citations


Journal ArticleDOI
TL;DR: In this paper , the authors used a Bonito base-calling model to identify Brachyspira hyodysenteriae (B. hydysentiae) field isolates.
Abstract: Diagnostics for swine dysentery rely on the identification of Brachyspira species using molecular techniques. Nevertheless, no quick diagnostic tools are available for antimicrobial susceptibility testing due to extended growth requirements (7 to 14 days). ABSTRACT Infections with Brachyspira hyodysenteriae, the etiological agent of swine dysentery, result in major economic losses in the pig industry worldwide. Even though microbial differentiation of various Brachyspira species can be obtained via PCR, no quick diagnostics for antimicrobial susceptibility testing are in place, which is mainly due to the time-consuming (4 to 7 days) anaerobic growth requirements of these organisms. Veterinarians often rely on a clinical diagnosis for initiating antimicrobial treatment. These treatments are not always effective, which may be due to high levels of acquired resistance in B. hyodysenteriae field isolates. By using long-read-only whole-genome sequencing and a custom-trained Bonito base-calling model, 81 complete B. hyodysenteriae genomes with median Q51 scores and 99% completeness were obtained from 86 field strains. This allowed the assessment of the predictive potential of genetic markers in relation to the observed acquired resistance phenotypes obtained via agar dilution susceptibility testing. Multidrug resistance was observed in 77% and 21% of the tested strains based on epidemiological cutoff and clinical breakpoint values, respectively. The predictive power of genetic hallmarks (genes and/or gene mutations) for antimicrobial susceptibility testing was promising. Sensitivity and specificity for tiamulin [tva(A) and 50SL3N148S, 99% and 67%], valnemulin [tva(A), 97% and 92%), lincomycin (23SA2153T/G and lnuC, 94% and 100%), tylvalosin (23SA2153T/G, 99% and 93%), and doxycycline (16SG1026C, 93% and 87%) were determined. The predictive power of these genetic hallmarks is promising for use in sequencing-based workflows to speed up swine dysentery diagnostics in veterinary medicine and determine proper antimicrobial use. IMPORTANCE Diagnostics for swine dysentery rely on the identification of Brachyspira species using molecular techniques. Nevertheless, no quick diagnostic tools are available for antimicrobial susceptibility testing due to extended growth requirements (7 to 14 days). To enable practitioners to tailor antimicrobial treatment to specific strains, long-read sequencing-based methods are expected to lead to rapid methods in the future. Nevertheless, their potential implementation should be validated extensively. This mainly implies assessing sequencing accuracy and the predictive power of genetic hallmarks in relation to their observed (multi)resistance phenotypes.

3 citations


Journal ArticleDOI
TL;DR: In this article , the authors demonstrate the application of circular polymerase extension cloning (CPEC) to the generation of full-length clones of SARS-CoV-2.
Abstract: Since the first emergence of the SARS-CoV-2 variant in late 2020, novel variants have been continuously introduced to the human population, causing severe public health threats. In general, because these variants acquire new genetic mutation/s, it is critical to analyze the biological function of viruses that such mutations can confer. ABSTRACT The appearance of SARS-CoV-2 variants in late 2020 raised alarming global public health concerns. Despite continued scientific progress, the genetic profiles of these variants bring changes in viral properties that threaten vaccine efficacy. Thus, it is critically important to investigate the biologic profiles and significance of these evolving variants. In this study, we demonstrate the application of circular polymerase extension cloning (CPEC) to the generation of full-length clones of SARS-CoV-2. We report that, combined with a specific primer design scheme, this yields a simpler, uncomplicated, and versatile approach for engineering SARS-CoV-2 variants with high viral recovery efficiency. This new strategy for genomic engineering of SARS-CoV-2 variants was implemented and evaluated for its efficiency in generating point mutations (K417N, L452R, E484K, N501Y, D614G, P681H, P681R, Δ69-70, Δ157-158, E484K+N501Y, and Ins-38F) and multiple mutations (N501Y/D614G and E484K/N501Y/D614G), as well as a large truncation (ΔORF7A) and insertion (GFP). The application of CPEC to mutagenesis also allows the inclusion of a confirmatory step prior to assembly and transfection. This method could be of value in the molecular characterization of emerging SARS-CoV-2 variants as well as the development and testing of vaccines, therapeutic antibodies, and antivirals. IMPORTANCE Since the first emergence of the SARS-CoV-2 variant in late 2020, novel variants have been continuously introduced to the human population, causing severe public health threats. In general, because these variants acquire new genetic mutation/s, it is critical to analyze the biological function of viruses that such mutations can confer. Therefore, we devised a method that can construct SARS-CoV-2 infectious clones and their variants rapidly and efficiently. The method was developed based on a PCR-based circular polymerase extension cloning (CPEC) combined with a specific primer design scheme. The efficiency of the newly designed method was evaluated by generating SARS-CoV-2 variants with single point mutations, multiple point mutations, and a large truncation and insertion. This method could be of value for the molecular characterization of emerging SARS-CoV-2 variants and the development and testing of vaccines and antiviral agents.

Journal ArticleDOI
TL;DR: In this paper , the rdxA sequences of 511 clinical H. pylori strains were analyzed to assess the genotypes associated with metronidazole resistance, and the correlation analysis showed R16H/C, Y47C, A67V/T, and V204I substitutions were associated with MNZ resistance.
Abstract: The increasing resistance to metronidazole impaired the efficacy of Helicobacter pylori eradication, and increasing the dose of metronidazole was recommended to overcome low-level resistance. For patients infected with highly resistant strains, the current empirical treatments, which generally used metronidazole in double doses or more, appeared impossibly to overcome the resistance and would only increase the incidence of adverse effects. ABSTRACT Metronidazole (MNZ) is administered as first-line antibiotic for Helicobacter pylori eradication therapy; however, increasing resistance to MNZ impaired the efficacy. Increasing the dose of MNZ was recommended to overcome low-level resistance, but it was difficult to determine MNZ resistance level simply based on the rdxA gene mutation. In this study, the rdxA sequences of 511 clinical H. pylori strains were analyzed to assess the genotypes associated with MNZ resistance. We observed that the prevalences of rdxA sequences with missense, nonsense, and frameshift mutations were 70.25, 11.35, and 17.03%, respectively. Regarding the amino acid substitutions, T31E, H53R, D59N, L62V, S88P, G98S/N, R131K, and V172I were present in most strains regardless of the resistance phenotype. The correlation analysis showed R16H/C, Y47C, A67V/T, and V204I substitutions were associated with MNZ resistance. The mutation resulting in RdxA truncation was observed in 36.29% of the resistant strains, and 83.45% of these strains displayed high-level MNZ resistance (MIC > 256 μg/mL). Moreover, all strains with truncated mutation positions before amino acid 70 expressed high-level MNZ resistance. Our results indicated that most amino acid mutations probably contributed to the sequence diversity of RdxA, while R16H/C, Y47C, A67V/T, and V204I were potentially helpful to identify resistant strains. Although it was difficult to determine the mutations associated with MNZ resistance, the prediction of high-level resistance based on truncated characteristics of RdxA might be an important approach, which can effectively avoid H. pylori eradication therapy with unreasonable of MNZ dose increases for patients with high-level drug resistance. IMPORTANCE The increasing resistance to metronidazole impaired the efficacy of Helicobacter pylori eradication, and increasing the dose of metronidazole was recommended to overcome low-level resistance. For patients infected with highly resistant strains, the current empirical treatments, which generally used metronidazole in double doses or more, appeared impossibly to overcome the resistance and would only increase the incidence of adverse effects. Our results indicated that high-level metronidazole resistance was predominant, and almost half of the patients with high-level drug resistance could avoid usage of metronidazole based on the truncated mutations of RdxA sequences, which can effectively avoid H. pylori eradication therapy with unreasonable increases in the metronidazole dose.

Journal ArticleDOI
TL;DR: A 10-year retrospective survey of S. Typhi antimicrobial susceptibility patterns among 858 unique patient isolates that underwent reference laboratory testing in Ontario, Canada, between 2010 and 2019 was provided in this article .
Abstract: This work provides an updated summary of the antimicrobial susceptibility patterns among Salmonella Typhi strains isolated from patients in Ontario, Canada. ABSTRACT The epidemiology and treatment of typhoid fever are complicated by the emergence and spread of Salmonella enterica subsp. enterica serovar Typhi lineages with resistance to many antimicrobial agents critical for therapy. Current information on the susceptibility patterns of S. Typhi isolates identified in regions where typhoid fever is not endemic is important as these are often acquired after traveling to countries of endemicity where resistant strains circulate. Here, we report a 10-year retrospective survey of S. Typhi antimicrobial susceptibility patterns among 858 unique patient isolates that underwent reference laboratory testing in Ontario, Canada, between 2010 and 2019. Antimicrobial susceptibility patterns remained stable for ampicillin (average, 78.7% susceptible), azithromycin (average, 99.4% susceptible) ertapenem (average, 100.0% susceptible), meropenem (average, 100.0% susceptible), and trimethoprim-sulfamethoxazole (average, 78.2% susceptible) during the study period; however, nonsusceptibility to ciprofloxacin and ceftriaxone increased. While ceftriaxone-resistant isolates comprised 1.6% of the total isolates overall, they represented 10.1% of the total isolates tested in 2019, indicating a significant increase over time. Our findings suggest that when selecting empirical therapy, health care providers should strongly consider current trends in antimicrobial susceptibility and investigate the patient’s exposure risk to gauge whether a suspected typhoid infection may be caused by a potentially resistant S. Typhi strain. IMPORTANCE This work provides an updated summary of the antimicrobial susceptibility patterns among Salmonella Typhi strains isolated from patients in Ontario, Canada.

Journal ArticleDOI
TL;DR: In this paper , the authors investigated how SARS-CoV-2 infection modulates the transcription factor NRF2 and its dependent genes, as well as the role of NRF 2 during SARS CoV2 infection.
Abstract: The antioxidant defense system plays a major function in protecting the organism against oxidative damage caused by free radicals. COVID-19 patients often present with biochemical characteristics of uncontrolled pro-oxidative responses in the respiratory tract. ABSTRACT Several viruses have been shown to modulate the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), the master regulator of redox homeostasis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, also seems to disrupt the balance between oxidants and antioxidants, which likely contributes to lung damage. Using in vitro and in vivo models of infection, we investigated how SARS-CoV-2 modulates the transcription factor NRF2 and its dependent genes, as well as the role of NRF2 during SARS-CoV-2 infection. We found that SARS-CoV-2 infection downregulates NRF2 protein levels and NRF2-dependent gene expression in human airway epithelial cells and in lungs of BALB/c mice. Reductions in cellular levels of NRF2 seem to be independent of proteasomal degradation and the interferon/promyelocytic leukemia (IFN/PML) pathway. Furthermore, lack of the Nrf2 gene in SARS-CoV-2-infected mice exacerbates clinical disease, increases lung inflammation, and is associated with a trend toward increased lung viral titers, indicating that NRF2 has a protective role during this viral infection. In summary, our results suggest that SARS-CoV-2 infection alters the cellular redox balance by downregulating NRF2 and its dependent genes, which exacerbates lung inflammation and disease, therefore, suggesting that the activation of NRF2 could be explored as therapeutic approach during SARS-CoV-2 infection. IMPORTANCE The antioxidant defense system plays a major function in protecting the organism against oxidative damage caused by free radicals. COVID-19 patients often present with biochemical characteristics of uncontrolled pro-oxidative responses in the respiratory tract. We show herein that SARS-CoV-2 variants, including Omicron, are potent inhibitors of cellular and lung nuclear factor erythroid 2-related factor 2 (NRF2), the master transcription factor that controls the expression of antioxidant and cytoprotective enzymes. Moreover, we show that mice lacking the Nrf2 gene show increased clinical signs of disease and lung pathology when infected with a mouse-adapted strain of SARS-CoV-2. Overall, this study provides a mechanistic explanation for the observed unbalanced pro-oxidative response in SARS-CoV-2 infections and suggests that therapeutic strategies for COVID-19 may consider the use of pharmacologic agents that are known to boost the expression levels of cellular NRF2.

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the biochemical properties of Mtb Rv1324 and its role in mycobacterial survival and virulence and revealed a novel target for TB treatment.
Abstract: The intracellular survival of M. tuberculosis (Mtb) plays a crucial role in its pathogenesis, which depends on various Mtb oxidoreductases that are resistant to reactive oxygen and nitrogen species (ROS and RNS) that are generated by the host during Mtb infection. Secretory protein Rv1324 is a potential virulence factor of Mtb and is a possible thioredoxin that has oxidoreductase activity against ROS and RNS during Mtb infection. ABSTRACT Mycobacterium tuberculosis (Mtb) is the pathogenic agent of tuberculosis (TB). Intracellular survival plays a central role in the pathogenesis of Mtb, a process that depends on an array of virulence factors for Mtb to colonize and proliferate within a host. Reactive nitrogen and oxygen species (RNS and ROS) are among the most effective antimycobacterial molecules generated by the host during infection. However, Mtb has evolved a number of proteins and enzymes to detoxify ROS and RNS. Secretory protein Rv1324, as a possible thioredoxin, might also have oxidoreductase activity against ROS and RNS during Mtb infection, and it is a potential virulence factor of Mtb. In this study, we investigated the biochemical properties of Mtb Rv1324 and its role in mycobacterial survival and virulence. The results showed that the Rv1324 protein had antioxidant activity and increased the survival of M. smegmatis that was exposed to ROS and RNS. In addition, Rv1324 enhanced the colonization ability of M. smegmatis in the lungs of mice. Further, mice infected with M. smegmatis harboring Rv1324 exhibited pathological injury and inflammation in the lung, which was mediated by ferroptosis. In summary, this study advances our understanding of the mechanisms of mycobacterial survival and pathogenesis, and it reveals a novel target for TB treatment. IMPORTANCE The intracellular survival of M. tuberculosis (Mtb) plays a crucial role in its pathogenesis, which depends on various Mtb oxidoreductases that are resistant to reactive oxygen and nitrogen species (ROS and RNS) that are generated by the host during Mtb infection. Secretory protein Rv1324 is a potential virulence factor of Mtb and is a possible thioredoxin that has oxidoreductase activity against ROS and RNS during Mtb infection. We investigated the biochemical properties of Mtb Rv1324 and its role in mycobacterial survival and virulence. It was confirmed that the Rv1324 protein had antioxidant activity and an increased mycobacterial resistance to ROS and RNS. In addition, Rv1324 enhanced mycobacterial persistence and induced pathological injury and inflammation in the lungs of mice by activating ferroptosis. This study advances our understanding of the mechanisms of mycobacterial survival and pathogenesis, and it reveals a novel target for TB treatment.

Journal ArticleDOI
TL;DR: In this article , the authors investigated the mechanisms of azithromycin resistance in nontyphoidal Salmonella (NTS) isolates recovered from humans in Taiwan from 2017 to 2018 using antimicrobial susceptibility testing.
Abstract: Antimicrobial resistance in NTS isolates is a major public health concern in Taiwan, and the mechanisms of azithromycin resistance are rarely investigated. Azithromycin and carbapenems are the last resort for the treatment of invasive salmonellosis caused by multidrug-resistant (MDR) and extensively drug-resistant Salmonella strains. ABSTRACT Antimicrobial resistance was investigated in 2,341 nontyphoidal Salmonella (NTS) isolates recovered from humans in Taiwan from 2017 to 2018 using antimicrobial susceptibility testing. Azithromycin resistance determinants were detected in 175 selected isolates using PCR and confirmed in 81 selected isolates using whole-genome sequencing. Multidrug resistance was found in 47.3% of total isolates and 96.2% of Salmonella enterica serovar Anatum and 81.7% of S. enterica serovar Typhimurium isolates. Resistance to the conventional first-line drugs (ampicillin, chloramphenicol, and cotrimoxazole), cefotaxime and ceftazidime, and ciprofloxacin was found in 32.5 to 49.0%, 20.3 to 20.4%, and 3.2% of isolates, respectively. A total of 76 (3.1%) isolates were resistant to azithromycin, which was associated with mph(A), erm(42), erm(B), and possibly the enhanced expression of efflux pump(s) due to ramAp or defective ramR. mph(A) was found in 53% of the 76 azithromycin-resistant isolates from 11 serovars and located in an IS26-mph(A)-mrx(A)-mphR(A)-IS6100 unit in various incompatibility plasmids and the chromosomes. erm(42) in S. enterica serovar Albany was carried by an integrative and conjugative element, ICE_erm42, and in S. enterica serovar Enteritidis and S. Typhimurium was located in IS26 composite transposons in the chromosomes. erm(B) was carried by IncI1-I(α) plasmids in S. Enteritidis and S. Typhimurium. ramAp was a plasmid-borne ramA, a regulatory activator of efflux pump(s), found in only S. enterica serovar Goldcoast. Since the azithromycin resistance determinants are primarily carried on mobile genetic elements, they could easily be disseminated among human bacterial pathogens. The ramAp-carrying S. Goldcoast isolates displayed azithromycin MICs of 16 to 32 mg/L. Thus, the epidemiological cutoff value of ≤16 mg/L of azithromycin proposed for wild-type NTS should be reconsidered. IMPORTANCE Antimicrobial resistance in NTS isolates is a major public health concern in Taiwan, and the mechanisms of azithromycin resistance are rarely investigated. Azithromycin and carbapenems are the last resort for the treatment of invasive salmonellosis caused by multidrug-resistant (MDR) and extensively drug-resistant Salmonella strains. Our study reports the epidemiological trend of resistance in NTS in Taiwan and the genetic determinants involved in azithromycin resistance. We point out that nearly half of NTS isolates from 2017 to 2018 are MDR, and 20% are resistant to third-generation cephalosporins. The azithromycin resistance rate (3.1%) for the NTS isolates from Taiwan is much higher than those for the NTS isolates from the United States and Europe. Our study also indicates that azithromycin resistance is primarily mediated by mph(A), erm(42), erm(B), and ramAp, which are frequently carried on mobile genetic elements. Thus, the azithromycin resistance determinants could be expected to be disseminated among diverse bacterial pathogens.

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors evaluated the performance of metagenomic next-generation sequencing (mNGS) of cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) in pediatric patients, and retrospectively analyzed the efficiency of cfDNA mNGS in children with CNS infections or noninfectious neurological disorders.
Abstract: Our study emphasized that cfDNA mNGS had overall superiority to conventional methods on causative pathogen detection in CNS-infected children, and it was even better than wcDNA mNGS. cfDNA mNGS detected a wide range of pathogens with a high total coincidence rate (67.5%) against clinical diagnosis. The best timing for cfDNA mNGS detection ranged from 1 to 6 days, rather than 0 days, after the start of empirical anti-infection therapy. ABSTRACT Central nervous system (CNS) infections can cause significant morbidity and mortality, especially in children. Rapid and accurate pathogenic detection in suspected CNS infections is essential for disease control at the early stage of infection. To evaluate the performance of metagenomic next-generation sequencing (mNGS) of cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) in pediatric patients, we retrospectively analyzed the efficiency of cfDNA mNGS in children with CNS infections (n = 257) or noninfectious neurological disorders (n = 81). The CSF samples of 124 random subjects were used to evaluate the accuracy between mNGS of cfDNA and whole-cell DNA (wcDNA). In total, cfDNA mNGS detected a wide range of microbes with a detection rate of 71.0%, and the sensitivity and total coincidence rate with clinical diagnosis reached 68.9% and 67.5%, respectively. Compared with wcDNA mNGS, cfDNA mNGS had a higher efficacy in detecting viruses (66 versus 13) and Mycobacterium (7 versus 1), with significantly higher reads per million. The dominant causative pathogens were bacteria and viruses in CNS infections, but these presented with different pathogen spectra in different age categories. The best timing for the mNGS test ranged from 1 to 6 days after the start of anti-infection therapy, and the earlier mNGS started, the better was identification of bacterial CNS infections. This study emphasized that cfDNA mNGS had overall superiority to conventional methods on causative pathogen detection in pediatric CNS infections, and it was even better than wcDNA mNGS. Furthermore, research needs to be better validated in large-scale clinical trials to improve the clinical applications of cfDNA mNGS. IMPORTANCE Our study emphasized that cfDNA mNGS had overall superiority to conventional methods on causative pathogen detection in CNS-infected children, and it was even better than wcDNA mNGS. cfDNA mNGS detected a wide range of pathogens with a high total coincidence rate (67.5%) against clinical diagnosis. The best timing for cfDNA mNGS detection ranged from 1 to 6 days, rather than 0 days, after the start of empirical anti-infection therapy. The earlier mNGS started, the better the identifications of bacterial CNS infections. To the best of our knowledge, this research is the first report evaluating the clinical utility of mNGS with different methods (cfDNA versus wcDNA) of extracting DNA from CSF specimens in diagnosing pediatric CNS infections. Meanwhile, this is the largest cohort study that has evaluated the performance of mNGS using cfDNA from CSF specimens in pediatric patients with CNS infections.

Journal ArticleDOI
TL;DR: In this paper , the Akk membrane protein Amuc_1100 of Akkermansia muciniphila (Akk) decreased formation of lipid droplets and fat accumulation during the differentiation process and stimulated browning in vivo and in vitro.
Abstract: An important intestinal bacterial strain Akkermansia muciniphila contributes to improving carbohydrate and lipid metabolism, thus alleviating obesity symptoms. Here, we find that the Akk membrane protein Amuc_1100 regulates lipid metabolism in 3T3-L1 preadipocytes. ABSTRACT Obesity, defined as a disorder of lipid metabolism caused by white fat accumulation, is closely related to the gut microbiota. Akkermansia muciniphila (Akk), one of the most common gut commensals, can reduce fat storage and promote the browning of white adipocytes, alleviating disorders of lipid metabolism. However, which components of Akk produce the effect remain unclear, limiting the application of Akk in the treatment of obesity. Here, we found that the membrane protein Amuc_1100 of Akk decreased formation of lipid droplets and fat accumulation during the differentiation process and stimulated browning in vivo and in vitro. Transcriptomics revealed that Amuc_1100 accelerated lipolysis through upregulation of the AC3/PKA/HSL pathway in 3T3-L1 preadipocytes. Quantitative PCR (qPCR) and Western blotting showed that Amuc_1100 intervention promotes steatolysis and browning of preadipocytes by increasing lipolysis-related genes (AC3/PKA/HSL) and brown adipocyte marker genes (PPARγ, UCP1, and PGC1α) at both the mRNA and protein levels. These findings introduce new insight into the effects of beneficial bacteria and provide new avenues for the treatment of obesity. IMPORTANCE An important intestinal bacterial strain Akkermansia muciniphila contributes to improving carbohydrate and lipid metabolism, thus alleviating obesity symptoms. Here, we find that the Akk membrane protein Amuc_1100 regulates lipid metabolism in 3T3-L1 preadipocytes. Amuc_1100 inhibits lipid adipogenesis and accumulation during the differentiation process of preadipocytes, upregulates the browning-related genes of preadipocytes, and promotes thermogenesis through activation of uncoupling protein-1 (UCP-1), including Acox1 involved in lipid oxidation. Amuc_1100 accelerates lipolysis via the AC3/PKA/HSL pathway, phosphorylating HSL at Ser 660. The experiments illustrated here identify the specific molecules and functional mechanisms of Akk. Therapeutic approaches with Amuc_1100 derived from Akk may help alleviate obesity and metabolic disorders.

Journal ArticleDOI
TL;DR: In this paper , the authors presented the first in-depth genome analysis of Pseudomonas syringae pv. aptata, the causative agent of leaf spot disease of sugar beet.
Abstract: Genome analysis has an enormous effect on understanding the life strategies of plant pathogens. Comparing similarities with pathogens involved in other epidemics could elucidate the pathogen life cycle when a new outbreak happens. ABSTRACT Members of the Pseudomonas syringae species complex are heterogeneous bacteria that are the most abundant bacterial plant pathogens in the plant phyllosphere, with strong abilities to exist on and infect different plant hosts and survive in/outside agroecosystems. In this study, the draft genome sequences of two pathogenic P. syringae pv. aptata strains with different in planta virulence capacities isolated from the phyllosphere of infected sugar beet were analyzed to evaluate putative features of survival strategies and to determine the pathogenic potential of the strains. The draft genomes of P. syringae pv. aptata strains P16 and P21 are 5,974,057 bp and 6,353,752 bp in size, have GC contents of 59.03% and 58.77%, respectively, and contain 3,439 and 3,536 protein-coding sequences, respectively. For both average nucleotide identity and pangenome analysis, P16 and P21 largely clustered with other pv. aptata strains from the same isolation source. We found differences in the repertoire of effectors of the type III secretion system among all 102 selected strains, suggesting that the type III secretion system is a critical factor in the different virulent phenotypes of P. syringae pv. aptata. During genome analysis of the highly virulent strain P21, we discovered genes for T3SS effectors (AvrRpm1, HopAW1, and HopAU1) that were not previously found in genomes of P. syringae pv. aptata. We also identified coding sequences for pantothenate kinase, VapC endonuclease, phospholipase, and pectate lyase in both genomes, which may represent novel effectors of the type III secretion system. IMPORTANCE Genome analysis has an enormous effect on understanding the life strategies of plant pathogens. Comparing similarities with pathogens involved in other epidemics could elucidate the pathogen life cycle when a new outbreak happens. This study represents the first in-depth genome analysis of Pseudomonas syringae pv. aptata, the causative agent of leaf spot disease of sugar beet. Despite the increasing number of disease reports in recent years worldwide, there is still a lack of information about the genomic features, epidemiology, and pathogenic life strategies of this particular pathogen. Our findings provide advances in disease etiology (especially T3SS effector repertoire) and elucidate the role of environmental adaptations required for prevalence in the pathobiome of the sugar beet. From the perspective of the very heterogeneous P. syringae species complex, this type of analysis has specific importance in reporting the characteristics of individual strains.

Journal ArticleDOI
TL;DR: In this paper , the authors show that although plasma mNGS testing significantly improved the detection rate of tested samples, nearly one in four (24.5%, 48/196) mngS tests reported organisms were not clinically relevant, emphasizing the importance of cautious interpretation and infectious disease consultation, indicating that how best to integrate this advanced method into current infectious disease diagnostic frameworks to maximize its clinical utility in realworld practice is an important question.
Abstract: In this study, we show that although plasma mNGS testing significantly improved the detection rate of tested samples, nearly one in four (24.5%, 48/196) mNGS tests reported organisms were not clinically relevant, emphasizing the importance of cautious interpretation and infectious disease consultation. Moreover, based on clinical adjudication, plasma mNGS testing resulted in no or a negative impact in nearly half (43.5%, 64/147) of patients in the current study, indicating that how best to integrate this advanced method into current infectious disease diagnostic frameworks to maximize its clinical utility in real-world practice is an important question. ABSTRACT Plasma metagenomic next-generation sequencing (mNGS) testing is a promising diagnostic modality for infectious diseases, but its real-world clinical impact is poorly understood. We reviewed patients who had undergone plasma mNGS at a general hospital to evaluate the clinical utility of plasma mNGS testing. A total of 76.9% (113/147) of plasma mNGS tests had a positive result. A total of 196 microorganisms (58) were identified and reported, of which 75.6% (148/196) were clinically relevant. The median stringent mapped read number (SMRN) of clinically relevant organisms was 88 versus 22 for irrelevant organisms (P = 0.04). Based on the clinically adjudicated diagnosis, the positive and negative percent agreements of plasma mNGS testing for identifying a clinically defined infection were 95.2% and 67.4%, respectively. The plasma mNGS results led to a positive impact in 83 (57.1%) patients by diagnosing or ruling out infection and initiating targeted therapy. However, only 32.4% (11/34) of negative mNGS tests showed a positive impact, suggesting that plasma mNGS testing alone may not be a powerful tool to rule out infection in clinical practice. In the subset of 37 patients positive for both plasma mNGS and conventional testing, mNGS identified the pathogen(s) 2 days (IQR = 0.75 to 4.25) earlier than conventional testing. mNGS enables pathogen identification within 24 h, but given that the detection of clinically irrelevant organisms and nearly half of the tests result in no or a negative clinical impact, more clinical practice and studies are required to better understand who and when to test and how to optimally integrate mNGS into the infectious disease diagnostic workup. IMPORTANCE In this study, we show that although plasma mNGS testing significantly improved the detection rate of tested samples, nearly one in four (24.5%, 48/196) mNGS tests reported organisms were not clinically relevant, emphasizing the importance of cautious interpretation and infectious disease consultation. Moreover, based on clinical adjudication, plasma mNGS testing resulted in no or a negative impact in nearly half (43.5%, 64/147) of patients in the current study, indicating that how best to integrate this advanced method into current infectious disease diagnostic frameworks to maximize its clinical utility in real-world practice is an important question. Therefore, recommending plasma mNGS testing as a routine supplement to first-line diagnostic tests for infectious diseases faces great challenges. The decision to conduct mNGS testing should take into account the diagnostic performance, turnaround time and cost-effectiveness of mNGS, as well as the availability of conventional tests.

Journal ArticleDOI
TL;DR: In this paper , the authors compared patient, clinical, and treatment variables to understand which characteristics are associated with the highest risk of clinical failure in carbapenem-resistant enterobacterales (CRE) infections.
Abstract: This work compares carbapenem-resistant Enterobacterales (CRE) infections using patient, clinical, and treatment variables to understand which characteristics are associated with the highest risk of clinical failure. Knowing which risk factors are associated with CRE infection failure can provide clinicians better prognostic and targeted interventions. ABSTRACT The Centers for Disease Control and Prevention (CDC) categorized carbapenem-resistant Enterobacterales (CRE) infections as an “urgent” health care threat requiring public attention and research. Certain patients with CRE infections may be at higher risk for poor clinical outcomes than others. Evidence on risk or protective factors for CRE infections are warranted in order to determine the most at-risk populations, especially with newer beta-lactam/beta-lactamase inhibitor (BL/BLI) antibiotics available to treat CRE. We aimed to identify specific variables involved in CRE treatment that are associated with clinical failure (either 30-day mortality, 30-day microbiologic recurrence, or clinical worsening/failure to improve throughout antibiotic treatment). We conducted a retrospective, observational cohort study of hospitalized patients with CRE infection sampled from 2010 to 2020 at two medical systems in Detroit, Michigan. Patients were included if they were ≥18 years old and culture positive for an organism in the Enterobacterales order causing clinical infection with in vitro resistance by Clinical and Laboratory Standards Institute (CLSI) breakpoints to at least one carbapenem. Overall, there were 140 confirmed CRE infections of which 39% had clinical failure. The most common infection sources were respiratory (38%), urinary (20%), intra-abdominal (16%), and primary bacteremia (14%). A multivariable logistic regression model was developed to identify statistically significant associated predictors with clinical failure, and they included Sequential Organ Failure Assessment (SOFA) score (adjusted odds ratio [aOR], 1.18; 95% confidence interval [CI], 1.06 to 1.32), chronic dialysis (aOR, 5.86; 95% CI, 1.51-22.7), and Klebsiella pneumoniae in index culture (aOR, 3.09; 95% CI, 1.28 to 7.47). Further research on CRE infections is needed to identify best practices to promote treatment success. IMPORTANCE This work compares carbapenem-resistant Enterobacterales (CRE) infections using patient, clinical, and treatment variables to understand which characteristics are associated with the highest risk of clinical failure. Knowing which risk factors are associated with CRE infection failure can provide clinicians better prognostic and targeted interventions. Research can also further investigate why certain risk factors cause more clinical failure and can help develop treatment strategies to mitigate associated risk factors.

Journal ArticleDOI
TL;DR: In this article , the role of low-molecular-mass iron chelators, termed siderophores, have been shown to play a central role in iron homeostasis and, consequently, virulence of Aspergillus fumigatus.
Abstract: Aspergillus fumigatus is one of the most common airborne fungal pathogens for humans. Low-molecular-mass iron chelators, termed siderophores, have been shown to play a central role in iron homeostasis and, consequently, virulence of this mold. ABSTRACT The opportunistic fungal pathogen Aspergillus fumigatus utilizes two high-affinity iron uptake mechanisms, termed reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). The latter has been shown to be crucial for virulence of this fungus and is a target for development of novel strategies for diagnosis and treatment of fungal infections. So far, research on SIA in this mold focused mainly on the hyphal stage, revealing the importance of extracellular fusarinine-type siderophores in iron acquisition as well as of the siderophore ferricrocin in intracellular iron handling. The current study aimed to characterize iron acquisition during germination. High expression of genes involved in biosynthesis and uptake of ferricrocin in conidia and during germination, independent of iron availability, suggested a role of ferricrocin in iron acquisition during germination. In agreement, (i) bioassays indicated secretion of ferricrocin during growth on solid media during both iron sufficiency and limitation, (ii) ferricrocin was identified in the supernatant of conidia germinating in liquid media during both iron sufficiency and limitation, (iii) in contrast to mutants lacking all siderophores, mutants synthesizing ferricrocin but lacking fusarinine-type siderophores were able to grow under iron limitation in the absence of RIA, and (iv) genetic inactivation of the ferricrocin transporter Sit1 decreased germination in the absence of RIA. Taken together, this study revealed that ferricrocin has not only an intracellular role but also functions as an extracellular siderophore to support iron acquisition. The iron availability-independent ferricrocin secretion and uptake during early germination indicate developmental, rather than iron regulation. IMPORTANCE Aspergillus fumigatus is one of the most common airborne fungal pathogens for humans. Low-molecular-mass iron chelators, termed siderophores, have been shown to play a central role in iron homeostasis and, consequently, virulence of this mold. Previous studies demonstrated the crucial role of secreted fusarinine-type siderophores, such as triacetylfusarinine C, in iron acquisition, as well as of the ferrichrome-type siderophore ferricrocin in intracellular iron storage and transport. Here, we demonstrate that ferricrocin is also secreted to mediate iron acquisition during germination together with reductive iron assimilation. During early germination, ferricrocin secretion and uptake were not repressed by iron availability, indicating developmental regulation of this iron acquisition system in this growth phase.

Journal ArticleDOI
TL;DR: The authors showed that complications of bacterial infections remain the greatest driver of morbidity and mortality in this patient population, and our understanding of how interspecies interactions impact disease progression is lacking, despite advances in treatment options for people with CF.
Abstract: Despite advances in treatment options for people with CF, complications of bacterial infections remain the greatest driver of morbidity and mortality in this patient population. These infections often involve more than one bacterial pathogen, and our understanding of how interspecies interactions impact disease progression is lacking.

Journal ArticleDOI
Chunhua Zhou, Ying Wang, Cun Li, Zhiyong Xie, Lei Dai 
TL;DR: In this paper , the authors designed a consortium of human gut bacterial strains based on their metabolic capacity to produce secondary bile acids UDCA and LCA, and evaluated the efficacy of single bacterial strains and the bacterial consortium in treating the murine colitis model.
Abstract: Secondary bile acids have been reported to be anti-inflammatory, yet it remains to be studied whether introducing selected bacteria strains to restore bile acid metabolism of the gut microbiome can alleviate intestinal inflammation. To address this gap, we designed a consortium of human gut bacterial strains based on their metabolic capacity to produce secondary bile acids UDCA and LCA, and we evaluated the efficacy of single bacterial strains and the bacterial consortium in treating the murine colitis model. ABSTRACT The Integrative Human Microbiome Project and other cohort studies have indicated that inflammatory bowel disease is accompanied by dysbiosis of gut microbiota, decreased production of secondary bile acids, and increased levels of primary bile acids. Secondary bile acids, such as ursodeoxycholic acid (UDCA) and lithocholic acid (LCA), have been reported to be anti-inflammatory, yet it remains to be studied whether introducing selected bacteria strains to restore bile acid metabolism of the gut microbiome can alleviate intestinal inflammation. In this study, we screened human gut bacterial strains for bile acid metabolism and designed a consortium of three species, including Clostridium AP sp000509125, Bacteroides ovatus, and Eubacterium limosum, and named it BAC (bile acid consortium). We showed that the three-strain gut bacterial consortium BAC is capable of converting conjugated primary bile acids taurochenodeoxycholic acid and glycochenodeoxycholic acid to secondary bile acids UDCA and LCA in vitro. Oral gavage treatment with BAC in mice resulted in protective effects against dextran sulfate sodium (DSS)-induced colitis, including reduced weight loss and increased colon length. Furthermore, BAC treatment increased the fecal level of bile acids, including UDCA and LCA. BAC treatment enhanced intestinal barrier function, which may be attributed to the increased activation of the bile acid receptor TGR5 by secondary bile acids. Finally, we examined the remodeling of gut microbiota by BAC treatment. Taken together, the three-strain gut bacterial consortium BAC restored the dysregulated bile acid metabolism and alleviated DSS-induced colitis. Our study provides a proof-of-concept demonstration that a rationally designed bacterial consortium can reshape the metabolism of the gut microbiome to treat diseases. IMPORTANCE Secondary bile acids have been reported to be anti-inflammatory, yet it remains to be studied whether introducing selected bacteria strains to restore bile acid metabolism of the gut microbiome can alleviate intestinal inflammation. To address this gap, we designed a consortium of human gut bacterial strains based on their metabolic capacity to produce secondary bile acids UDCA and LCA, and we evaluated the efficacy of single bacterial strains and the bacterial consortium in treating the murine colitis model. We found that oral gavage of the bacterial consortium to mice restored secondary bile acid metabolism to increase levels of UDCA and LCA, which induced the activation of TGR5 to improve gut-barrier integrity and reduced the inflammation in murine colitis. Overall, our study demonstrates that rationally designed bacterial consortia can reshape the metabolism of the gut microbiome and provides novel insights into the application of live biotherapeutics for treating IBD.

Journal ArticleDOI
TL;DR: The Xpert MTB/XDR (Cepheid, Sunnyvale, CA, USA) was used to detect Mycobacterium tuberculosis (MT) complex with mutations conferring resistance to isoniazid (INH), ethionamide (ETH), fluoroquinolone (FQ), and second-line injectable drugs (SLIDs) as discussed by the authors .
Abstract: The Xpert MTB/XDR was tested on drug-resistant Mycobacterium tuberculosis complex isolates from the Balkan Peninsula. Positive Bactec MGIT 960 cultures or DNA isolates were tested as starting material. ABSTRACT The new molecular assay Xpert MTB/XDR (Cepheid, Sunnyvale, CA, USA) was launched in 2021 to detect Mycobacterium tuberculosis (MT) complex with mutations conferring resistance to isoniazid (INH), ethionamide (ETH), fluoroquinolone (FQ), and second-line injectable drugs (SLIDs). The aim of our study was to evaluate the performance of the Xpert MTB/XDR rapid molecular assay on rifampicin-resistant, multidrug-resistant, and pre-extensively resistant tuberculosis (TB) isolates in a clinical laboratory in the Balkan Peninsula compared to a phenotypic drug susceptibility test (pDST). Xpert MTB/XDR was used to test positive Bactec MGIT 960 (Becton, Dickinson and Co., Franklin Lakes, NJ, USA) cultures or DNA isolates. In the case of discrepant results between Xpert MTB/XDR and pDST, the usefulness of whole-genome sequencing (WGS) was emphasized. In our study, 80 MT isolates from different Balkan countries were selectively chosen from the National Mycobacterial Strain Collection in Golnik, Slovenia. Isolates were tested with the Xpert MTB/XDR assay, conventional pDST, and WGS. Xpert MTB/XDR showed high sensitivities of 91.9%, 100%, and 100% for detecting INH, FQ, and SLID resistance, respectively, compared to pDST. In contrast, low sensitivity (51.9%) for ETH resistance was achieved because isolates harbored widespread mutations across the ethA gene. The specificity of Xpert MTB/XDR was 100% for all drugs except for INH (66.7%). Further investigation with WGS revealed −57c→t mutations in the oxyR-ahpC region marked with uncertain significance, which caused the low specificity for detecting INH resistance with the new assay. Xpert MTB/XDR can be used in clinical laboratories for the rapid detection of INH, FQ, and SLID resistance. Moreover, it can be used to rule in resistance to ETH. Additional use of WGS is recommended in cases of discrepant results between pDST and Xpert MTB/XDR. Future improvements of Xpert MTB/XDR with the inclusion of additional genes may increase the usefulness of the assay. IMPORTANCE The Xpert MTB/XDR was tested on drug-resistant Mycobacterium tuberculosis complex isolates from the Balkan Peninsula. Positive Bactec MGIT 960 cultures or DNA isolates were tested as starting material. According to the results of our study with Xpert MTB/XDR, sensitivities for the detection of SLID, FQ, and INH resistance were sufficient (>90%) for the assay to be implemented into diagnostic algorithms. In our study, WGS revealed lesser-known mutations in genes conferring INH and ETH resistance, and their impact on resistance is still unknown. Mutations in the ethA gene causing resistance to ETH were scattered along structural gene without high-confidence markers for resistance. Therefore, resistance to ETH should be reported based on a combination of methods. Because the Xpert MTB/XDR assay was found to have good performance, we propose that it should be the method of choice for confirming resistance to INH, FQ, and SLID and conditionally for resistance to ETH.

Journal ArticleDOI
TL;DR: In this article , the authors used wastewater-based epidemiology (WBE) to monitor the presence of variants in wastewater generated in managed COVID-19 quarantine facilities for international air passengers entering the United Kingdom.
Abstract: With the global spread of COVID-19, it is essential to identify emerging variants which may be more harmful or able to escape vaccines rapidly. To date, the gold standard to assess variants circulating in communities has been the sequencing of the S gene or the whole genome of SARS-CoV-2; however, that approach is time-consuming and expensive. ABSTRACT Within months of the COVID-19 pandemic being declared on March 20, 2020, novel, more infectious variants of SARS-CoV-2 began to be detected in geospatially distinct regions of the world. With international travel being a lead cause of spread of the disease, the importance of rapidly identifying variants entering a country is critical. In this study, we utilized wastewater-based epidemiology (WBE) to monitor the presence of variants in wastewater generated in managed COVID-19 quarantine facilities for international air passengers entering the United Kingdom. Specifically, we developed multiplex reverse transcription quantitative PCR (RT-qPCR) assays for the identification of defining mutations associated with Beta (K417N), Gamma (K417T), Delta (156/157DEL), and Kappa (E154K) variants which were globally prevalent at the time of sampling (April to July 2021). The assays sporadically detected mutations associated with the Beta, Gamma, and Kappa variants in 0.7%, 2.3%, and 0.4% of all samples, respectively. The Delta variant was identified in 13.3% of samples, with peak detection rates and concentrations observed in May 2021 (24%), concurrent with its emergence in the United Kingdom. The RT-qPCR results correlated well with those from sequencing, suggesting that PCR-based detection is a good predictor for variant presence; although, inadequate probe binding may lead to false positive or negative results. Our findings suggest that WBE coupled with RT-qPCR may be used as a rapid, initial assessment to identify emerging variants at international borders and mass quarantining facilities. IMPORTANCE With the global spread of COVID-19, it is essential to identify emerging variants which may be more harmful or able to escape vaccines rapidly. To date, the gold standard to assess variants circulating in communities has been the sequencing of the S gene or the whole genome of SARS-CoV-2; however, that approach is time-consuming and expensive. In this study, we developed two duplex RT-qPCR assays to detect and quantify defining mutations associated with the Beta, Gamma, Delta, and Kappa variants. The assays were validated using RNA extracts derived from wastewater samples taken at quarantine facilities. The results showed good correlation with the results of sequencing and demonstrated the emergence of the Delta variant in the United Kingdom in May 2021. The assays developed here enable the assessment of variant-specific mutations within 2 h after the RNA extract was generated which is essential for outbreak rapid response.

Journal ArticleDOI
TL;DR: In this article , an orthologous Ste12 protein (AoSte12) was characterized in A. oligospora via gene disruption, DNA affinity purification sequencing (DAP-Seq), and multomics approaches.
Abstract: Nematode-trapping (NT) fungi are an important natural enemy of nematodes and can capture their prey by producing traps. Hyphal anastomosis and fusion are important for mycelial growth and the colony morphological development of filamentous fungi and are also crucial for the trap morphogenesis of NT fungi. Arthrobotrys oligospora can form complex three-dimensional networks (traps) when sensing the presence of nematodes. ABSTRACT Nematode-trapping (NT) fungi are a unique group of carnivorous microorganisms that can capture and digest nematodes by producing ingenious trapping devices (traps). Arthrobotrys oligospora, a representative NT fungus, can develop adhesive three-dimensional networks for nematode predation. Hyphal fusion is indispensable for the trap formation of A. oligospora. Here, we characterized an orthologous Ste12 protein (AoSte12) in A. oligospora via gene disruption, DNA affinity purification sequencing (DAP-Seq), and multi-omics approaches. The disruption of the Aoste12 gene caused an increase in hyphal fusion and resulted in defects in mycelial growth, conidiation, trap morphology, and stress resistance, as well as reducing the number of nuclei and lipid droplet accumulation. Moreover, transcriptome and DAP-Seq analysis revealed that AoSte12 was involved in cellular processes associated with growth, cell fusion, the tricarboxylic acid cycle, vesicles, actin filaments, and lipid metabolism. In addition, combining metabolome with transcriptome and DAP-Seq analysis indicated that AoSte12 was involved in the mitogen-activated protein kinase signaling pathway, lipid metabolism, and secondary metabolites. A yeast two-hybrid assay revealed that AoSte12 can interact with diverse proteins, such as the MAK-2 orthologue protein Fus3, the vacuolar sorting protein Pep3, and UDP-glycosyltransferase. Our results suggest that AoSte12 plays an indispensable role in hyphal fusion and thus regulates sporulation and trap morphogenesis. These results provide deep insights into the connection between hyphal fusion and trap formation in NT fungi. IMPORTANCE Nematode-trapping (NT) fungi are an important natural enemy of nematodes and can capture their prey by producing traps. Hyphal anastomosis and fusion are important for mycelial growth and the colony morphological development of filamentous fungi and are also crucial for the trap morphogenesis of NT fungi. Arthrobotrys oligospora can form complex three-dimensional networks (traps) when sensing the presence of nematodes. This study revealed that AoSte12 is indispensable for hyphal fusion and that it regulates mycelial growth, conidiation, trap morphogenesis, stress resistance, the number of nuclei, and lipid droplet accumulation in A. oligospora. In addition, DNA affinity purification sequencing, transcriptome, and metabolome analyses further revealed that AoSte12 is involved in the mitogen-activated protein kinase pathway, lipid metabolism, and secondary metabolism. Overall, these findings expand the important role of AoSte12 in NT fungus A. oligospora and provide a broad foundation for elucidating the regulatory mechanism of trap development and the lifestyle transitions of pathogenic fungi.

Journal ArticleDOI
TL;DR: In this paper , it was shown that the Kdo2 moiety of the inner core is necessary and sufficient for E. coli recognition and internalization by Acanthamoeba castellanii.
Abstract: Rather than being transmitted from host to host, most opportunistic bacterial pathogens reside in the environment for significant amounts of time. Protist predation is a major cause of bacterial mortality. ABSTRACT Protozoan predation is a major cause of bacterial mortality. The first step of predation for phagocytic amoebae is the recognition of their prey. Lipopolysaccharide (LPS) is a major component of Gram-negative bacteria and is only present on the outer leaflet of the outer membrane lipid bilayer. LPS consists of three distinct regions: lipid A, an oligosaccharide core, and O-polysaccharide. Previous research in our lab determined that the oligosaccharide (OS) region of LPS mediates the recognition and internalization of Escherichia coli by Acanthamoeba castellanii. The oligosaccharide region is conceptually divided into the inner core and outer core. The LPS of any given E. coli strain contains only one of five different OS structures: K-12 and R1 to R4. All OSs contain the same inner core sugars but different outer core sugars. Here, we show that the Kdo2 moiety of the inner core is necessary and sufficient for E. coli recognition and internalization by A. castellanii. We also show that the precise composition of the variable outer core OS region modulates the efficiency with which A. castellanii consumes bacteria. The latter finding indicates that outer core OS composition plays a role in bacterial defense against phagocytic predators. IMPORTANCE Rather than being transmitted from host to host, most opportunistic bacterial pathogens reside in the environment for significant amounts of time. Protist predation is a major cause of bacterial mortality. To enhance their survival in the environment, bacteria have evolved various defense strategies such as filamentation, increased motility, biofilm formation, toxin release, and modification of cell wall structure; strategies which also enhance their virulence to humans. This work shows that the major component of the bacterial cell wall, LPS, also known as bacterial endotoxin, is a “dual use” factor, regulating amoeba predation of bacteria in addition to its well-known role as a human virulence factor. Both these functions are governed by the same parts of LPS. Thus, the structure and composition of this “dual use” factor likely evolved as a response to constant voracious protist grazing pressure in the environment, rather than during short-term infections of human and animals.

Journal ArticleDOI
TL;DR: In this paper , the seminal and fecal microbiota in yearling beef bulls fed a common diet to achieve moderate (1.13) or high (1 80 kg/day) rates of weight gain were evaluated.
Abstract: Increasing evidence from human and other animal species supports the existence of a commensal microbiota in semen and that this seminal microbiota may influence not only sperm quality and fertility but also female reproduction. Seminal microbiota in bulls and its evolution and factors shaping this community, however, remain largely underexplored. ABSTRACT In this study, we evaluated the seminal and fecal microbiota in yearling beef bulls fed a common diet to achieve moderate (1.13 kg/day) or high (1.80 kg/day) rates of weight gain. Semen samples were collected on days 0 and 112 of dietary intervention (n = 19/group) as well as postbreeding (n = 6/group) using electroejaculation, and the microbiota was assessed using 16S rRNA gene sequencing, quantitative PCR (qPCR), and culturing. The fecal microbiota was also evaluated, and its similarity with seminal microbiota was assessed. A subset of seminal bacterial isolates (n = 33) was screened for resistance against 28 antibiotics. A complex and dynamic microbiota was detected in bovine semen, and the community structure was affected by sampling time (R2 = 0.16, P < 0.001). Microbial richness increased significantly from day 0 to day 112, and diversity increased after breeding (P > 0.05). Seminal microbiota remained unaffected by the differential rates of gain, and its overall composition was distinct from fecal microbiota, with only 6% of the taxa shared between them. A total of 364 isolates from 49 different genera were recovered under aerobic and anaerobic culturing. Among these seminal isolates were pathogenic species and those resistant to several antibiotics. Overall, our results suggest that bovine semen harbors a rich and complex microbiota which changes over time and during the breeding season but appears to be resilient to differential gains achieved via a common diet. Seminal microbiota is distinct from the fecal microbiota and harbors potentially pathogenic and antibiotic-resistant bacterial species. IMPORTANCE Increasing evidence from human and other animal species supports the existence of a commensal microbiota in semen and that this seminal microbiota may influence not only sperm quality and fertility but also female reproduction. Seminal microbiota in bulls and its evolution and factors shaping this community, however, remain largely underexplored. In this study, we characterized the seminal microbiota of yearling beef bulls and its response to the bull age, different weight gains, and mating activity. We compared bacterial composition between seminal and fecal microbiota and evaluated the diversity of culturable seminal bacteria and their antimicrobial resistance. Our results obtained from sequencing, culturing, and antibiotic susceptibility testing provide novel information on the taxonomic composition, evolution, and factors shaping the seminal microbiota of yearling beef bulls. This information will serve as an important basis for further understanding of the seminal microbiome and its involvement in reproductive health and fertility in cattle.

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors analyzed the biochemical, growth, and phylogenetic characteristics of the K. pneumoniae strain and described the symptoms and pathological features of infected bullfrogs and tadpoles; this will provide useful data for the prevention and control of infectious diseases.
Abstract: Klebsiella pneumoniae is recognized as the most common multidrug-resistant bacterial pathogen in humans, and little is known about its pathogenicity in aquatic animals. Recently, K. pneumoniae was found to cause substantial mortality and morbidity in American farm frogs. ABSTRACT Klebsiella pneumoniae is a major cause of nosocomial infection and is considered a clinically important bacterium with antibiotic-resistant strains. There are few reports of K. pneumoniae infections in cultured aquatic animals, and no natural infection has been reported in amphibians. From September to October 2021, a high-mortality disease outbreak occurred in a pond-raised American bullfrog farm in Guangzhou, China. The infected bullfrogs were characterized by multiple organ congestive enlargement and inflammation. A pathogenic bacterium was isolated from the viscera of infected bullfrogs and confirmed to be K. pneumoniae by morphological, biochemical, and phylogenetic analyses. Infection experiments confirmed the virulence of the pathogenic strain against bullfrogs and tadpoles. A histopathological examination showed that the strain was harmful to multiple organs. Antibiotic resistance experiments indicated the isolate was a carbapenemase-producing multidrug-resistant K. pneumoniae (MDR-KP) strain. This study is the first report of K. pneumoniae infected American bullfrogs (Rana catesbeiana) and amphibians. These results will shed light on the pathogenicity of K. pneumoniae and help prevent and control K. pneumoniae infections in bullfrogs. IMPORTANCE Klebsiella pneumoniae is recognized as the most common multidrug-resistant bacterial pathogen in humans, and little is known about its pathogenicity in aquatic animals. Recently, K. pneumoniae was found to cause substantial mortality and morbidity in American farm frogs. This was the first report of K. pneumoniae infecting amphibians. In this study, we analyzed the biochemical, growth, and phylogenetic characteristics of the K. pneumoniae strain and described the symptoms and pathological features of infected bullfrogs and tadpoles; this will provide useful data for the prevention and control of infectious diseases, which has been suggested to decrease economic losses in bullfrog farming and reduce the potential threat to public health posed by K. pneumoniae.