scispace - formally typeset
Search or ask a question

Showing papers in "Mineralium Deposita in 2008"


Journal ArticleDOI
TL;DR: Combined fluid inclusion microthermometry and microanalysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) are used to constrain the hydrothermal processes forming a typical Climax-type porphyry molybdenum deposit as discussed by the authors.
Abstract: Combined fluid inclusion microthermometry and microanalysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) are used to constrain the hydrothermal processes forming a typical Climax-type porphyry Mo deposit. Molybdenum mineralisation at Questa occurred in two superimposed hydrothermal stages, a magmatic-hydrothermal breccia and later stockwork veining. In both stages, texturally earliest fluids were single-phase, of low salinity (~7 wt.% NaClequiv.) and intermediate-density. Upon decompression to ~300 bar, they boiled off a vapour phase, leaving behind a residual brine (up to 45 wt.% NaClequiv) at temperatures of ~420°C. The highest average Mo concentrations in this hot brine were ~500 μg/g, exceeding the Mo content of the intermediate-density input fluid by about an order of magnitude and reflecting pre-concentration of Mo by fluid phase separation prior to MoS2 deposition from the brine. Molybdenum concentrations in brine inclusions, then, decrease down to 5 μg/g, recording Mo precipitation in response to cooling of the saline liquid to ~360°C. Molybdenite precipitation from a dense, residual and probably sulphide-depleted brine is proposed to explain the tabular shape of the ore body and the absence of Cu-Fe sulphides in contrast to the more common Cu-Mo deposits related to porphyry stocks. Cesium and Rb concentrations in the single-phase fluids of the breccia range from 2 to 8 and from 40 to 65 μg/g, respectively. In the stockwork veins, Cs and Rb concentrations are significantly higher (45–90 and 110–230 μg/g, respectively). Because Cs and Rb are incompatible and hydrothermally non-reactive elements, the systematic increase in their concentration requires two distinct pulses of fluid exsolution from a progressively more fractionated magma. By contrast, major element and ore metal concentrations of these two fluid pulses remain essentially constant. Mass balance calculations using fluid chemical data from LA-ICPMS suggest that at least 25 km3 of melt and 7 Gt of deep input fluid were necessary to provide the amount of Mo contained in the stockwork vein stage alone. While the absolute amounts of fluid and melt are uncertain, the well-constrained element ratios in the fluids together with empirical fluid/melt partition coefficients derived from the inclusion analyses suggest a high water content of the source melt of ~10%. In line with other circumstantial evidence, these results suggest that initial fluid exsolution may have occurred at a confining pressure exceeding 5 kbar. The source of the molybdenum-mineralising fluids probably was a particularly large magma chamber that crystallised and fractionated in the lower crust or at mid-crustal level, well below the shallow intrusions immediately underlying Questa and other porphyry molybdenum deposits.

257 citations


Journal ArticleDOI
TL;DR: In this article, the first precise U-Pb isotope data on cassiterite from the large Xianghualing tin-polymetallic deposit in the central Nanling district, South China was reported.
Abstract: We report the first precise U–Pb isotope data on cassiterite from the large Xianghualing tin-polymetallic deposit in the central Nanling district, South China. The results show that four separates from sample XF-51 have a relatively narrow range of 206Pb/238U apparent ages, varying from 152 to 157 Ma, and the three 206Pb/238U apparent ages yield a weighted average value of 156 ± 4 Ma (MSWD = 0.32). Separates from two other cassiterite samples do not have sufficient radiogenic Pb to generate a reliable 206Pb/238U age. Seven separates from the above three cassiterite samples define a well-constrained 238U–206Pb isochron corresponding to an age of 157 ± 6 Ma (MSWD = 34). A comparison of the U–Pb cassiterite ages with published Ar–Ar dates on muscovite from this deposit and K–Ar age data on biotite from the pluton genetically related to the tin mineralization in this area demonstrates that the U–Pb isotope system of cassiterite is a potential geochronometer. Combined with the Ar–Ar dates of muscovite from this deposit, we can constrain the absolute age of tin-polymetallic mineralization in Xianghualing at 154–157 Ma. The dates obtained in this study, consistent with the published geochronological results from other important deposits in this region, reveal that the large-scale tungsten–tin mineralization in the central Nanling region was predominantly emplaced during 150–161 Ma.

172 citations


Journal ArticleDOI
TL;DR: The Tongshankou granodiorite has geochemical features similar to slab-derived adakites, such as high Sr (740-1,300 ppm) and enrichment in light rare earth elements (REE), low Sc (<10 ppm), Y (<13.3 ppm), and depletion in heavy REE (<1.2 ppm Yb), and resultant high Sr/Y (60-92 and La/Yb (26-75) ratios as discussed by the authors.
Abstract: The Tongshankou Cu–Mo deposit, located in the westernmost Daye district of the Late Mesozoic Metallogenic Belt along the Middle-Lower reaches of the Yangtze River, eastern China, consists mainly of porphyry and skarn ores hosted in the Tongshankou granodiorite and along the contact with the Lower Triassic marine carbonates, respectively. Sensitive high-resolution ion microprobe zircon U–Pb dating constrains the crystallization of the granodiorite at 140.6 ± 2.4 Ma (1σ). Six molybdenite samples from the porphyry ores yield Re–Os isochron age of 143.8 ± 2.6 Ma (2σ), while a phlogopite sample from the skarn ores yields an 40Ar/39Ar plateau age of 143.0 ± 0.3 Ma and an isochron age of 143.8 ± 0.8 Ma (2σ), indicating an earliest Cretaceous mineralization event. The Tongshankou granodiorite has geochemical features resembling slab-derived adakites, such as high Sr (740–1,300 ppm) and enrichment in light rare earth elements (REE), low Sc (<10 ppm), Y (<13.3 ppm), and depletion in heavy REE (<1.2 ppm Yb), and resultant high Sr/Y (60–92) and La/Yb (26–75) ratios. However, they differ from typical subduction-related adakites by high K, low MgO and Mg#, and radiogenic Sr–Nd–Hf isotopic compositions, with (87Sr/86Sr)t = 0.7062–0.7067, ɛNd(t) = −4.37 to −4.63, (176Hf/177Hf)t = 0.282469–0.282590, and ɛHf(t) = −3.3 to −7.6. The geochemical and isotopic data, coupled with geological analysis, indicate that the Tongshankou granodiorite was most likely generated by partial melting of enriched lithospheric mantle that was previously metasomitized by slab melts related to an ancient subduction system. Magmas derived from such a source could have acquired a high oxidation state, as indicated by the assemblage of quartz–magnetite–titanite–amphibole–Mg-rich biotite in the Tongshankou granodiorite and the compositions of magmatic biotite that fall in the field between the NiNiO and magnetite–hematite buffers in the Fe3+–Fe2+–Mg diagram. Sulfur would have been present as sulfates in such highly oxidized magmas, so that chalcophile elements Cu and Mo were retained as incompatible elements in the melt, contributing to subsequent mineralization. A compilation of existing data reveals that porphyry and porphyry-related Cu–Fe–Au–Mo mineralization from Daye and other districts of the Metallogenic Belt along the Middle-Lower reaches of the Yangtze River took place coevally in the Early Cretaceous and was related to an intracontinental extensional environment, distinctly different from the arc-compressive setting of the Cenozoic age that has been responsible for the emplacement of most porphyry Cu deposits of the Pacific Rim.

127 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed that CO2-rich fluids released during decarbonatization of sedimentary floor rocks passed up through the gabbroic magma led to the formation of the giantomagnetite deposit.
Abstract: In SW China, several large magmatic Fe-Ti-V oxide ore deposits are hosted by gabbroic intrusions associated with the Emeishan flood basalts. The Panzhihua gabbroic intrusion, a little deformed sill that contains a large titanomagnetite deposit at its base, concordantly intrudes late- Proterozoic dolostones. Mineralogical and chemical studies of the contact aureole in the footwall dolostones demonstrates that the metamorphism was largely isochemical, but for the release of large quantities of CO2 as the rocks were converted to marble and skarns during intrusion of the gabbroic magma. Petrological modelling of the crystallization of the intrusion, using H2O-poor Emeishan basalt as parent magma, shows that under normal conditions Fe-Ti-oxides crystallize at a late stage, after the crystallization of abundant olivine, clinopyroxene and plagioclase. In order for titanomagnetite to separate efficiently to form the ore deposit, this mineral must have crystallized earlier and close to the liquidus. We propose that CO2-rich fluids released during decarbonatization of sedimentary floor rocks passed up through the magma. Redox equilibria calculations show that when magma with the composition of Emeishan basalt is fluxed by a CO2-rich gas phase, its equilibrium oxygen fugacity (fO2) increases from FMQ to FMQ+1.5. From experimental constraints on magnetite saturation in basaltic magma under controlled fO2, such an oxidizing event would allow magnetite to crystallize near to the liquidus, leading to the formation of the deposit.

123 citations


Journal ArticleDOI
TL;DR: The Sossego iron oxide-copper-gold mine in the Carajas Mining Province of Brazil as discussed by the authors is a large-scale mine with two major groups of orebodies (Pista-Sequeirinho-Baiano and Sossogo-Curral).
Abstract: The Sossego iron oxide–copper–gold deposit (245 Mt @ 1.1% Cu, 0.28 g/t Au) in the Carajas Mineral Province of Brazil consists of two major groups of orebodies (Pista–Sequeirinho–Baiano and Sossego–Curral) with distinct alteration assemblages that are separated from each other by a major high angle fault. The deposit is located along a regional WNW–ESE-striking shear zone that defines the contact between metavolcano–sedimentary units of the ∼2.76 Ga Itacaiunas Supergroup and tonalitic to trondhjemitic gneisses and migmatites of the ∼2.8 Ga Xingu Complex. The deposit is hosted by granite, granophyric granite, gabbro, and felsic metavolcanic rocks. The Pista–Sequeirinho–Baiano orebodies have undergone regional sodic (albite–hematite) alteration and later sodic–calcic (actinolite-rich) alteration associated with the formation of massive magnetite–(apatite) bodies. Both these alteration assemblages display ductile to ductile–brittle fabrics. They are cut by spatially restricted zones of potassic (biotite and potassium feldspar) alteration that grades outward to chlorite-rich assemblages. The Sossego–Curral orebodies contain weakly developed early albitic alteration and very poorly developed subsequent calcic–sodic alteration. These orebodies contain well-developed potassic alteration assemblages that were formed during brittle deformation that resulted in the formation of breccia bodies. Breccia matrix commonly displays coarse mineral infill suggestive of growth into open space. Sulfides in both groups of deposits were precipitated first with potassic alteration and more importantly with a later assemblage of calcite–quartz–epidote–chlorite. In the Sequeirinho orebodies, sulfides range from undeformed to deformed; sulfides in the Sossego–Curral orebodies are undeformed. Very late, weakly mineralized hydrolytic alteration is present in the Sossego/Currral orebodies. The sulfide assemblage is dominated by chalcopyrite with subsidiary siegenite, and millerite. Pyrrhotite and pyrite are minor constituents of ore in the Sequerinho orebodies while pyrite is relatively abundant in the Sossego–Curral bodies. Oxygen isotope partitioning between mineral pairs constrains temperatures in the deposit spatially and through time. In the Sequeirinho orebody, the early sodic–calcic alteration stage was characterized by temperatures exceeding 500°C and $$ \delta ^{{{\text{18}}}} {\text{O}}_{{{\text{H}}_{{\text{2}}} {\text{O}}}} $$ values for the alteration fluid of 6.9 ± 0.9‰. Temperature declines outward and upward from the zone of most intense alteration. Paragenetically later copper–gold mineralization displays markedly lower temperatures (<300°C) and was characterized by the introduction of 18O-depleted hydrothermal fluids −1.8 ± 3.4‰. The calculated δDH2O and $$ \delta ^{{{\text{18}}}} {\text{O}}_{{{\text{H}}_{{\text{2}}} {\text{O}}}} $$ values suggest that the fluids that formed the early calcic–sodic alteration assemblage were of formational/metamorphic or magmatic origin. The decrease of $$ \delta ^{{{\text{18}}}} {\text{O}}_{{{\text{H}}_{{\text{2}}} {\text{O}}}} $$ values through time may reflect influx of surficially derived waters during later alteration and mineralization events. Influx of such fluids could be related to episodic fluid overpressure, resulting in dilution and cooling of the metalliferous fluid, causing deposition of metals transported as metal chloride complexes.

114 citations


Journal ArticleDOI
TL;DR: The Apuseni-Banat-Timok-Srednogorie magmatic-metallogenic belt (ABTS) as discussed by the authors is a large metallogenic province in the Balkan-South Carpathian system in southeastern Europe.
Abstract: The Apuseni–Banat–Timok–Srednogorie magmatic–metallogenic belt (ABTS belt), forms a substantial metallogenic province in the Balkan-South Carpathian system in southeastern Europe. The belt hosts porphyry, skarn, and epithermal deposits mined since pre-Roman times. Generally, the deposits, prospects, and occurrences within the belt are linked to magmatic centers of calc-alkaline affinity. Fifty-one rhenium-osmium (Re–Os) ages and Re concentration data for molybdenites define systematic geochronologic trends and constrain the geochemical-metallogenic evolution of the belt in space and time. From these data and additional existing geologic-geochemical data, a general tectonic history for the belt is proposed. Mineralization ages in Apuseni-Banat, Timok, and Panagyurishte (the central district of the larger E–W Srednogorie Zone) range from 72–83, 81–88, and 87–92 Ma, respectively, and clearly document increasing age from the northwestern districts to the southeastern districts. Further, Re–Os ages suggest rapidly migrating pulses of Late Cretaceous magmatic–hydrothermal activity with construction of deposits in ~1 m.y., districts in ~10 m.y., and the entire 1,500 km belt in ~20 m.y. Ages in both Timok and Panagyurishte show systematic younging, while deposit ages in Banat and Apuseni are less systematic reflecting a restricted evolution of the tectonic system. Systematic differences are also observed for molybdenite Re concentrations on the belt scale. Re concentrations generally range from hundreds to thousands of parts per million, typical of subduction-related Cu–Au–Mo–(PGE) porphyry systems associated with the generation of juvenile crust. The geochronologic and geochemical trends are compatible with proposed steepening of subducting oceanic slab and relaxation of upper continental plate compression. Resulting influx of sub-continental mantle lithosphere (SCML) and asthenosphere provide a fertile metal source and heat, while the subducting slab contributes connate and mineral dehydration fluids, which facilitate partial melting and metal leaching of SCML and asthenosphere. Cu–Au–Mo–(PGE) porphyry deposits may develop where melts are trapped at shallow crustal levels, often with associated volcanism and epithermal-style deposits (South Banat, Timok, and Panagyurishte). Mo–Fe–Pb–Zn skarn deposits may develop where felsic melts are trapped adjacent to Mesozoic limestones at moderate crustal levels (North Banat and Apuseni). Systematic spatial variations in deposit style, commodity enrichment, Re–Os ages, and Re concentrations support specific tectonic processes that led to ore formation. In a post-collisional setting, subduction of Vardar oceanic crust may have stalled, causing slab steepening and rollback. The slab rollback relaxes compression, facilitating and enhancing orogenic collapse of previously thickened Balkan-South Carpathian crust. The progression of coupled rollback-orogenic collapse is evidenced by the width of Late Cretaceous extensional basins and northward younging of Re–Os ages, from Panagyurishte (~60 km; 92–87 Ma) to Timok (~20 km; 88–81 Ma) to Apuseni-Banat (~5 km; 83–72 Ma). Generation of a well-endowed mineral belt, such as the ABTS, requires a temporally and spatially restricted window of magmatic–hydrothermal activity. This window is quickly opened as upper plate compression relaxes, thereby inducing melt generation and ingress of melt to higher crustal levels. The window is just as quickly closed as upper plate compression is reinstated. The transient tectonic state responsible for economic mineralization in the ABTS belt may be a paleo-analogue to transient intervals in the present subduction tectonics of SE Asia where much mineral wealth has been created in the last few million years.

102 citations


Journal ArticleDOI
TL;DR: In the Archaean St. Ives gold camp in Western Australia, a spatial and temporal sequence of iron sulfides and oxides with gold indicate the presence of at least two spatially restricted but broadly synchronous hydrothermal fluids with contrasting redox states.
Abstract: Hydrothermal sulfide–oxide–gold mineral assemblages in gold deposits in the Archaean St. Ives gold camp in Western Australia indicate extremely variable redox conditions during hydrothermal alteration and gold mineralization in space and time. Reduced alteration assemblages (pyrrhotite–pyrite) occur in deposits in the southwest of the camp (e.g., Argo, Junction deposits) and moderately to strongly oxidized assemblages (magnetite–pyrite, hematite–pyrite) occur in deposits in the Central Corridor in the northeast (e.g., North Orchin, Revenge deposits). Reduced mineral assemblages flank the Central Corridor of oxidized deposits and, locally, cut across it along E–W trending faults. Oxidized mineral assemblages in the Central Corridor are focused on gravity lows which are interpreted to reflect abundant felsic porphyritic intrusions at about 1,000 m below present surface. Hydrothermal magnetite predates and is synchronous with early phases of gold-associated albite–carbonate–pyrite–biotite–chlorite hydrothermal alteration. Later-stage, gold-associated pyrite is in equilibrium with hematite. The spatial distribution and temporal sequence of iron sulfides and oxides with gold indicate the presence of at least two spatially restricted but broadly synchronous hydrothermal fluids with contrasting redox states. Sulfur isotope constraints support the argument that the different mineral assemblages reflect differences in redox conditions. The δ 34S values for pyrite for the St. Ives gold camp range between −8.4‰ and +5.1‰ with the negative values occurring in oxidized magnetite-rich domains and slightly negative or positive values occurring in reduced, pyrrhotitic domains. Preliminary spatial and paragenetic analysis of the distribution of iron sulfides and oxides in the St. Ives camp suggests that gold grades are highest where the redox state of the hydrothermal alteration assemblages switches from relatively reduced pyrrhotite–pyrite to relatively oxidized magnetite–pyrite and hematite–pyrite both in space and time. Gold deposition is inferred to have occurred where fluids of contrasting redox state mixed.

90 citations


Journal ArticleDOI
TL;DR: In this paper, the authors studied a number of magmatic Ni-Cu-PGE sulfide deposits in two distinct belts in eastern Botswana, including the Tati belt and the Selebi-Phikwe belt.
Abstract: We studied a number of magmatic Ni–Cu–(PGE) sulfide deposits in two distinct belts in eastern Botswana. The Tati belt contains several relatively small deposits (up to 4.5 Mt of ore at 2.05% Ni and 0.85% Cu) at Phoenix, Selkirk and Tekwane. The deposits are hosted by ca 2.7 Ga, low- to medium-grade metamorphosed gabbroic–troctolitic intrusions situated within or at the periphery of a greenstone belt. The deposits of the Selebi-Phikwe belt are larger in size (up to 31 Mt of ore grade). They are hosted by high-grade metamorphosed gabbronorites, pyroxenites and peridotites believed to be older than ca 2.0 Ga that intruded gneisses of the Central Zone of the Limpopo metamorphic belt. The composition of the sulfide mineralisation in the two belts shows systematic variation. Most of the mineralisation in the Tati belt contains 2–9% Ni and 0.05–4% Cu (Cu/Cu + Ni = 0.4–0.7), whereas most of the mineralisation in the Selebi-Phikwe belt contains 1–3% Ni and 0.1–4% Cu (Cu/Cu + Ni = 0.4–0.9). The Cu–Ni tenors of the ores in both belts are consistent with crystallization from a basaltic magma. The Tati ores contain mostly >3 ppm Pt + Pd (Pt/Pd 0.1–1), with Pd/Ir = 100–1,000, indicative of a differentiated basaltic magma that remained S-undersaturated before emplacement. Most of the Selebi-Phikwe ores have <0.5 ppm Pt + Pd (Pt/Pd < 0.1–1), with Pd/Ir = 10–500. This suggests a relatively less differentiated magma that reached S saturation before emplacement. The Tati rocks show flat mantle-normalised incompatible trace element patterns (average Th/YbN = 1.57), except for strong enrichments in large ion lithophile elements (Cs, Rb, Ba, U, K). Such patterns are characteristic of relatively uncontaminated oceanic arc magmas and suggest that the Tati intrusions were emplaced in a destructive plate margin setting. Most of the Selebi-Phikwe rocks (notably Dikoloti) have more fractionated trace element signatures (average Th/YbN = 4.22), possibly indicating digestion of upper crustal material during magma emplacement. However, as there are also samples that have oceanic arc-like signatures, an alternative possibility is that the composition of most Selebi-Phikwe rocks reflects tectonic mingling of the intrusive rocks with the country rocks. The implication is that orogenic belts may have a higher prospectivity for magmatic Ni–Cu ores than presently recognised. The trigger mechanism for sulfide saturation and segregation in all intrusions remains unclear. Whereas the host rocks to the intrusions appear to be relatively sulfur poor, addition of crustal S to the magmas is suggested by low Se/S ratios in some of the ores (notably at Selebi-Phikwe). External S sources may thus remain unidentified due to poor exposure and/or S mobility in response to metamorphism.

86 citations


Journal ArticleDOI
TL;DR: A detailed study by laser ablation ICP-MS (LA-ICP-MS) on a core through the Platreef at Turfspruit suggests that this is not strictly the case as mentioned in this paper.
Abstract: The Platreef unit of the northern Bushveld Complex comprises a diverse package of pyroxenites, peridotites and mafic lithologies with associated Ni–Cu–platinum-group element (PGE) mineralisation. Base metal sulphides (BMS) are generally more abundant in the Platreef than in other Bushveld PGE deposits, such as the Merensky Reef and the UG2 chromitite, but the Platreef, though thicker, has lower overall PGE grades. Despite a commonly held belief that PGEs are closely associated with sulphide mineralisation, a detailed study by laser ablation ICP-MS (LA-ICP-MS) on a core through the Platreef at Turfspruit suggests that this is not strictly the case. While a significant proportion of the Pd, Os and Ir were found to be hosted by BMS, Pt, irrespective of its whole-rock concentration, was not. Only at the top of the Platreef is Pt directly associated with sulphide minerals where Pt–Pd–(±Sb)–Te–Bi-bearing inclusions were detected in the chalcopyrite portions of large composite sulphides. In contrast, Pd, Os, and Ir occur in solid solution and as discrete inclusions within the BMS throughout the core. For Os and Ir, this is usually in the form of Os–Ir alloys, whereas Pd forms a range of Pd–Te–Bi–(Sb) phases. Scanning electron microscope observations on samples from the top of the core revealed the presence of ≤0.2-mm-long (PtPd)2(Sb,Te,Bi)2 michenerite–maslovite laths within the chalcopyrite portions of large composite sulphides. Additional Pt-bearing minerals, including sperrylite and geversite, and a number of Pd(–Te–Bi–Sb) minerals were observed in, or close to, the alteration rims of these sulphides. This textural association was observed throughout the core. Similar platinum-group minerals (PGMs) were observed within the felsic assemblages composed of quartz, plagioclase, alkali feldspar and clinopyroxene produced by late-stage felsic melts that permeated the Platreef. Many of these PGMs occur a significant distance away from any sulphide minerals. We believe these features can all be linked to the introduction of As, Sb, Te and Bi into the magmatic system through assimilation of sedimentary footwall rocks and xenoliths. Where the degree of contamination was high, all of the Pt and some of the Pd formed As- and Sb-bearing PGM that were expelled to the edges of the sulphide droplets. Many of these were redistributed where they came into contact with late-stage felsic melts. Where no felsic melt interactions occurred, the expelled Pt- and Pd-arsenides and antimonides remained along the margins of the sulphides. At the top of the Platreef, where the effects of contamination were relatively low, some of the Pt remained within the sulphide liquids. On cooling, this formed the micro-inclusions and blade-like laths of Pt–Pd–(Sb)–Bi–Te in the chalcopyrite.

84 citations


Journal ArticleDOI
TL;DR: In this article, the boron isotope and chemical compositions of tourmaline from the Hira Buddini gold deposit within the Archean Hutti-Maski greenstone belt in southern India were determined.
Abstract: We determined the boron isotope and chemical compositions of tourmaline from the Hira Buddini gold deposit within the Archean Hutti-Maski greenstone belt in southern India to investigate the evolution of the hydrothermal system and to constrain its fluid sources. Tourmaline is a minor but widespread constituent in the inner and distal alteration zones of metabasaltic and metadacite host rocks associated with the hydrothermal gold mineralization. The Hira Buddini tourmaline belongs to the dravite–schorl series with variations in Al, Fe/(Fe+Mg), Ca, Ti, and Cr contents that can be related to their host lithology. The total range of δ11B values determined is extreme, from −13.3‰ to +9.0‰, but 95% of the values are between −4 and +9‰. The boron isotope compositions of metabasalt-hosted tourmaline show a bimodal distribution with peak δ11B values at about −2‰ and +6‰. The wide range and bimodal distribution of boron isotope ratios in tourmaline require an origin from at least two isotopically distinct fluid sources, which entered the hydrothermal system separately and were subsequently mixed. The estimated δ11B values of the hydrothermal fluids, based on the peak tourmaline compositions and a mineralization temperature of 550°C, are around +1 and +10‰. The isotopically lighter of the two fluids is consistent with boron released by metamorphic devolatilization reactions from the greenstone lithologies, whereas the 11B-rich fluid is attributed to degassing of I-type granitic magmas that intruded the greenstone sequence, providing heat and fluids to the hydrothermal system.

74 citations


Journal ArticleDOI
TL;DR: The Borborema pegmatitic Province (BPP), northeastern Brazil, is famous for tantalum mining and also famous for top-quality specimens of exotic Nb-Ta oxides and, more recently, for the production of gem quality, turquoise blue, Paraiba Elbaite as mentioned in this paper.
Abstract: The Borborema Pegmatitic Province (BPP), northeastern Brazil, is historically important for tantalum mining and also famous for top-quality specimens of exotic Nb–Ta oxides and, more recently, for the production of gem quality, turquoise blue, ‘Paraiba Elbaite.’ With more than 750 registered mineralized rare-element granitic pegmatites, the BPP extends over an area of about 75 by 150 km in the eastern part of the Neoproterozoic Serido Belt. The Late Cambrian pegmatites are mostly hosted by a sequence of Neoproterozoic cordierite–sillimanite biotite schists of the Serido Formation and quartzites and metaconglomerates of the Equador Formation. The trace-element ratios in feldspar and micas allow to classify most pegmatites as belonging to the beryl–columbite phosphate subtype. Electron microprobe analyses (EMPA) of columbite, tapiolite, niobian–tantalian rutile, ixiolite and wodginite group minerals from 28 pegmatites in the BPP are used to evaluate the effectiveness of Nb–Ta oxide chemistry as a possible exploration tool, to trace the degree of pegmatite fractionation and to classify the pegmatites. The columbite group mineral composition allows to establish a compositional trend from manganoan ferrocolumbite to manganocolumbite and on to manganotantalite. This trend is typical of complex spodumene- and/or lepidolite-subtype pegmatites. It clearly contrasts with another trend, from ferrocolumbite through ferrotantalite to ferrowodginite and ferrotapiolite compositions, typical of pegmatites of the beryl–columbite phosphate subtype. Large scatter and anomalous trends in zoned crystals partially overlap and conceal the two main evolution patterns. This indicates that a large representative data set of heavy mineral concentrate samples, collected systematically along cross-sections, would be necessary to predict the metallogenetic potential of individual pegmatites. Other mineral species, e.g. garnets and/or tourmaline, with a more regular distribution than Nb–Ta oxides, would be more appropriate and less expensive for routine exploration purposes. The currently available Nb–Ta oxide chemistry data suggest the potential for highly fractionated Ta–Li–Cs pegmatites in the BPP, so far undiscovered, and encourages further, more detailed research.

Journal ArticleDOI
TL;DR: In this paper, the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina, reveals a complex history of reheating that spans millions of years, using multiple chronometers (including U-Pb and 40Ar/39Ar geochronology and zircon and apatite (U-Th)/He thermochronologies).
Abstract: Application of multiple chronometers (including U–Pb and 40Ar/39Ar geochronology and zircon and apatite (U–Th)/He thermochronology) to porphyry intrusions at the Bajo de la Alumbrera porphyry copper–gold deposit, Argentina, reveals a complex history of reheating that spans millions of years. Previous U–Pb geochronology, combined with our new 40Ar/39Ar data, shows that the multiple porphyritic intrusions at Bajo de la Alumbrera were emplaced during two episodes, the first at about 8.0 Ma (P2 and associated porphyries) and the second about a million years later (Early and Late P3 porphyries). Complex overprinting alteration events have obscured the earliest hydrothermal history of the deposit. By contrast, 40Ar/39Ar data reveal the close temporal relationship of ore-bearing potassic alteration assemblages (7.12 ± 0.13 Ma; biotite) to the emplacement of the P3 intrusions. Consistent with low closure temperatures, younger ages have been determined for associated hydrothermal alkali feldspar (6.82 ± 0.05 Ma and 6.64 ± 0.09 Ma). The temperature-sensitive Ar data also record an unexpected prolonged cooling history (to below 200°C) extending to 5.9 Ma. Our data suggest that the Bajo de la Alumbrera system underwent protracted cooling, after the collapse of the main hydrothermal system, or that one or more low-temperature (~100–200°C) reheating events occurred after emplacement of the porphyritic intrusions at Bajo de la Alumbrera. These have been constrained in part by our new 40Ar/39Ar data (including multidomain diffusion modeling) and (U–Th)/He ages. Single-grain (U–Th)/He ages (n = 5) for phenocrystic zircon from P2 and P3 intrusive phases bracket these thermal events to between 6.9 (youngest crystallization of intrusion) and 5.1 Ma. Multidomain modeling of alkali feldspar data (from both igneous and hydrothermal crystals) is consistent with the deposit cooling rapidly from magmatic temperatures to below about 300°C, with a more protracted history down to 150°C. We conclude that the late-stage low-temperature (150 to 200°C) thermal anomaly localized at Bajo de la Alumbrera resulted from radiation of heat and/or fluids sourced from deeper-seated magma bodies, emplaced beneath the deposit. To produce the observed thermal longevity of the porphyry system, magma bodies underlying the Bajo de la Alumbrera deposit must have been repeatedly replenished by new magma batches. Without replenishment, crystallization of the source magma will occur, and heat release will stop, leading to rapid cooling (in less than ten thousand years). The influx of deep-seated magma may have caused the development of late low-temperature hydrothermal alteration assemblages at Bajo de la Alumbrera, at the same time that mineralization formed at Agua Rica, some 25 km away. All available chronologic data for the Bajo de la Alumbrera deposit suggest that the hydrothermal system was active episodically over at least a three-million and possibly up to a four-million-year period.

Journal ArticleDOI
TL;DR: In this article, the Limahe Ni-Cu sulfide deposit in SW China was studied and it was suggested that the parental magma was derived from picritic magma by olivine fractionation and contamination in a staging chamber at midcrustal levels.
Abstract: The Limahe Ni–Cu sulfide deposit is hosted by a small mafic–ultramafic intrusion (800 × 200 × 300 m) that is temporally associated with the voluminous Permian flood basalts in SW China. The objective of this study is to better understand the origin of the deposit in the context of regional magmatism which is important for the ongoing mineral exploration in the region. The Limahe intrusion is a multiphase intrusion with an ultramafic unit at the base and a mafic unit at the top. The two rock units have intrusive contacts and exhibit similar mantle-normalized trace element patterns and Sr–Nd isotopic compositions but significantly different cumulus mineralogy and major element compositions. The similarities suggest that they are related to a common parental liquid, whereas the differences point to magma differentiation by olivine crystallization at depth. Sulfide mineralization is restricted to the ultramafic unit. The abundances of sulfides in the ultramafic unit generally increase towards the basal contacts with sedimentary footwall. The δ 34S values of sulfide minerals from the Limahe deposit are elevated, ranging from +2.4 to +5.4‰. These values suggest the involvement of external S with elevated δ 34S values. The mantle-normalized platinum-group element (PGE) patterns of bulk sulfide ores are similar to those of picrites associated with flood basalts in the region. The abundances of PGE in the sulfide ores, however, are significantly lower than that of sulfide liquid expected to segregate from undepleted picrite magma. Cr-spinel and olivine are present in the Limahe ultramafic rocks as well as in the picrites. Mantle-normalized trace element patterns of the Limahe intrusion generally resemble those of the picrites. However, negative Nb–Ta anomalies, common features of contamination with the lower or middle crust, are present in the intrusion but absent in the picrites. Sr–Nd isotopes suggest that the Limahe intrusion experienced higher degrees of contamination with the upper crust than did the picrites. The results of this study permit us to suggest that the parental magma of the Limahe intrusion was derived from picritic magma by olivine fractionation and contamination in a staging chamber at mid-crustal levels. Depletion of PGE in the sulfide ores in the Limahe intrusion is likely due to previous sulfide segregation of the parental magmas in the staging chamber. Sulfide mineralization in the Limahe intrusion is related to second-stage sulfide segregation after the fractionated magmas acquired external S from pyrite-bearing country rocks during magma ascent to the Limahe chamber. The abrupt change in mineralogical and chemical compositions between the ultramafic unit and the overlying unit suggests that at least two separate pulses of magma were involved in the development of the Limahe intrusion. We propose that the Limahe intrusion was once a wider part of a dynamic conduit that fed magma to the overlying subvolcanic dykes/sills or lavas. The ultramafic unit formed by the first, relatively more primitive magma, and the mafic unit formed by the second, relatively more fractionated magma. Immiscible sulfide droplets that segregated from the first magma settled down with olivine crystals to form the sulfide-bearing, olivine-rich rocks in the base of the intrusion. The overlying residual liquids were then pushed out of the chamber by the second magma. Critical factors for the formation of an economic Ni–Cu sulfide deposit in such a small intrusion include the dynamic petrologic processes involved and the availability of external sulfur. The Limahe deposit reminds us that small, multiphase, mafic–ultramafic intrusions in the region should not be overlooked for the potential of economic Ni–Cu sulfide deposits.

Journal ArticleDOI
TL;DR: The Agdarreh gold deposit as discussed by the authors is a disseminated gold deposit in hydrothermally leached Miocene reefal limestone in the Takab geothermal field, which is part of the Cenozoic Urumieh-Dokhtar volcanic arc.
Abstract: The disseminated gold deposit of Agdarreh (24.5 t at 3.7 g/t Au) is hosted in hydrothermally leached Miocene reefal limestone in the Takab geothermal field, which is part of the Cenozoic Urumieh–Dokhtar volcanic arc of NW Iran. Alteration and mineralisation are largely bedding controlled blanket-like and include: (1) pre-ore decalcification; (2) first-stage silicification associated with pyrite (early pyrite with 3–4 wt% As, late pyrite with <1–3 wt% As) and sphalerite; (3) second-stage silicification with precipitation of galena, Pb–Sb–As sulphides, sulphosalts, tellurides and native bismuth; (4) late-stage cinnabar and barite in vugs; (5) oxide ore stage and carbonate alteration (complex Mn–Fe-rich oxyhydroxides, arsenates, sulphates, APS minerals and rutile in residual leached rock and infill of karstic cavities). Gold occurs invisibly in the jasperoids and is enriched in the Mn–Fe oxyhydroxide surface cap of the jasperoids. Gold mineralisation is associated with the hydrothermal metal suite of As, Sb, Hg, Te, Se, Tl, Ba, Zn, Ag, Cd, Bi and Pb, and is characterised by very low Cu contents. Arsenian pyrite probably carried most of the primary (invisible) gold. Native gold occurs in association with the late-stage cinnabar and the oxide ore. The Agdarreh deposit shows many similarities with Carlin-type ore and is interpreted to have resulted from near-surface hydrothermal activity related to the Cenozoic arc volcanism that developed within the extensional Takab graben. The extensive oxidation at Agdarreh may be partly due to the waning stages of hydrothermal activity. Active H2S-bearing thermal springs are locally depositing extremely high contents of Au and Ag, and travertine is present over large areas, suggesting that ore-forming hydrothermal activity occurred periodically from the Miocene to Recent in the Takab geothermal field.

Journal ArticleDOI
TL;DR: The Igarape Bahia Cu-Au deposit in the Carajas Province, Brazil, is hosted by steeply dipping metavolcano-sedimentary rocks of the IGCG group as mentioned in this paper.
Abstract: The Igarape Bahia Cu–Au deposit in the Carajas Province, Brazil, is hosted by steeply dipping metavolcano-sedimentary rocks of the Igarape Bahia Group. This group consists of a low greenschist grade unit of the Archean (∼2,750 Ma) Itacaiunas Supergroup, in which other important Cu–Au and iron ore deposits of the Carajas region are also hosted. The orebody at Igarape Bahia is a fragmental rock unit situated between chloritized basalt, with associated hyaloclastite, banded iron formation (BIF), and chert in the footwall and mainly coarse- to fine-grained turbidites in the hanging wall. The fragmental rock unit is a nearly concordant, 2 km long and 30–250 m thick orebody made up of heterolithic, usually matrix-supported rocks composed mainly of coarse basalt, BIF, and chert clasts derived from the footwall unit. Mineralization is confined to the fine-grained matrix and comprises disseminated to massive chalcopyrite accompanied by magnetite, gold, U- and light rare earth element (LREE)-minerals, and minor other sulfides like bornite, molybdenite, cobaltite, digenite, and pyrite. Gangue minerals include siderite, chlorite, amphibole, tourmaline, quartz, stilpnomelane, epidote, and apatite. A less important mineralization style at Igarape Bahia is represented by late quartz–chalcopyrite–calcite veins that crosscut all rocks in the deposit area. Fluid inclusions trapped in a quartz cavity in the ore unit indicate that saline aqueous fluids (5 to 45 wt% NaCl + CaCl2 equiv), together with carbonic (CO2 ± CH4) and low-salinity aqueous carbonic (6 wt% NaCl equiv) fluids, were involved in the mineralization process. Carbonates from the fragmental layer have δ13C values from −6.7 to −13.4 per mil that indicate their origin from organic and possibly also from magmatic carbon. The δ34S values for chalcopyrite range from −1.1 to 5.6 per mil with an outlier at −10.8 per mil, implying that most sulfur is magmatic or leached from magmatic rocks, whereas a limited contribution of reduced and oxydized sulfur is also evident. Oxygen isotopic ratios in magnetite, quartz, and siderite yield calculated temperatures of ∼400°C and δ18O-enriched compositions (5 to 16.5 per mil) for the ore-forming fluids that suggest a magmatic input and/or an interaction with 18O-rich, probably sedimentary rocks. The late veins of the Igarape Bahia deposit area were formed from saline aqueous fluids (2 to 60 wt% NaCl + CaCl2 equiv) with δ18Ofluid compositions around 0 per mil that indicate contribution from meteoric fluids. With respect to geological features, Igarape Bahia bears similarity with syngenetic, volcanic-hosted massive sulfide (VHMS)-type deposits, as indicated by the volcano-sedimentary geological context, stratabound character, and association with submarine volcanic flows, hyaloclastite, and exhalative beds such as BIF and chert. On the other hand, the highly saline ore fluids and the mineral assemblage, dominated by magnetite and chalcopyrite, with associated gold, U- and LREE-minerals and scarce pyrite, indicate that Igarape Bahia belongs to the Fe oxide Cu–Au (IOCG) group of deposits. The available geochronologic data used to attest syngenetic or epigenetic origins for the mineralization are either imprecise or may not represent the main mineralization episode but a later, superimposed event. The C, S, and O isotopic results obtained in this study do not clearly discriminate between fluid sources. However, recent B isotope data obtained on tourmaline from the matrix of the fragmental rock ore unit (Xavier, Wiedenbeck, Dreher, Rhede, Monteiro, Araujo, Chemical and boron isotopic composition of tourmaline from Archean and Paleoproterozoic Cu–Au deposits in the Carajas Mineral Province, 1° Simposio Brasileiro de Metalogenia, Gramado, Brazil, extended abstracts, CD-ROM, 2005) provide strong evidence of the involvement of a marine evaporitic source in the hydrothermal system of Igarape Bahia. Evaporite-derived fluids may explain the high salinities and the low reduced sulfur mineral paragenesis observed in the deposit. Evaporite-derived fluids also exclude a significant participation of magmatic or mantle-derived fluids, reinforcing the role of nonmagmatic brines in the genesis of Igarape Bahia. Considering this aspect and the geological features, the possibility that the deposit was generated by a hydrothermal submarine system whose elevated salinity was acquired by leaching of ancient evaporite beds should be evaluated.

Journal ArticleDOI
TL;DR: In this article, the authors document the nature of contact-style platinum-group element (PGE) mineralization along >100 km of strike in the northern lobe of the Bushveld Complex.
Abstract: In the present study, we document the nature of contact-style platinum-group element (PGE) mineralization along >100 km of strike in the northern lobe of the Bushveld Complex. New data from the farm Rooipoort are compared to existing data from the farms Townlands, Drenthe, and Nonnenwerth. The data indicate that the nature of the contact-style mineralization shows considerable variation along strike. In the southernmost portion of the northern Bushveld, on Rooipoort and adjoining farms, the mineralized sequence reaches a thickness of 700 m. Varied-textured gabbronorites are the most common rock type. Anorthosites and pyroxenites are less common. Chromitite stringers and xenoliths of calcsilicate and shale are largely confined to the lower part of the sequence. Layering is locally prominent and shows considerable lateral continuity. Disseminated sulfides may reach ca. 3 modal % and tend to be concentrated in chromitites and melanorites. Geochemistry indicates that the rocks can be correlated with the Upper Critical Zone. This model is supported by the fact that, in a down-dip direction, the mineralized rocks transform into the UG2-Merensky Reef interval. Between Townlands and Drenthe, the contact-mineralized sequence is thinner (up to ca. 400 m) than in the South. Chromitite stringers occur only sporadically, but ultramafic rocks (pyroxenites, serpentinites, and peridotites) are common. Xenoliths of calcsilicate, shale, and iron formation are abundant indicating significant assimilation of the floor rocks. Sulfides may locally form decimeter- to meter-sized massive lenses. PGE grades tend to be higher than elsewhere in the northern Bushveld. The compositions of the rocks show both Upper Critical Zone and Main Zone characteristics. At Nonnenwerth, the mineralized interval is up to ca. 400 m thick. It consists largely of varied-textured gabbronorites, with minor amounts of igneous ultramafic rocks and locally abundant and large xenoliths of calcsilicate. Layering is mostly weakly defined and discontinuous. Disseminated sulfides (

Journal ArticleDOI
TL;DR: In this paper, two types of pseudomorphs can be distinguished in the nodules and lenses of the Katangan copperbelt: authigenic quartz and coarse-grained dolomite.
Abstract: The stratiform Cu–Co ore mineralisation in the Katangan Copperbelt consists of dispersed sulphides and sulphides in nodules and lenses, which are often pseudomorphs after evaporites. Two types of pseudomorphs can be distinguished in the nodules and lenses. In type 1 examples, dolomite precipitated first and was subsequently replaced by Cu–Co sulphides and authigenic quartz, whereas in type 2 examples, authigenic quartz and Cu–Co sulphides precipitated prior to dolomite and are coarse-grained. The sulphur isotopic composition of the copper–cobalt sulphides in the type 1 pseudomorphs is between −10.3 and 3.1‰ relative to the Vienna Canyon Diablo Troilite, indicating that the sulphide component was derived from bacterial sulphate reduction (BSR). The generation of $${\text{HCO}}_3^ - $$ during this process caused the precipitation and replacement of anhydrite by dolomite. A second product of BSR is the generation of H2S, resulting in the precipitation of Cu–Co sulphides from the mineralising fluids. Initial sulphide precipitation occurred along the rim of the pseudomorphs and continued towards the core. Precipitation of authigenic quartz was most likely induced by a pH decrease during sulphide precipitation. Fluid inclusion data from quartz indicate the presence of a high-salinity (8–18 eq. wt.% NaCl) fluid, possibly derived from evaporated seawater which migrated through the deep subsurface. 87Sr/86Sr ratios of dolomite in type 1 nodules range between 0.71012 and 0.73576, significantly more radiogenic than the strontium isotopic composition of Neoproterozoic marine carbonates (87Sr/86Sr = 0.7056–0.7087). This suggests intense interaction with siliciclastic sedimentary rocks and/or the granitic basement. The low carbon isotopic composition of the dolomite in the pseudomorphs (−7.02 and −9.93‰ relative to the Vienna Pee Dee Belemnite, V-PDB) compared to the host rock dolomite (−4.90 and +1.31‰ V-PDB) resulted from the oxidation of organic matter during BSR.

Journal ArticleDOI
TL;DR: In this article, the geochemical signature of the ores (including their Se-rich nature) is interpreted here to reflect a mantle source for the “epithermal suite” elements (Au, Ag, Se, Te, As, Sb, Hg) and that signature is preserved to shallow crustal levels because of the similar volatility and aqueous geochemical behavior of the epithermal suites.
Abstract: Epithermal deposits with bonanza Au–Ag veins in the northern Great Basin (NGB) are spatially and temporally associated with Middle Miocene bimodal volcanism that was related to a mantle plume that has now migrated to the Yellowstone National Park area. The Au–Ag deposits formed between 16.5 and 14 Ma, but exhibit different mineralogical compositions, the latter due to the nature of the country rocks hosting the deposits. Where host rocks were primarily of meta-sedimentary or granitic origin, adularia-rich gold mineralization formed. Where glassy rhyolitic country rocks host veins, colloidal silica textures and precious metal–colloid aggregation textures resulted. Where basalts are the country rocks, clay-rich mineralization (with silica minerals, adularia, and carbonate) developed. Oxygen isotope data from quartz (originally amorphous silica and gels) from super-high-grade banded ores from the Sleeper deposit show that ore-forming solutions had δ 18O values up to 10‰ heavier than mid-Miocene meteoric water. The geochemical signature of the ores (including their Se-rich nature) is interpreted here to reflect a mantle source for the “epithermal suite” elements (Au, Ag, Se, Te, As, Sb, Hg) and that signature is preserved to shallow crustal levels because of the similar volatility and aqueous geochemical behavior of the “epithermal suite” elements. A mantle source for the gold in the deposits is further supported by the Pb isotopic signature of the gold ores. Apparently the host rocks control the mineralization style and gangue mineralogy of ores. However, all deposits are considered to have derived precious metals and metalloids from mafic magmas related to the initial emergence of the Yellowstone hotspot. Basalt-derived volatiles and metal(loid)s are inferred to have been absorbed by meteoric-water-dominated geothermal systems heated by shallow rhyolitic magma chambers. Episodic discharge of volatiles and metal(loid)s from deep basaltic magmas mixed with heated meteoric water to create precious metal ore-forming fluids. Colloidal nanoparticles of Au–Ag alloy (electrum), naumannite (Ag2Se), silica, and adularia, likely nucleated at depth, traveled upward, and deposited where they grew large enough to aggregate along vein walls. Silica and gold colloids have been reported in hot springs from Yellowstone National Park, suggesting that such processes may continue to some extent to the present. However, it is possible that the initial development of the mantle plume led to a major but short-lived “distillation” process which led to the mid-Miocene bonanza ore-forming event.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the nature and origin of atacamite-forming solutions by means of coupling groundwater geochemical analyses with fluid inclusion data, high-resolution mineralogical observations, and chlorine-36 (36Cl) data in ataccamite from the Mantos Blancos and Spence Cu deposits.
Abstract: The presence of large amounts of atacamite in oxide zones from ore deposits in the Atacama Desert of northern Chile requires saline solutions for its formation and hyperarid climate conditions for its preservation. We investigated the nature and origin of atacamite-forming solutions by means of coupling groundwater geochemical analyses with fluid inclusion data, high-resolution mineralogical observations, and chlorine-36 (36Cl) data in atacamite from the Mantos Blancos and Spence Cu deposits. In both deposits, the salinities of fluid inclusions in atacamite are comparable to those measured in saline groundwaters sampled from drill holes. The average salinity of fluid inclusions in atacamite for the Mantos Blancos and Spence deposits (~7–9 and 2–3 wt.% NaCleq, respectively) are strongly correlated to the salinities at which gypsum supersaturates from groundwaters in both deposits (total dissolved solids ~5–9 and 1–3 wt.% NaCleq, respectively). This correlation is confirmed by transmission electron microscopy observations of atacamite-bearing samples, revealing an intimate association between atacamite and gypsum that can be traced down to the nanometer scale. 36Cl data in atacamite provide new lines of evidence concerning the origin and age of the saline waters that formed atacamite in various stratabound and porphyry Cu deposits from the Atacama Desert. All atacamite samples show very low 36Cl-to-Cl ratios (11 × 10−15 to 28 × 10−15 at at−1), comparable to previously reported 36Cl-to-Cl ratios of deep formation waters and old groundwaters. In addition, 36Cl-to-Cl ratios in atacamite correlate with U and Th concentration in the host rocks but are independent from distance to the ocean. This trend supports an interpretation of the low 36Cl-to-Cl ratios in atacamite as representing subsurface production of fissiogenic 36Cl in secular equilibrium with the solutions involved in atacamite formation. Therefore, 36Cl in atacamite strongly suggest that the chlorine in saline waters related to atacamite formation is old (>1.5 Ma) but that atacamite formation occurred more recently (<1.5 Ma) than suggested in previous interpretations. Our data provide new constraints on the origin of atacamite in Cu deposits from the Atacama Desert and support the recent notion that the formation of atacamite in hyperarid climates such as the Atacama Desert is an ongoing process that has occurred intermittently since the onset of hyperaridity.

Journal ArticleDOI
TL;DR: In this article, fluid inclusion micro-thermometry and proton-induced X-ray emission (PIXE) data was used to show that iron oxide-copper-gold (IOCG) deposits and the granite-hosted hydrothermal complexes contain abundant high temperature, ultrasaline, complex multisolid (type 1) inclusions that are less common in the regional sodic calcic alteration.
Abstract: Proterozoic rocks of the Cloncurry district in NW Queensland, Australia, are host to giant (tens to hundreds of square kilometers) hydrothermal systems that include (1) barren regional sodic–calcic alteration, (2) granite-hosted hydrothermal complexes with magmatic–hydrothermal transition features, and (3) iron oxide–copper–gold (IOCG) deposits. Fluid inclusion microthermometry and proton-induced X-ray emission (PIXE) show that IOCG deposits and the granite-hosted hydrothermal complexes contain abundant high temperature, ultrasaline, complex multisolid (type 1) inclusions that are less common in the regional sodic–calcic alteration. The latter is characterized by lower salinity three-phase halite-bearing (type 2) and two-phase (type 3) aqueous inclusions. Copper contents of the type 1 inclusions (>300 ppm) is higher than in type 2 and 3 inclusions ( 1,000 ppm) are found both in the granite-hosted systems and in inclusions with Br/Cl ratios that are consistent with a magmatic source. The Br/Cl ratios of the inclusions with lower Cu contents are consistent with an evaporite-related origin. Wide ranges in salinity and homogenization temperatures for fluid inclusions in IOCG deposits and evidence for multiple fluid sources, as suggested by halogen ratios, indicate fluid mixing as an important process in IOCG genesis. The data support both leaching of Cu by voluminous nonmagmatic fluids from crustal rocks, as well as the direct exsolution of Cu-rich fluids from magmas. However, larger IOCG deposits may form from magmatic-derived fluids based on their higher Cu content.

Journal Article
TL;DR: In this paper, the authors show that the thrust-nappe structures provided channelways for lateral and vertical migration of ore-forming fluids as well as open space for ore accumulation.
Abstract: Numberous of Pb-Zn-Ag-Cu ore deposits with significant economic values occur in Lanping basin and Yushu and Tuotuohe areas on the eastern and northern margins of Tibetan orogenic belt Being hosted by sediments and having no obvious affinity to igneous activities, these deposits occur in continent-continent (Indo-Asian) collisional orogen and are controlled by thrust-nappe structures, thus obviously different from the well-known sediments-hosted base metal deposits in the world They were formed in Tertiary foreland basins developed from Paleo-Tethyan rifting basins and Mesozoic depression basins During mineralization, thrust-nappe structures juxtaposed Mesozoic strata over Tertiary strata through a series of parallel reverse/thrust faults in the basins The deposits are strictly controlled by thrust-nappe structures There exist four types of ore deposits: the Jinding-type deposits is formed in a thrusting-related dome structure combined with lithologic trap, the Hexi-Sanshan-type deposit is controlled by a pop up structure, the Fulongchang-type deposits are located in thrusting-related second-order faults within clastics, and the Dongmozhazhua-type deposits are hosted by second-order faults within limestone of the hanging-walls of major thrust faults Their ore bodies are controlled by faults, where sandstone, dolomitized limestone and structural cracking zones are favorable loci of ore concentration Ores were mainly derived from open-space filling and replacement, resembling epigenetic mineralization Metal sulfides are present as low-Fe sphalerite +galena+pyrite or Cu-sulfides (tetrahedrite, bornite, chalcopyrite, chalcocite) + Ag-bearing sulfides (argentite, freibergite, Ag-tetrahedrite) + galena ± sphalerite Gangue minerals are calcite + fluorite + barite ± dolomite ± celestine ± quartz, with rare bitumen Fluid inclusions contain mainly salt aqueous solutions and locally and subordinately CO2 and hydrocarbons, with homogenization temperatures predominately of 80~190℃ and salinities of 1 wt%~28 wt% NaCl eq, indicative of basinal brines ± meteoric water as the source of ore-forming fluids Studies show that the thrust-nappe structures provided channelways for lateral and vertical migration of ore-forming fluids as well as open space for ore accumulation Isotope data suggest that ore-forming materials were mainly derived from basinal sedimentary rocks with or without the contribution of mantle-derived rocks Metal composition and abundance of a deposit depend probably on types of rocks that the ore-forming fluids encountered during their migration and accumulation In the ore district, the existence of limestone generally corresponds to Zn-Pb (ZnPb) mineralization, whereas the occurrence of clastics (especially for red bed) corresponds to Cu-Ag (-Pb) mineralization A preliminary metallogenic model for the Pb-Zn-Ag-Cu deposits can be described as follows: India-Asian collision led to the lifting of the orogenic belt relative to the Tertiary foreland basins in the eastern and northern margins of the Tibetan plateau, and strong compression resulted in the thrusting of these basins Consequently, fluids generated from the orogen migrated laterally along gently-dipping detachment faults of the thrust systems towards the basins and evolved into ore-forming fluids through interaction with country rocks The ore-forming fluids migrated vertically along major thrust faults and finally accumulated in the open spaces induced by thrust-nappe structures at shallow levels to form ore deposits

Journal ArticleDOI
TL;DR: In the 2.06-Ga Bushveld Complex, the Platreef is a PGE-mineralized zone of pyroxenite that developed at the intrusion margin this article.
Abstract: In the northern limb of the 2.06-Ga Bushveld Complex, the Platreef is a platinum group elements (PGE)-, Cu-, and Ni-mineralized zone of pyroxenite that developed at the intrusion margin. From north to south, the footwall rocks of the Platreef change from Archaean granite to dolomite, hornfels, and quartzite. Where the footwall is granite, the Sr-isotope system is more strongly perturbed than where the footwall is Sr-poor dolomite, in which samples show an approximate isochron relationship. The Nd-isotope system for samples of pyroxenite and hanging wall norite shows an approximate isochron relationship with an implied age of 2.17 ± 0.2 Ga and initial Nd-isotope ratio of 0.5095. Assuming an age of 2.06 Ga, the ɛNd values range from −6.2 to −9.6 (ave. −7.8, n = 17) and on average are slightly more negative than the Main Zone of the Bushveld. These data are consistent with local contamination of an already contaminated magma of Main Zone composition. The similarity in isotope composition between the Platreef pyroxenites and the hanging wall norites suggests a common origin. Where the country rock is dolomite, the Platreef has generally higher plagioclase and pyroxene δ 18O values, and this indicates assimilation of the immediate footwall. Throughout the Platreef, there is considerable petrographic evidence for sub-solidus interaction with fluids, and the Δ plagioclase–pyroxene values range from −2 to +6, which indicates interaction at both high and low temperatures. Whole-rock and mineral δD values suggest that the Platreef interacted with both magmatic and meteoric water, and the lack of disturbance to the Sr-isotope system suggests that fluid–rock interaction took place soon after emplacement. Where the footwall is granite, less negative δD values suggest a greater involvement of meteoric water. Consistently higher values of Δ plagioclase–pyroxene in the Platreef pyroxenites and hanging wall norites in contact with dolomite suggest prolonged interaction with CO2-rich fluid derived from decarbonation of the footwall rocks. The overprint of post crystallization fluid–rock interaction is the probable cause of the previously documented lack of correlation between PGE and sulfide content on the small scale. The Platreef in contact with dolomite is the focus of the highest PGE grades, and this suggests that dolomite contamination played a role in PGE concentration and deposition, but the exact link remains obscure. It is a possibility that the CO2 produced by decarbonation of assimilated dolomite enhanced the process of PGE scavenging by sulfide precipitation.

Journal ArticleDOI
TL;DR: Advanced argillic (AA) alteration is developed over a vertical interval of 500 m, above (and enclosing) Late Devonian quartz monzodiorite intrusions that accompany porphyry-style Cu-Au mineralization at the Hugo Dummett deposit as discussed by the authors.
Abstract: Advanced argillic (AA) alteration is developed over a vertical interval of 500 m, above (and enclosing) Late Devonian quartz monzodiorite intrusions that accompany porphyry-style Cu–Au mineralization at the Hugo Dummett deposit. The AA alteration is mainly in basaltic rocks and locally extends into the overlying dacitic ash-flow tuff for about 100 m. The AA zone overprints porphyry-style quartz veins associated with quartz monzodiorite intrusions, but at least partly precedes high-grade porphyry-style bornite mineralization. Mineralogically, it consists of andalusite, corundum, residual quartz, titanium oxides, diaspore, alunite, aluminum phosphate-sulfate (APS) minerals, zunyite, pyrophyllite, topaz, kaolinite, and dickite, as well as anhydrite and gypsum, but is dominated by residual quartz and pyrophyllite. Alteration zonation is not apparent, except for an alunite-bearing zone that occurs approximately at the limit of strong quartz veining. Whole-rock geochemistry shows that the AA alteration removes most major elements except Si, Al, Ti, and P, and removes the trace elements Sc, Cs, and Rb. V, Zr, Hf, Nb, Ta, U, and Th are relatively immobile, whilst light REEs (La to Nd), Sr, Ba, and Ga can be enriched. Middle REEs (Sm to Gd) are moderately depleted; Y and heavy REEs (Tb to Lu) are strongly depleted except in two unusual samples where middle to heavy REEs are enriched.

Journal ArticleDOI
TL;DR: The Neves Corvo host succession comprises the products of explosive and effusive rhyolitic eruptions intercalated with mudstone that records a submarine below-wave-base environment and provides precise biostratigraphic age constraints.
Abstract: In the Iberian Pyrite Belt, volcanic rocks are relatively scarce, accounting for approximately only 25% of the geologic record, with the remaining 75% consisting of sedimentary units. This association is very clear in the host succession to the Neves Corvo massive sulfide deposit in Portugal. The Neves Corvo host succession comprises the products of explosive and effusive rhyolitic eruptions intercalated with mudstone that records a submarine below-wave-base environment and provides precise biostratigraphic age constraints. The first and second volcanic events involved eruptions at local intrabasinal vents. The first event generated thick beds of fiamme breccia that are late Famennian in age. The fiamme were originally pumice clasts produced by explosive eruptions and were subsequently compacted. The second event was the late Strunian (latest Famennian) effusion of rhyolitic lava that was pervasively quench-fragmented. The third and final event is younger than the massive sulfide deposits poorly represented in the mine area and minor compared with the two other events. The integration of biostratigraphic data with the volcanic facies architecture indicates that the Neves Corvo ore deposits are similar in age to the late Strunian rhyolitic lava. Although regionally the Iberian Pyrite Belt is essentially a sedimentary succession, ore formation at Neves Corvo can be closely linked to discrete volcanic events that produced a relatively narrow range of volcanic facies.

Journal ArticleDOI
TL;DR: The Jinbaoshan Pt-Pd deposit in Yunnan, SW China, is hosted in a wehrlite body, which is a member of the Permian (∼260 Ma) Emeishan Large Igneous Province (ELIP).
Abstract: The Jinbaoshan Pt–Pd deposit in Yunnan, SW China, is hosted in a wehrlite body, which is a member of the Permian (∼260 Ma) Emeishan Large Igneous Province (ELIP). The deposit is reported to contain one million tonnes of Pt–Pd ore grading 0.21% Ni and 0.16% Cu with 3.0 g/t (Pd + Pt). Platinum-group minerals (PGM) mostly are ∼10 μm in diameter, and are commonly Te-, Sn- and As-bearing, including moncheite (PtTe2), atokite (Pd3Sn), kotulskite (PdTe), sperrylite (PtAs2), irarsite (IrAsS), cooperite (PtS), sudburyite (PdSb), and Pt–Fe alloy. Primary rock-forming minerals are olivine and clinopyroxene, with clinopyroxene forming anhedral poikilitic crystals surrounding olivine. Primary chromite occurs either as euhedral grains enclosed within olivine or as an interstitial phase to the olivine. However, the intrusion has undergone extensive hydrothermal alteration. Most olivine grains have been altered to serpentine, and interstitial clinopyroxene is often altered to actinolite/tremolite and locally biotite. Interstitial chromite grains are either partially or totally replaced by secondary magnetite. Base-metal sulfides (BMS), such as pentlandite and chalcopyrite, are usually interstitial to the altered olivine. PGM are located with the BMS and are therefore also interstitial to the serpentinized olivine grains, occurring within altered interstitial clinopyroxene and chromite, or along the edges of these minerals, which predominantly altered to actinolite/tremolite, serpentine and magnetite. Hydrothermal fluids were responsible for the release of the platinum-group elements (PGE) from the BMS to precipitate the PGM at low temperature during pervasive alteration. A sequence of alteration of the PGM has been recognized. Initially moncheite and atokite have been corroded and recrystallized during the formation of actinolite/tremolite, and then, cooperite and moncheite were altered to Pt–Fe alloy where they are in contact with serpentine. Sudburyite occurs in veins indicating late Pd mobility. However, textural evidence shows that the PGM are still in close proximity to the BMS. They occur in PGE-rich layers located at specific igneous horizons in the intrusion, suggesting that PGE were originally magmatic concentrations that, within a PGE-rich horizon, crystallized with BMS late in the olivine/clinopyroxene crystallization sequence and have not been significantly transported during serpentinization and alteration.

Journal ArticleDOI
TL;DR: In this article, the authors provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions.
Abstract: Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type.

Journal ArticleDOI
TL;DR: The Granny Smith and Wallaby mines as mentioned in this paper have a concordant titanite-zircon U-Pb age of 2,665 ± 3 ǫ 3 m. The time relationship at both gold deposits are inconsistent with orogenic models invoking a principal role for metamorphic fluids released during the main phase of compression in the Yilgarn craton.
Abstract: The Granny Smith (37 t Au production) and Wallaby deposits (38 t out of a 180 t Au resource) are located northeast of Kalgoorlie, in 2.7 Ga greenstones of the Eastern Goldfields Province, the youngest orogenic belt of the Yilgarn craton, Western Australia. At Granny Smith, a zoned monzodiorite–granodiorite stock, dated by a concordant titanite–zircon U–Pb age of 2,665 ± 3 Ma, cuts across east-dipping thrust faults. The stock is fractured but not displaced and sets a minimum age for large-scale (1 km) thrust faulting (D2), regional folding (D1), and dynamothermal metamorphism in the mining district. The local gold–pyrite mineralization, controlled by fractured fault zones, is younger than 2,665 ± 3 Ma. In augite–hornblende monzodiorite, alteration progressed from a hematite-stained alkali feldspar–quartz–calcite assemblage and quartz–molybdenite–pyrite veins to a late reduced sericite–dolomite–albite assemblage. Gold-related monazite and xenotime define a U–Pb age of 2,660 ± 5 Ma, and molybdenite from veins a Re–Os isochron age of 2,661 ± 6 Ma, indicating that mineralization took place shortly after the emplacement of the main stock, perhaps coincident with the intrusion of late alkali granite dikes. At Wallaby, a NE-trending swarm of porphyry dikes comprising augite monzonite, monzodiorite, and minor kersantite intrudes folded and thrust-faulted molasse. The conglomerate and the dikes are overprinted by barren ( 1,600-m-long replacement pipe, which is intruded by a younger ring dike of syenite porphyry pervasively altered to muscovite + calcite + pyrite. Skarn and syenite are cut by pink biotite–calcite veins, containing magnetite + pyrite and subeconomic gold–silver mineralization (Au/Ag = 0.2). The veins are associated with red biotite–sericite–calcite–albite alteration in adjacent monzonite dikes. Structural relations and the concordant titanite U–Pb age of the skarn constrain intrusion-related mineralization to 2,662 ± 3 Ma. The main-stage gold–pyrite ore (Au/Ag >10) forms hematite-stained sericite–dolomite–albite lodes in stacked D2 reverse faults, which offset skarn, syenite, and the biotite–calcite veins by up to 25 m. The molybdenite Re–Os age (2,661 ± 10 Ma) of the ore suggests a genetic link to intrusive activity but is in apparent conflict with a monazite–xenotime U–Pb age (2,651 ± 6 Ma), which differs from that of the skarn at the 95% confidence level. The time relationships at both gold deposits are inconsistent with orogenic models invoking a principal role for metamorphic fluids released during the main phase of compression in the fold belt. Instead, mineralization is related in space and time to late-orogenic, magnetite-series, high-Mg monzodiorite–syenite intrusions of mantle origin, characterized by Mg/(Mg + FeTOTAL) = 0.31–0.57, high Cr (34–96 ppm), Ni (22–63 ppm), Ba (1,056–2,321 ppm), Sr (1,268–2,457 ppm), Th (15–36 ppm), and rare earth elements (total REE: 343–523 ppm). At Wallaby, shared Ca–K–CO2 metasomatism and Th-REE enrichment (in allanite) link Au–Ag mineralization in biotite–calcite veins to the formation of the giant epidote skarn, implicating a Th + REE-rich syenite pluton at depth as the source of the oxidized hydrothermal fluid. At Granny Smith, lead isotope data and the Rb–Th–U signature of early hematite-bearing wall-rock alteration point to fluid released by the source pluton of the differentiated alkali granite dikes.

Journal Article
TL;DR: In this paper, a detailed petrological, rock geochemical and radioactive age study of the Western porphyry was carried out, and the analytical results indicated that the Western Porphyry has high K2O content and Aluminum Saturation Index (ASI, 1.6~2.8), belonging to the strongly peraluminous and high K calc-alkaline series, and is rich in LILE and depleted in HSFE, with enriched light-REE.
Abstract: Any change in basic geological knowledge of the Qulong giant porphyry copper deposit, the most important and exploring deposit in the Gandise Porphyry Copper Belt (GPCB), will result in change of exploration plan. In the past, the western (the original Ⅱ, Ⅲ and Ⅳ porphyries) and the eastern (the original I porphyry) porphyries were both considered to have been formed in Eocene and related to Cu-Mo mineralization. However, based on careful field observation, the authors found that the two kinds of porphyries have different alteration, mineralization and petrologic characteristics. Mineralization in the Western Porphyry, characterized by abundant pyrite veins and quartz-sericite alteration (with minor local epidote alteration), is obviously controlled by fractures. Sulfide veins in them are typical D type veins at all exposed levels, and usually have sericite alteration halos. Concentric alteration-mineralization systems usually developed in porphyries related to mineralization were not found at the Western Porphyry. In addition, ductile deformation was developed in the Western Porphyry but not seen in the Eastern Porphyry, indicating a more complex evolutionary process of the Western Porphyry. It is thus inferred that the Western Porphyry probably has an older crystallization age than the Eastern Porphyry, and it only served as wall rock during the formation of the ore deposit. To testify the inference, the authors carried out detailed petrological, rock geochemical and radioactive age studies of the Western Porphyry. The analytical results indicate that the Western Porphyry has high K2O content and Aluminum Saturation Index (ASI, 1.6~2.8), belonging to the strongly peraluminous and high K calc-alkaline series, and is rich in LILE and depleted in HSFE, with enriched light-REE. Zircons from a sample of the porphyry were selected and dated by SHRIMP and, as a result, an age of (182.3±1.5) Ma was obtained. In contrast to the Eastern Porphyry, the Western Porphyry is not depleted in Ta and has strong negative Eu anomalies and obviously older age, indicating that the Western Porphyry was probably formed by crust melting in early Jurassic. The authors thus hold that further exploration should focus on the Eastern Porphyry instead of the Western Porphyry, which is only the wall rock. It is also thought that detailed observation in the field by means of suitable scientific analysis can avoid unnecessary exploratory investment.

Journal ArticleDOI
TL;DR: Aguas Claras mine in the Quadrilatero Ferrifero (QF), southeastern region of Brazil, contains high-grade ores hosted within dolomitic itabirite as mentioned in this paper.
Abstract: Several major iron deposits occur in the Quadrilatero Ferrifero (QF), southeastern region of Brazil, where metamorphosed and heterogeneously deformed banded iron formation (BIF) of the Caue Formation, regionally called itabirite, was transformed into high- (Fe >64%) and low-grade (30% < Fe < 64%) hematite ores. Based on their mineralogical composition, three major types of itabirites occur in the QF: siliceous, dolomitic, and amphibolitic itabirite. Unlike other mines in the QF, the Aguas Claras Mine contained mainly high-grade ores hosted within dolomitic itabirite. Two distinct types of high-grade ore occurred at the mine: soft and hard. The soft ore was the most abundant and represented more than 85% of the total ore mined until it was mined out in 2002. Soft and hard ores consist essentially of hematite, occurring as martite, anhedral to granular/tabular hematite and, locally, specularite. Gangue minerals are rare, consisting of dolomite, sericite, chlorite, and apatite in the hard and soft ores, and Mn-oxides and ferrihydrite in the soft ore where they are concentrated within porous bands. Chemical analyses show that hard and soft ores consist almost entirely of Fe2O3, with a higher amount of detrimental impurities, especially MnO, in the soft ore. Both hard and soft ores are depleted in trace elements. The high-grade ores at the Aguas Claras Mine have at least a dual origin, involving hypogene and supergene processes. The occurrence of the hard, massive high-grade ore within “fresh” dolomitic itabirite is evidence of its hypogene origin. Despite the contention about the origin of the dolomitic itabirite (if this rock is a carbonate-rich facies of the Caue Formation or a hematite–carbonate precursor of the soft high-grade ore), mineralogical and geochemical features of the soft high-grade ore indicate that it was formed by leaching of dolomite from the dolomitic itabirite by meteoric water. The comparison of the Aguas Claras, Capao Xavier and Tamandua orebodies shows that the original composition of the itabiritic protore plays a major role in the genesis of high- and low-grade soft ores in the QF. Under the same weathering and structural conditions, the dolomitic itabirite is the more favorable to form high-grade deposits than siliceous itabirite. Field relations at the Aguas Claras and Capao Xavier deposits suggest that it is not possible to form huge soft high-grade supergene deposits from siliceous itabirite, unless another control, such as impermeable barriers, had played an important role. The occurrence in the Tamandua Mine of a large, soft, high-grade orebody formed from siliceous itabirite and closely associated with hypogene hard ore suggests that large, soft, high-grade orebodies of the Quadrilatero Ferrifero, which occur within siliceous itabirite, have a hypogene contribution in their formation.

Journal ArticleDOI
TL;DR: The Osborne iron oxide-copper-gold (IOCG) deposit is hosted by amphibolite facies metasedimentary rocks and associated with pegmatite sheets formed by anatexis during peak metamorphism.
Abstract: The Osborne iron oxide-copper-gold (IOCG) deposit is hosted by amphibolite facies metasedimentary rocks and associated with pegmatite sheets formed by anatexis during peak metamorphism Eleven samples of ore-related hydrothermal quartz and two pegmatitic quartz- feldspar samples contain similarly complex fluid inclusion assemblages that include variably saline (<12-65 wt% salts) aqueous and liquid carbon dioxide varieties that are typical of IOCG mineralisation The diverse fluid inclusion types present in each of these different samples have been investigated by neutron-activated noble gas analysis using a combination of semi-selective thermal and mechanical decrepitation techniques Ore-related quartz contains aque- ous and carbonic fluid inclusions that have similar 40 Ar/ 36 Ar values of between 300 and 2,200 The highest- salinity fluid inclusions (47-65 wt% salts) have calculated 36 Ar concentrations of approximately 1-5 ppb, which are more variable than air-saturated water (ASW=13-27 ppb) These fluid inclusions have extremely variable Br/Cl values of between 38×10 −3 and 03×10 −3 , and I/Cl values of between 27×10 −6 and 24×10 −6 (all ratios are molar) Fluid inclusions in the two pegmatite samples have similar 40 Ar/ 36 Ar values of ≤1,700 and an overlapping range of Br/Cl and I/Cl values High-salinity fluid inclusions in the pegmatite samples have 25-21 ppb 36 Ar, that overlap the range determined for ore-related samples in only one case The fluid inclusions in both sample groups have 84 Kr/ 36 Ar and 129 Xe/ 36 Ar ratios that are mainly in the range of air and air-saturated water and are similar to mid-crustal rocks and fluids from other settings The uniformly low 40 Ar/ 36 Ar values (<2,200) and extremely variable Br/Cl and I/Cl values do not favour a singular or dominant fluid origin from basement- or mantle-derived magmatic fluids related to A-type magmatism Instead, the data are compatible with the involvement of metamorphic fluids that have interacted with anatectic melts to variable extents The 'metamorphic' fluids probably represent a mixture of (1) inherited sedi- mentary pore fluids and (2) locally derived metamorphic volatilisation products The lowest Br/Cl and I/Cl values and the ultra-high salinities are most easily explained by the dissolution of evaporites The data demonstrate that externally derived magmatic fluids are not a ubiquitous component of IOCG ore-forming systems, but are com- patible with models in which IOCG mineralisation is localised at sites of mixing between fluids of different origin