scispace - formally typeset
Search or ask a question

Showing papers in "Morbidity and Mortality Weekly Report in 2022"


Journal ArticleDOI
TL;DR: VE after receipt of a third dose was higher than that after a second dose; however, VE waned with increasing time since vaccination, and VE was generally higher for protection against hospitalizations than against ED/UC visits.
Abstract: CDC recommends that all persons aged ≥12 years receive a booster dose of COVID-19 mRNA vaccine ≥5 months after completion of a primary mRNA vaccination series and that immunocompromised persons receive a third primary dose.* Waning of vaccine protection after 2 doses of mRNA vaccine has been observed during the period of the SARS-CoV-2 B.1.617.2 (Delta) variant predominance† (1-5), but little is known about durability of protection after 3 doses during periods of Delta or SARS-CoV-2 B.1.1.529 (Omicron) variant predominance. A test-negative case-control study design using data from eight VISION Network sites§ examined vaccine effectiveness (VE) against COVID-19 emergency department/urgent care (ED/UC) visits and hospitalizations among U.S. adults aged ≥18 years at various time points after receipt of a second or third vaccine dose during two periods: Delta variant predominance and Omicron variant predominance (i.e., periods when each variant accounted for ≥50% of sequenced isolates).¶ Persons categorized as having received 3 doses included those who received a third dose in a primary series or a booster dose after a 2 dose primary series (including the reduced-dosage Moderna booster). The VISION Network analyzed 241,204 ED/UC encounters** and 93,408 hospitalizations across 10 states during August 26, 2021-January 22, 2022. VE after receipt of both 2 and 3 doses was lower during the Omicron-predominant than during the Delta-predominant period at all time points evaluated. During both periods, VE after receipt of a third dose was higher than that after a second dose; however, VE waned with increasing time since vaccination. During the Omicron period, VE against ED/UC visits was 87% during the first 2 months after a third dose and decreased to 66% among those vaccinated 4-5 months earlier; VE against hospitalizations was 91% during the first 2 months following a third dose and decreased to 78% ≥4 months after a third dose. For both Delta- and Omicron-predominant periods, VE was generally higher for protection against hospitalizations than against ED/UC visits. All eligible persons should remain up to date with recommended COVID-19 vaccinations to best protect against COVID-19-associated hospitalizations and ED/UC visits.

334 citations


Journal ArticleDOI
TL;DR: COVID-19 disease severity appears to be lower during the Omicron period than during previous periods of high transmission, likely related to higher vaccination coverage,† which reduces disease severity, lower virulence, and infection-acquired immunity.
Abstract: The B.1.1.529 (Omicron) variant of SARS-CoV-2, the virus that causes COVID-19, was first clinically identified in the United States on December 1, 2021, and spread rapidly. By late December, it became the predominant strain, and by January 15, 2022, it represented 99.5% of sequenced specimens in the United States* (1). The Omicron variant has been shown to be more transmissible and less virulent than previously circulating variants (2,3). To better understand the severity of disease and health care utilization associated with the emergence of the Omicron variant in the United States, CDC examined data from three surveillance systems and a large health care database to assess multiple indicators across three high-COVID-19 transmission periods: December 1, 2020-February 28, 2021 (winter 2020-21); July 15-October 31, 2021 (SARS-CoV-2 B.1.617.2 [Delta] predominance); and December 19, 2021-January 15, 2022 (Omicron predominance). The highest daily 7-day moving average to date of cases (798,976 daily cases during January 9-15, 2022), emergency department (ED) visits (48,238), and admissions (21,586) were reported during the Omicron period, however, the highest daily 7-day moving average of deaths (1,854) was lower than during previous periods. During the Omicron period, a maximum of 20.6% of staffed inpatient beds were in use for COVID-19 patients, 3.4 and 7.2 percentage points higher than during the winter 2020-21 and Delta periods, respectively. However, intensive care unit (ICU) bed use did not increase to the same degree: 30.4% of staffed ICU beds were in use for COVID-19 patients during the Omicron period, 0.5 percentage points lower than during the winter 2020-21 period and 1.2 percentage points higher than during the Delta period. The ratio of peak ED visits to cases (event-to-case ratios) (87 per 1,000 cases), hospital admissions (27 per 1,000 cases), and deaths (nine per 1,000 cases [lagged by 3 weeks]) during the Omicron period were lower than those observed during the winter 2020-21 (92, 68, and 16 respectively) and Delta (167, 78, and 13, respectively) periods. Further, among hospitalized COVID-19 patients from 199 U.S. hospitals, the mean length of stay and percentages who were admitted to an ICU, received invasive mechanical ventilation (IMV), and died while in the hospital were lower during the Omicron period than during previous periods. COVID-19 disease severity appears to be lower during the Omicron period than during previous periods of high transmission, likely related to higher vaccination coverage,† which reduces disease severity (4), lower virulence of the Omicron variant (3,5,6), and infection-acquired immunity (3,7). Although disease severity appears lower with the Omicron variant, the high volume of ED visits and hospitalizations can strain local health care systems in the United States, and the average daily number of deaths remains substantial.§ This underscores the importance of national emergency preparedness, specifically, hospital surge capacity and the ability to adequately staff local health care systems. In addition, being up to date on vaccination and following other recommended prevention strategies are critical to preventing infections, severe illness, or death from COVID-19.

274 citations


Journal ArticleDOI
TL;DR: The prevalence of any current commercial tobacco product use was higher among the following groups: 1) men; 2) adults aged <65 years; 3) non- Hispanic American Indian or Alaska Native adults and non-Hispanic adults categorized as of "Other" race¶; 4) adults in rural (nonmetropolitan) areas; 5) those whose highest level of educational attainment was a general educational development certificate (GED); 6) those with an annual household income <$35,000; 7
Abstract: Although cigarette smoking has declined over the past several decades, a diverse landscape of combustible and noncombustible tobacco products has emerged in the United States (1-4). To assess recent national estimates of commercial tobacco product use among U.S. adults aged ≥18 years, CDC analyzed data from the 2020 National Health Interview Survey (NHIS). In 2020, an estimated 47.1 million U.S. adults (19.0%) reported currently using any commercial tobacco product, including cigarettes (12.5%), e-cigarettes (3.7%), cigars (3.5%), smokeless tobacco (2.3%), and pipes* (1.1%).† From 2019 to 2020, the prevalence of overall tobacco product use, combustible tobacco product use, cigarettes, e-cigarettes, and use of two or more tobacco products decreased. Among those who reported current tobacco product use, 79.6% reported using combustible products (e.g., cigarettes, cigars, or pipes), and 17.3% reported using two or more tobacco products.§ The prevalence of any current commercial tobacco product use was higher among the following groups: 1) men; 2) adults aged <65 years; 3) non-Hispanic American Indian or Alaska Native (AI/AN) adults and non-Hispanic adults categorized as of "Other" race¶; 4) adults in rural (nonmetropolitan) areas; 5) those whose highest level of educational attainment was a general educational development certificate (GED); 6) those with an annual household income <$35,000; 7) lesbian, gay, or bisexual adults; 8) uninsured adults or those with Medicaid; 9) adults living with a disability; and 10) those who regularly had feelings of anxiety or depression. Continued monitoring of tobacco product use and tailored strategies and policies that reduce the effects of inequitable conditions could aid in reducing disparities in tobacco use (1,4).

232 citations


Journal ArticleDOI
TL;DR: The highest impact of booster doses against infection and death compared with full vaccination without booster doses was recorded among persons aged 50-64 and ≥65 years, and eligibility to stay up to date with COVID-19 vaccinations.
Abstract: Previous reports of COVID-19 case, hospitalization, and death rates by vaccination status† indicate that vaccine protection against infection, as well as serious COVID-19 illness for some groups, declined with the emergence of the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, and waning of vaccine-induced immunity (1-4). During August-November 2021, CDC recommended§ additional primary COVID-19 vaccine doses among immunocompromised persons and booster doses among persons aged ≥18 years (5). The SARS-CoV-2 B.1.1.529 (Omicron) variant emerged in the United States during December 2021 (6) and by December 25 accounted for 72% of sequenced lineages (7). To assess the impact of full vaccination with additional and booster doses (booster doses),¶ case and death rates and incidence rate ratios (IRRs) were estimated among unvaccinated and fully vaccinated adults by receipt of booster doses during pre-Delta (April-May 2021), Delta emergence (June 2021), Delta predominance (July-November 2021), and Omicron emergence (December 2021) periods in the United States. During 2021, averaged weekly, age-standardized case IRRs among unvaccinated persons compared with fully vaccinated persons decreased from 13.9 pre-Delta to 8.7 as Delta emerged, and to 5.1 during the period of Delta predominance. During October-November, unvaccinated persons had 13.9 and 53.2 times the risks for infection and COVID-19-associated death, respectively, compared with fully vaccinated persons who received booster doses, and 4.0 and 12.7 times the risks compared with fully vaccinated persons without booster doses. When the Omicron variant emerged during December 2021, case IRRs decreased to 4.9 for fully vaccinated persons with booster doses and 2.8 for those without booster doses, relative to October-November 2021. The highest impact of booster doses against infection and death compared with full vaccination without booster doses was recorded among persons aged 50-64 and ≥65 years. Eligible persons should stay up to date with COVID-19 vaccinations.

230 citations


Journal ArticleDOI
TL;DR: In 2019, the Advisory Committee on Immunization Practices (ACIP) made recommendations for the use of ACAM2000, the only orthopoxvirus vaccine available in the United States at that time as mentioned in this paper .
Abstract: Certain laboratorians and health care personnel can be exposed to orthopoxviruses through occupational activities. Because orthopoxvirus infections resulting from occupational exposures can be serious, the Advisory Committee on Immunization Practices (ACIP) has continued to recommend preexposure vaccination for these persons since 1980 (1), when smallpox was eradicated (2). In 2015, ACIP made recommendations for the use of ACAM2000, the only orthopoxvirus vaccine available in the United States at that time (3). During 2020-2021, ACIP considered evidence for use of JYNNEOS, a replication-deficient Vaccinia virus vaccine, as an alternative to ACAM2000. In November 2021, ACIP unanimously voted in favor of JYNNEOS as an alternative to ACAM2000 for primary vaccination and booster doses. With these recommendations for use of JYNNEOS, two vaccines (ACAM2000 and JYNNEOS) are now available and recommended for preexposure prophylaxis against orthopoxvirus infection among persons at risk for such exposures.

225 citations


Journal ArticleDOI
Laura D. Zambrano, Margaret M Newhams, Samantha M. Olson, Natasha B. Halasa, Ashley M. Price, Julie A. Boom, Leila C. Sahni, Satoshi Kamidani, Keiko M. Tarquinio, Aline B Maddux, Sabrina M. Heidemann, Samina Bhumbra, Katherine Bline, Ryan Nofziger, Charlotte V. Hobbs, Tamara T. Bradford, Natalie Z. Cvijanovich, Katherine Irby, Elizabeth H. Mack, Melissa Cullimore, Pia S. Pannaraj, Michele Kong, Tracie C. Walker, Shira J. Gertz, Kelly Michelson, Melissa A. Cameron, Kathleen Chiotos, Mia Maamari, Jennifer E. Schuster, Amber O. Orzel, Manish M. Patel, Angela P Campbell, Adrienne G. Randolph, Meghan Murdock, Mary Glas Gaspers, Katri V. Typpo, Connor P Kelley, Ronald C. Sanders, M. Yates, Chelsea R. Smith, Katheryn L. Crane, Geraldina Lionetti, Juliana Murcia-Montoya, Matt S. Zinter, Denise Villarreal-Chico, Adam Skura, Harvey Peralta, Justin Lockwood, Emily Port, Imogene A Carson, Brandon Chatani, Laila Hussaini, N.K. Baida, Bria M. Coates, Courtney M. Rowan, M Stumpf, Marla Johnston, Benjamin J. Boutselis, Suden Kucukak, Sabrina R. Chen, Edie Weller, Laura Berbert, Jie He, Heidi R. Flori, Janet R. Hume, Ella Bruno, Lexie Goertzen, Emily R Levy, Supriya Behl, Noelle M. Drapeau, Lora Lee Martin, Lacy Malloch, Cameron Sanders, Kayla Patterson, Anita Dhanrajani, Shannon M. Hill, Abigail Kietzman, Valerie H. Rinehart, Lauren A. Hoody, Stephanie P Schwartz, A. Navas, Paris C. Bennett, Nicole Twinem, Merry L. Tomcany, Mary A. Staat, Chelsea C. Rohlfs, Amber Wolfe, Rebecca L. Douglas, Kathlyn Phengchomphet, Megan M. Bickford, Lauren Wakefield, L S Smallcomb, Laura S Stewart, Meenakshi Golchha, Jennifer N. Oates, Cindy Bowens 
TL;DR: Receipt of 2 doses of the Pfizer-BioNTech vaccine is associated with a high level of protection against MIS-C in persons aged 12-18 years, highlighting the importance of vaccination among all eligible children.
Abstract: Multisystem inflammatory syndrome in children (MIS-C) is a severe postinfectious hyperinflammatory condition, which generally occurs 2-6 weeks after a typically mild or asymptomatic infection with SARS-CoV-2, the virus that causes COVID-19 (1-3). In the United States, the BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine is currently authorized for use in children and adolescents aged 5-15 years under an Emergency Use Authorization and is fully licensed by the Food and Drug Administration for persons aged ≥16 years (4). Prelicensure randomized trials in persons aged ≥5 years documented high vaccine efficacy and immunogenicity (5),§ and real-world studies in persons aged 12-18 years demonstrated high vaccine effectiveness (VE) against severe COVID-19 (6). Recent evidence suggests that COVID-19 vaccination is associated with lower MIS-C incidence among adolescents (7); however, VE of the 2-dose Pfizer-BioNTech regimen against MIS-C has not been evaluated. The effectiveness of 2 doses of Pfizer-BioNTech vaccine received ≥28 days before hospital admission in preventing MIS-C was assessed using a test-negative case-control design¶ among hospitalized patients aged 12-18 years at 24 pediatric hospitals in 20 states** during July 1-December 9, 2021, the period when most MIS-C patients could be temporally linked to SARS-CoV-2 B.1.617.2 (Delta) variant predominance. Patients with MIS-C (case-patients) and two groups of hospitalized controls matched to case-patients were evaluated: test-negative controls had at least one COVID-19-like symptom and negative SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) or antigen-based assay results, and syndrome-negative controls were hospitalized patients without COVID-19-like illness. Among 102 MIS-C case-patients and 181 hospitalized controls, estimated effectiveness of 2 doses of Pfizer-BioNTech vaccine against MIS-C was 91% (95% CI = 78%-97%). All 38 MIS-C patients requiring life support were unvaccinated. Receipt of 2 doses of the Pfizer-BioNTech vaccine is associated with a high level of protection against MIS-C in persons aged 12-18 years, highlighting the importance of vaccination among all eligible children.

213 citations


Journal ArticleDOI
David H. Philpott, Christine M. Hughes, Karen A. Alroy, Janna L. Kerins, Jessica Pavlick, Lenore Asbel, Addie Crawley, Alexandra P. Newman, Hillary Spencer, Amanda Feldpausch, Kelly E. Cogswell, K. R. Davis, Jinlene Chen, Tiffany Henderson, Katherine R. Murphy, Meghan Barnes, Brandi Hopkins, Mary-Margaret A. Fill, Anil T. Mangla, Dana Perella, Arti Barnes, Scott Hughes, Jayne Griffith, Abby L. Berns, Lauren Milroy, Haley Blake, Maria M. Sievers, Melissa Marzan-Rodriguez, Marco E. Tori, Stephanie R. Black, Erik J. Kopping, Irene Ruberto, Angela M Maxted, Anuj Sharma, Kara D Tarter, Sydney A. Jones, Brooklynn R. White, Ryan Chatelain, M. Russo, Sarah Gillani, Ethan Bornstein, Stephen White, SA Johnson, Emma Ortega, Lori Saathoff-Huber, Anam Syed, Aprielle B. Wills, Bridget J. Anderson, Alexandra M. Oster, Athalia Christie, Jennifer H. McQuiston, Andrea M. McCollum, Agam K Rao, M. Negron, Isabel Griffin, Mohammed Iqbal Khan, Yasmin P Ogale, Emily Sims, R. Ryan Lash, Jeanette J. Rainey, Kelly Charniga, Michelle A Waltenburg, Patrick Dawson, Laura A S Quilter, Julie Rushmore, Mark Stenger, Rachel Kachur, Florence Whitehill, Kelly A. Jackson, James J. Collins, Kimberly Signs, Gillian Richardson, Julie Hand, Emily Spence-Davizon, Brandi L. Steidley, Matthew Osborne, Susan Soliva, S. S. Cook, Leslie Ayuk-Takor, Christina Willut, Alexandria Snively, Nicholas Lehnertz, Daniela N. Quilliam, M. J. Durham, I. Cardona-Gerena, Linda Bell, Environmental Control, Marina Kuljanin, Suzanne N. Gibbons-Burgener, Ryan P. Westergaard, Lynn E. Sosa, Monica Beddo, Matthew Donahue, Samir Koirala, Courtney M Dewart, Jade Murray-Thompson, L. Peake, Michelle Holshue, Atul Kothari, Jamie Ahlers, Lauren Usagawa, M. Cahill, Erin K Ricketts, Mike Mannell, Farah S Ahmed, Bethany Hodge, Brenton Nesemeier, Katherine Guinther, M. Anand, Jennifer L. White, Joel Ackelsberg, Ellen H. Lee, Devin Charlotte Raman, Carmen Elaine Brown, Nicole Burton, Sara Kate Johnson 
TL;DR: Clinicians should test patients with rash consistent with monkeypox,† regardless of whether the rash is disseminated or was preceded by prodrome, and public health efforts should prioritize gay, bisexual, and other men who have sex with men, who are currently disproportionately affected for prevention and testing.
Abstract: Monkeypox, a zoonotic infection caused by an orthopoxvirus, is endemic in parts of Africa. On August 4, 2022, the U.S. Department of Health and Human Services declared the U.S. monkeypox outbreak, which began on May 17, to be a public health emergency (1,2). After detection of the first U.S. monkeypox case), CDC and health departments implemented enhanced monkeypox case detection and reporting. Among 2,891 cases reported in the United States through July 22 by 43 states, Puerto Rico, and the District of Columbia (DC), CDC received case report forms for 1,195 (41%) cases by July 27. Among these, 99% of cases were among men; among men with available information, 94% reported male-to-male sexual or close intimate contact during the 3 weeks before symptom onset. Among the 88% of cases with available data, 41% were among non-Hispanic White (White) persons, 28% among Hispanic or Latino (Hispanic) persons, and 26% among non-Hispanic Black or African American (Black) persons. Forty-two percent of persons with monkeypox with available data did not report the typical prodrome as their first symptom, and 46% reported one or more genital lesions during their illness; 41% had HIV infection. Data suggest that widespread community transmission of monkeypox has disproportionately affected gay, bisexual, and other men who have sex with men and racial and ethnic minority groups. Compared with historical reports of monkeypox in areas with endemic disease, currently reported outbreak-associated cases are less likely to have a prodrome and more likely to have genital involvement. CDC and other federal, state, and local agencies have implemented response efforts to expand testing, treatment, and vaccination. Public health efforts should prioritize gay, bisexual, and other men who have sex with men, who are currently disproportionately affected, for prevention and testing, while addressing equity, minimizing stigma, and maintaining vigilance for transmission in other populations. Clinicians should test patients with rash consistent with monkeypox,† regardless of whether the rash is disseminated or was preceded by prodrome. Likewise, although most cases to date have occurred among gay, bisexual, and other men who have sex with men, any patient with rash consistent with monkeypox should be considered for testing. CDC is continually evaluating new evidence and tailoring response strategies as information on changing case demographics, clinical characteristics, transmission, and vaccine effectiveness become available.§.

197 citations


Journal ArticleDOI
TL;DR: W Whole genome sequencing showed that the virus was consistent with a strain of Monkeypox virus known to circulate in Nigeria, but the specific source of the patient's infection was not identified.
Abstract: Monkeypox is a rare, sometimes life-threatening zoonotic infection that occurs in west and central Africa. It is caused by Monkeypox virus, an orthopoxvirus similar to Variola virus (the causative agent of smallpox) and Vaccinia virus (the live virus component of orthopoxvirus vaccines) and can spread to humans. After 39 years without detection of human disease in Nigeria, an outbreak involving 118 confirmed cases was identified during 2017-2018 (1); sporadic cases continue to occur. During September 2018-May 2021, six unrelated persons traveling from Nigeria received diagnoses of monkeypox in non-African countries: four in the United Kingdom and one each in Israel and Singapore. In July 2021, a man who traveled from Lagos, Nigeria, to Dallas, Texas, became the seventh traveler to a non-African country with diagnosed monkeypox. Among 194 monitored contacts, 144 (74%) were flight contacts. The patient received tecovirimat, an antiviral for treatment of orthopoxvirus infections, and his home required large-scale decontamination. Whole genome sequencing showed that the virus was consistent with a strain of Monkeypox virus known to circulate in Nigeria, but the specific source of the patient's infection was not identified. No epidemiologically linked cases were reported in Nigeria; no contact received postexposure prophylaxis (PEP) with the orthopoxvirus vaccine ACAM2000.

193 citations


Journal ArticleDOI
TL;DR: This report uses data from CDC's national commercial laboratory seroprevalence study and the 2018 American Community Survey to examine U.S. trends in infection-induced SARS-CoV-2 serop revalence during September 2021-February 2022, by age group.
Abstract: In December 2021, the B.1.1.529 (Omicron) variant of SARS-CoV-2, the virus that causes COVID-19, became predominant in the United States. Subsequently, national COVID-19 case rates peaked at their highest recorded levels.* Traditional methods of disease surveillance do not capture all COVID-19 cases because some are asymptomatic, not diagnosed, or not reported; therefore, the proportion of the population with SARS-CoV-2 antibodies (i.e., seroprevalence) can improve understanding of population-level incidence of COVID-19. This report uses data from CDC's national commercial laboratory seroprevalence study and the 2018 American Community Survey to examine U.S. trends in infection-induced SARS-CoV-2 seroprevalence during September 2021-February 2022, by age group.

188 citations


Journal ArticleDOI
TL;DR: The observed increased risk for diabetes among persons aged <18 years who had CO VID-19 highlights the importance of COVID-19 prevention strategies, including vaccination, for all eligible persons in this age group,§ in addition to chronic disease prevention and management.
Abstract: The COVID-19 pandemic has disproportionately affected people with diabetes, who are at increased risk of severe COVID-19.* Increases in the number of type 1 diabetes diagnoses (1,2) and increased frequency and severity of diabetic ketoacidosis (DKA) at the time of diabetes diagnosis (3) have been reported in European pediatric populations during the COVID-19 pandemic. In adults, diabetes might be a long-term consequence of SARS-CoV-2 infection (4-7). To evaluate the risk for any new diabetes diagnosis (type 1, type 2, or other diabetes) >30 days† after acute infection with SARS-CoV-2 (the virus that causes COVID-19), CDC estimated diabetes incidence among patients aged <18 years (patients) with diagnosed COVID-19 from retrospective cohorts constructed using IQVIA health care claims data from March 1, 2020, through February 26, 2021, and compared it with incidence among patients matched by age and sex 1) who did not receive a COVID-19 diagnosis during the pandemic, or 2) who received a prepandemic non-COVID-19 acute respiratory infection (ARI) diagnosis. Analyses were replicated using a second data source (HealthVerity; March 1, 2020-June 28, 2021) that included patients who had any health care encounter possibly related to COVID-19. Among these patients, diabetes incidence was significantly higher among those with COVID-19 than among those 1) without COVID-19 in both databases (IQVIA: hazard ratio [HR] = 2.66, 95% CI = 1.98-3.56; HealthVerity: HR = 1.31, 95% CI = 1.20-1.44) and 2) with non-COVID-19 ARI in the prepandemic period (IQVIA, HR = 2.16, 95% CI = 1.64-2.86). The observed increased risk for diabetes among persons aged <18 years who had COVID-19 highlights the importance of COVID-19 prevention strategies, including vaccination, for all eligible persons in this age group,§ in addition to chronic disease prevention and management. The mechanism of how SARS-CoV-2 might lead to incident diabetes is likely complex and could differ by type 1 and type 2 diabetes. Monitoring for long-term consequences, including signs of new diabetes, following SARS-CoV-2 infection is important in this age group.

180 citations


Journal ArticleDOI
TL;DR: On May 17, 2022, the Massachusetts Department of Public Health (MDPH) Laboratory Response Network (LRN) laboratory confirmed the presence of orthopoxvirus DNA via real-time polymerase chain reaction (PCR) from lesion swabs obtained from a Massachusetts resident as mentioned in this paper .
Abstract: On May 17, 2022, the Massachusetts Department of Public Health (MDPH) Laboratory Response Network (LRN) laboratory confirmed the presence of orthopoxvirus DNA via real-time polymerase chain reaction (PCR) from lesion swabs obtained from a Massachusetts resident. Orthopoxviruses include Monkeypox virus, the causative agent of monkeypox. Subsequent real-time PCR testing at CDC on May 18 confirmed that the patient was infected with the West African clade of Monkeypox virus. Since then, confirmed cases* have been reported by nine states. In addition, 28 countries and territories,† none of which has endemic monkeypox, have reported laboratory-confirmed cases. On May 17, CDC, in coordination with state and local jurisdictions, initiated an emergency response to identify, monitor, and investigate additional monkeypox cases in the United States. This response has included releasing a Health Alert Network (HAN) Health Advisory, developing interim public health and clinical recommendations, releasing guidance for LRN testing, hosting clinician and public health partner outreach calls, disseminating health communication messages to the public, developing protocols for use and release of medical countermeasures, and facilitating delivery of vaccine postexposure prophylaxis (PEP) and antivirals that have been stockpiled by the U.S. government for preparedness and response purposes. On May 19, a call center was established to provide guidance to states for the evaluation of possible cases of monkeypox, including recommendations for clinical diagnosis and orthopoxvirus testing. The call center also gathers information about possible cases to identify interjurisdictional linkages. As of May 31, this investigation has identified 17§ cases in the United States; most cases (16) were diagnosed in persons who identify as gay, bisexual, or men who have sex with men (MSM). Ongoing investigation suggests person-to-person community transmission, and CDC urges health departments, clinicians, and the public to remain vigilant, institute appropriate infection prevention and control measures, and notify public health authorities of suspected cases to reduce disease spread. Public health authorities are identifying cases and conducting investigations to determine possible sources and prevent further spread. This activity was reviewed by CDC and conducted consistent with applicable federal law and CDC policy.¶.

Journal ArticleDOI
TL;DR: The Advisory Committee on Immunization Practices (ACIP) recommended use of either PCV20 alone or PCV15 in series with PPSV23 for all adults aged ≥65 years, and for adults aged 19-64 years with certain underlying medical conditions or other risk factors* who have not previously received a PCV or whose previous vaccination history is unknown.
Abstract: In 2021, 20-valent pneumococcal conjugate vaccine (PCV) (PCV20) (Wyeth Pharmaceuticals LLC, a subsidiary of Pfizer Inc.) and 15-valent PCV (PCV15) (Merck Sharp & Dohme Corp.) were licensed by the Food and Drug Administration for adults aged ≥18 years, based on studies that compared antibody responses to PCV20 and PCV15 with those to 13-valent PCV (PCV13) (Wyeth Pharmaceuticals LLC, a subsidiary of Pfizer Inc.). Antibody responses to two additional serotypes included in PCV15 were compared to corresponding responses after PCV13 vaccination, and antibody responses to seven additional serotypes included in PCV20 were compared with those to the 23-valent pneumococcal polysaccharide vaccine (PPSV23) (Merck Sharp & Dohme Corp.). On October 20, 2021, the Advisory Committee on Immunization Practices (ACIP) recommended use of either PCV20 alone or PCV15 in series with PPSV23 for all adults aged ≥65 years, and for adults aged 19-64 years with certain underlying medical conditions or other risk factors* who have not previously received a PCV or whose previous vaccination history is unknown. ACIP employed the Evidence to Recommendation (EtR) framework,† using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE)§ approach to guide its deliberations regarding use of these vaccines. Before this, PCV13 and PPSV23 were recommended for use for U.S. adults and the recommendations varied by age and risk groups. This was simplified in the new recommendations.

Journal ArticleDOI
TL;DR: This report analyzes data from the Coronavirus Disease 19-Associated Hospitalization Surveillance Network (COVID-NET)§ to describe COVID-19-associated hospitalizations among U.S. children and adolescents during periods of Delta- and Omicron-predominant predominance.
Abstract: The first U.S. case of COVID-19 attributed to the Omicron variant of SARS-CoV-2 (the virus that causes COVID-19) was reported on December 1, 2021 (1), and by the week ending December 25, 2021, Omicron was the predominant circulating variant in the United States.* Although COVID-19-associated hospitalizations are more frequent among adults,† COVID-19 can lead to severe outcomes in children and adolescents (2). This report analyzes data from the Coronavirus Disease 19-Associated Hospitalization Surveillance Network (COVID-NET)§ to describe COVID-19-associated hospitalizations among U.S. children (aged 0-11 years) and adolescents (aged 12-17 years) during periods of Delta (July 1-December 18, 2021) and Omicron (December 19, 2021-January 22, 2022) predominance. During the Delta- and Omicron-predominant periods, rates of weekly COVID-19-associated hospitalizations per 100,000 children and adolescents peaked during the weeks ending September 11, 2021, and January 8, 2022, respectively. The Omicron variant peak (7.1 per 100,000) was four times that of the Delta variant peak (1.8), with the largest increase observed among children aged 0-4 years.¶ During December 2021, the monthly hospitalization rate among unvaccinated adolescents aged 12-17 years (23.5) was six times that among fully vaccinated adolescents (3.8). Strategies to prevent COVID-19 among children and adolescents, including vaccination of eligible persons, are critical.*.

Journal ArticleDOI
TL;DR: Risks for preterm and SGA at birth among vaccinated and unvaccinated pregnant women were compared and results consistently showed no increased risk when stratified by mRNA COVID-19 vaccine dose, or by second or third trimester vaccination, compared with risk among un vaccinated pregnant women.
Abstract: COVID-19 vaccines are recommended during pregnancy to prevent severe maternal morbidity and adverse birth outcomes; however, vaccination coverage among pregnant women has been low (1). Concerns among pregnant women regarding vaccine safety are a persistent barrier to vaccine acceptance during pregnancy. Previous studies of maternal COVID-19 vaccination and birth outcomes have been limited by small sample size (2) or lack of an unvaccinated comparison group (3). In this retrospective cohort study of live births from eight Vaccine Safety Datalink (VSD) health care organizations, risks for preterm birth (<37 weeks' gestation) and small-for-gestational-age (SGA) at birth (birthweight <10th percentile for gestational age) after COVID-19 vaccination (receipt of ≥1 COVID-19 vaccine doses) during pregnancy were evaluated. Risks for preterm and SGA at birth among vaccinated and unvaccinated pregnant women were compared, accounting for time-dependent vaccine exposures and propensity to be vaccinated. Single-gestation pregnancies with estimated start or last menstrual period during May 17-October 24, 2020, were eligible for inclusion. Among 46,079 pregnant women with live births and gestational age available, 10,064 (21.8%) received ≥1 COVID-19 vaccine doses during pregnancy and during December 15, 2020-July 22, 2021; nearly all (9,892; 98.3%) were vaccinated during the second or third trimester. COVID-19 vaccination during pregnancy was not associated with preterm birth (adjusted hazard ratio [aHR] = 0.91; 95% CI = 0.82-1.01). Among 40,627 live births with birthweight available, COVID-19 vaccination in pregnancy was not associated with SGA at birth (aHR = 0.95; 95% CI = 0.87-1.03). Results consistently showed no increased risk when stratified by mRNA COVID-19 vaccine dose, or by second or third trimester vaccination, compared with risk among unvaccinated pregnant women. Because of the small number of first-trimester exposures, aHRs for first-trimester vaccination could not be calculated. These data add to the evidence supporting the safety of COVID-19 vaccination during pregnancy. To reduce the risk for severe COVID-19-associated illness, CDC recommends COVID-19 vaccination for women who are pregnant, recently pregnant (including those who are lactating), who are trying to become pregnant now, or who might become pregnant in the future (4).

Journal ArticleDOI
TL;DR: Compared with estimates from a previous study of vaccine coverage among adults aged ≥18 years during December 14, 2020-April 10, 2021, these urban-rural disparities among those now eligible for vaccination (aged ≥5 years) have increased more than twofold through January 2022, despite increased availability and access to COVID-19 vaccines.
Abstract: Higher COVID-19 incidence and mortality rates in rural than in urban areas are well documented (1). These disparities persisted during the B.1.617.2 (Delta) and B.1.1.529 (Omicron) variant surges during late 2021 and early 2022 (1,2). Rural populations tend to be older (aged ≥65 years) and uninsured and are more likely to have underlying medical conditions and live farther from facilities that provide tertiary medical care, placing them at higher risk for adverse COVID-19 outcomes (2). To better understand COVID-19 vaccination disparities between urban and rural populations, CDC analyzed county-level vaccine administration data among persons aged ≥5 years who received their first dose of either the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) COVID-19 vaccine or a single dose of the Ad.26.COV2.S (Janssen [Johnson & Johnson]) COVID-19 vaccine during December 14, 2020-January 31, 2022, in 50 states and the District of Columbia (DC). COVID-19 vaccination coverage with ≥1 doses in rural areas (58.5%) was lower than that in urban counties (75.4%) overall, with similar patterns across age groups and sex. Coverage with ≥1 doses varied among states: 46 states had higher coverage in urban than in rural counties, one had higher coverage in rural than in urban counties. Three states and DC had no rural counties; thus, urban-rural differences could not be assessed. COVID-19 vaccine primary series completion was higher in urban than in rural counties. However, receipt of booster or additional doses among primary series recipients was similarly low between urban and rural counties. Compared with estimates from a previous study of vaccine coverage among adults aged ≥18 years during December 14, 2020-April 10, 2021, these urban-rural disparities among those now eligible for vaccination (aged ≥5 years) have increased more than twofold through January 2022, despite increased availability and access to COVID-19 vaccines. Addressing barriers to vaccination in rural areas is critical to achieving vaccine equity, reducing disparities, and decreasing COVID-19-related illness and death in the United States (2).

Journal ArticleDOI
Natasha B. Halasa, Samantha M. Olson, Mary A. Staat, Margaret M Newhams, Ashley M. Price, Julie A. Boom, Leila C. Sahni, Melissa A. Cameron, Pia S. Pannaraj, Katherine Bline, Samina Bhumbra, Tamara T. Bradford, Kathleen Chiotos, Bria M. Coates, Melissa Cullimore, Natalie Z. Cvijanovich, Heidi R. Flori, Shira J. Gertz, Sabrina M. Heidemann, Charlotte V. Hobbs, Janet R. Hume, Katherine Irby, Satoshi Kamidani, Michele Kong, Emily R Levy, Elizabeth H. Mack, Aline B Maddux, Kelly Michelson, Ryan Nofziger, Jennifer E. Schuster, Stephanie P Schwartz, L S Smallcomb, Keiko M. Tarquinio, Tracie C. Walker, Matt S. Zinter, Suzanne M. Gilboa, Kara N. D. Polen, Angela P Campbell, Adrienne G. Randolph, Manish M. Patel, Laura D. Zambrano, Meghan Murdock, Mary Glas Gaspers, Connor P Kelley, Katri V. Typpo, Peter M. Mourani, Ronald C. Sanders, Charanne P. Smith, M. Yates, Katheryn L. Crane, Geraldina Lionetti, Juliana Murcia-Montoya, Denise Villarreal-Chico, Daniel Hakimi, Adam Skura, Imogene A Carson, Justin Lockwood, Emily Port, Brandon Chatani, N.K. Baida, Laila Hussaini, Hassan A. Khan, Simone T. Rhodes, Courtney M. Rowan, M Stumpf, Marla Johnston, Laura Berbert, Benjamin J. Boutselis, Sabrina R. Chen, Jie He, Suden Kucukak, Timothy P. McCadden, Amber O. Orzel, Edie Weller, Patrick Moran, Ella Bruno, Lexie Goertzen, Supriya Behl, Noelle M. Drapeau, Lacy Malloch, Lora M Martin, April Palmer, Roberto P. Santos, Abigail Kietzman, Melissa Sullivan, Lauren A. Hoody, Valerie H. Rinehart, Paris C. Bennett, Merry L. Tomcany, Nicole Twinem, Chelsea C. Rohlfs, Amber Wolfe, Rebecca L. Douglas, Kathlyn Phengchomphet, Megan M. Bickford, Lauren Wakefield, Meenakshi Golchha, Laura S Stewart, Jennifer N. Oates, Cindy Bowens, Mia Maamari 
TL;DR: Effectiveness of maternal vaccination during pregnancy against COVID-19 hospitalization in infants aged <6 months was 61% (95% CI = 31%-78%).
Abstract: COVID-19 vaccination is recommended for persons who are pregnant, breastfeeding, trying to get pregnant now, or who might become pregnant in the future, to protect them from COVID-19.§ Infants are at risk for life-threatening complications from COVID-19, including acute respiratory failure (1). Evidence from other vaccine-preventable diseases suggests that maternal immunization can provide protection to infants, especially during the high-risk first 6 months of life, through passive transplacental antibody transfer (2). Recent studies of COVID-19 vaccination during pregnancy suggest the possibility of transplacental transfer of SARS-CoV-2-specific antibodies that might provide protection to infants (3-5); however, no epidemiologic evidence currently exists for the protective benefits of maternal immunization during pregnancy against COVID-19 in infants. The Overcoming COVID-19 network conducted a test-negative, case-control study at 20 pediatric hospitals in 17 states during July 1, 2021-January 17, 2022, to assess effectiveness of maternal completion of a 2-dose primary mRNA COVID-19 vaccination series during pregnancy against COVID-19 hospitalization in infants. Among 379 hospitalized infants aged <6 months (176 with COVID-19 [case-infants] and 203 without COVID-19 [control-infants]), the median age was 2 months, 21% had at least one underlying medical condition, and 22% of case- and control-infants were born premature (<37 weeks gestation). Effectiveness of maternal vaccination during pregnancy against COVID-19 hospitalization in infants aged <6 months was 61% (95% CI = 31%-78%). Completion of a 2-dose mRNA COVID-19 vaccination series during pregnancy might help prevent COVID-19 hospitalization among infants aged <6 months.

Journal ArticleDOI
TL;DR: Severe COVID-19 outcomes after primary vaccination are rare; however, vaccinated persons who are aged ≥65 years, are immunosuppressed, or have other underlying conditions might be at increased risk.
Abstract: Vaccination against SARS-CoV-2, the virus that causes COVID-19, is highly effective at preventing COVID-19-associated hospitalization and death; however, some vaccinated persons might develop COVID-19 with severe outcomes† (1,2). Using data from 465 facilities in a large U.S. health care database, this study assessed the frequency of and risk factors for developing a severe COVID-19 outcome after completing a primary COVID-19 vaccination series (primary vaccination), defined as receipt of 2 doses of an mRNA vaccine (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) or a single dose of JNJ-78436735 [Janssen (Johnson & Johnson)] ≥14 days before illness onset. Severe COVID-19 outcomes were defined as hospitalization with a diagnosis of acute respiratory failure, need for noninvasive ventilation (NIV), admission to an intensive care unit (ICU) including all persons requiring invasive mechanical ventilation, or death (including discharge to hospice). Among 1,228,664 persons who completed primary vaccination during December 2020-October 2021, a total of 2,246 (18.0 per 10,000 vaccinated persons) developed COVID-19 and 189 (1.5 per 10,000) had a severe outcome, including 36 who died (0.3 deaths per 10,000). Risk for severe outcomes was higher among persons who were aged ≥65 years, were immunosuppressed, or had at least one of six other underlying conditions. All persons with severe outcomes had at least one of these risk factors, and 77.8% of those who died had four or more risk factors. Severe COVID-19 outcomes after primary vaccination are rare; however, vaccinated persons who are aged ≥65 years, are immunosuppressed, or have other underlying conditions might be at increased risk. These persons should receive targeted interventions including chronic disease management, precautions to reduce exposure, additional primary and booster vaccine doses, and effective pharmaceutical therapy as indicated to reduce risk for severe COVID-19 outcomes. Increasing COVID-19 vaccination coverage is a public health priority.

Journal ArticleDOI
TL;DR: Electronic health record data during March 2020–November 2021 were used to assess the incidence of 26 conditions often attributable to post-COVID (hereafter also referred to as incident conditions) among patients who had received a previous COVID-19 diagnosis, compared with the incidence among matched patients without evidence of CO VID-19 in the EHR (control patients).
Abstract: The investigation of a sizable EHR-based database of American adults revealed that incident conditions that might be related to prior COVID-19 were considerably more common in COVID-19 survivors than in control patients. One in five COVID-19 survivors between the ages of 18 and 64 and one in four survivors over the age of 65 reported having at least one incident condition that could have been caused by a previous COVID-19. The highest RRs were for acute pulmonary embolism and respiratory symptoms, regardless of age group. These results are in line with findings from numerous sizable studies that showed 20% to 30% of patients experience post-COVID incident symptoms, and some patients need extended follow-up therapy beyond the initial infection. COVID-19 severity and illness duration may have an impact on a patient's requirement for medical care and financial stability. Incident symptoms following infection may also limit a patient's capacity to participate in the workforce and may have financial ramifications for survivors and their dependents, especially in people between the ages of 18 and 64. Additionally, in areas where COVID-19 case surges are significant, the need for care following acute illness may put a strain on local health resources. The number of survivors who have post-COVID conditions is predicted to rise as the total number of people who have ever been infected with SARS-CoV-2 rises. Therefore, lowering the prevalence and effects of post-COVID conditions, especially among adults over 65 years old, requires the deployment of COVID-19 prevention initiatives as well as routine assessment for post-COVID conditions among people who survive COVID-19. These findings can improve post-acute care and treatment of patients after sickness and raise awareness of post-COVID disorders. Understanding the pathophysiologic pathways linked to higher risk for post-COVID disorders, including by age and ailment type, calls for more research.

Journal ArticleDOI
TL;DR: It is reinforced that in addition to being up to date with recommended COVID-19 vaccinations, consistently wearing a face mask or respirator in indoor public settings reduces the risk of acquiring SARS-CoV-2 infection.
Abstract: The use of face masks or respirators (N95/KN95) is recommended to reduce transmission of SARS-CoV-2, the virus that causes COVID-19 (1). Well-fitting face masks and respirators effectively filter virus-sized particles in laboratory conditions (2,3), though few studies have assessed their real-world effectiveness in preventing acquisition of SARS-CoV-2 infection (4). A test-negative design case-control study enrolled randomly selected California residents who had received a test result for SARS-CoV-2 during February 18-December 1, 2021. Face mask or respirator use was assessed among 652 case-participants (residents who had received positive test results for SARS-CoV-2) and 1,176 matched control-participants (residents who had received negative test results for SARS-CoV-2) who self-reported being in indoor public settings during the 2 weeks preceding testing and who reported no known contact with anyone with confirmed or suspected SARS-CoV-2 infection during this time. Always using a face mask or respirator in indoor public settings was associated with lower adjusted odds of a positive test result compared with never wearing a face mask or respirator in these settings (adjusted odds ratio [aOR] = 0.44; 95% CI = 0.24-0.82). Among 534 participants who specified the type of face covering they typically used, wearing N95/KN95 respirators (aOR = 0.17; 95% CI = 0.05-0.64) or surgical masks (aOR = 0.34; 95% CI = 0.13-0.90) was associated with significantly lower adjusted odds of a positive test result compared with not wearing any face mask or respirator. These findings reinforce that in addition to being up to date with recommended COVID-19 vaccinations, consistently wearing a face mask or respirator in indoor public settings reduces the risk of acquiring SARS-CoV-2 infection. Using a respirator offers the highest level of personal protection against acquiring infection, although it is most important to wear a mask or respirator that is comfortable and can be used consistently.

Journal ArticleDOI
TL;DR: COVID-19 testing, including at-home tests, along with prevention measures, such as quarantine and isolation when warranted, wearing a well-fitted mask when recommended after a positive test or known exposure, and staying up to date with vaccination, can help reduce the spread of CO VID-19.
Abstract: COVID-19 testing provides information regarding exposure and transmission risks, guides preventative measures (e.g., if and when to start and end isolation and quarantine), identifies opportunities for appropriate treatments, and helps assess disease prevalence (1). At-home rapid COVID-19 antigen tests (at-home tests) are a convenient and accessible alternative to laboratory-based diagnostic nucleic acid amplification tests (NAATs) for SARS-CoV-2, the virus that causes COVID-19 (2-4). With the emergence of the SARS-CoV-2 B.1.617.2 (Delta) and B.1.1.529 (Omicron) variants in 2021, demand for at-home tests increased† (5). At-home tests are commonly used for school- or employer-mandated testing and for confirmation of SARS-CoV-2 infection in a COVID-19-like illness or following exposure (6). Mandated COVID-19 reporting requirements omit at-home tests, and there are no standard processes for test takers or manufacturers to share results with appropriate health officials (2). Therefore, with increased COVID-19 at-home test use, laboratory-based reporting systems might increasingly underreport the actual incidence of infection. Data from a cross-sectional, nonprobability-based online survey (August 23, 2021-March 12, 2022) of U.S. adults aged ≥18 years were used to estimate self-reported at-home test use over time, and by demographic characteristics, geography, symptoms/syndromes, and reasons for testing. From the Delta-predominant period (August 23-December 11, 2021) to the Omicron-predominant period (December 19, 2021-March 12, 2022)§ (7), at-home test use among respondents with self-reported COVID-19-like illness¶ more than tripled from 5.7% to 20.1%. The two most commonly reported reasons for testing among persons who used an at-home test were COVID-19 exposure (39.4%) and COVID-19-like symptoms (28.9%). At-home test use differed by race (e.g., self-identified as White [5.9%] versus self-identified as Black [2.8%]), age (adults aged 30-39 years [6.4%] versus adults aged ≥75 years [3.6%]), household income (>$150,000 [9.5%] versus $50,000-$74,999 [4.7%]), education (postgraduate degree [8.4%] versus high school or less [3.5%]), and geography (New England division [9.6%] versus West South Central division [3.7%]). COVID-19 testing, including at-home tests, along with prevention measures, such as quarantine and isolation when warranted, wearing a well-fitted mask when recommended after a positive test or known exposure, and staying up to date with vaccination,** can help reduce the spread of COVID-19. Further, providing reliable and low-cost or free at-home test kits to underserved populations with otherwise limited access to COVID-19 testing could assist with continued prevention efforts.

Journal ArticleDOI
TL;DR: For example, the SARS-CoV-2 Delta (B.1.529 and BA sublineages) variant increased from 1% to >50% of circulating viral lineages during 8 weeks, from May 1-June 26, 2021 as mentioned in this paper .
Abstract: Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.

Journal ArticleDOI
TL;DR: COVID- 19 mRNA vaccines are highly effective in preventing COVID-19-associated death and respiratory failure treated with IMV, and CDC recommends that all persons eligible for vaccination get vaccinated and stay up to date with CO VID-19 vaccination.
Abstract: COVID-19 mRNA vaccines (BNT162b2 [Pfizer-BioNTech] and mRNA-1273 [Moderna]) are effective at preventing COVID-19-associated hospitalization (1-3). However, how well mRNA vaccines protect against the most severe outcomes of these hospitalizations, including invasive mechanical ventilation (IMV) or death is uncertain. Using a case-control design, mRNA vaccine effectiveness (VE) against COVID-19-associated IMV and in-hospital death was evaluated among adults aged ≥18 years hospitalized at 21 U.S. medical centers during March 11, 2021-January 24, 2022. During this period, the most commonly circulating variants of SARS-CoV-2, the virus that causes COVID-19, were B.1.1.7 (Alpha), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Previous vaccination (2 or 3 versus 0 vaccine doses before illness onset) in prospectively enrolled COVID-19 case-patients who received IMV or died within 28 days of hospitalization was compared with that among hospitalized control patients without COVID-19. Among 1,440 COVID-19 case-patients who received IMV or died, 307 (21%) had received 2 or 3 vaccine doses before illness onset. Among 6,104 control-patients, 4,020 (66%) had received 2 or 3 vaccine doses. Among the 1,440 case-patients who received IMV or died, those who were vaccinated were older (median age = 69 years), more likely to be immunocompromised* (40%), and had more chronic medical conditions compared with unvaccinated case-patients (median age = 55 years; immunocompromised = 10%; p<0.001 for both). VE against IMV or in-hospital death was 90% (95% CI = 88%-91%) overall, including 88% (95% CI = 86%-90%) for 2 doses and 94% (95% CI = 91%-96%) for 3 doses, and 94% (95% CI = 88%-97%) for 3 doses during the Omicron-predominant period. COVID-19 mRNA vaccines are highly effective in preventing COVID-19-associated death and respiratory failure treated with IMV. CDC recommends that all persons eligible for vaccination get vaccinated and stay up to date with COVID-19 vaccination (4).

Journal ArticleDOI
TL;DR: The B.1.529 (Omicron) variant of SARS-CoV-2, the virus that causes COVID-19, has been the predominant circulating variant in the United States since late December 2021 as mentioned in this paper .
Abstract: The B.1.1.529 (Omicron) variant of SARS-CoV-2, the virus that causes COVID-19, has been the predominant circulating variant in the United States since late December 2021.* Coinciding with increased Omicron circulation, COVID-19-associated hospitalization rates increased rapidly among infants and children aged 0-4 years, a group not yet eligible for vaccination (1). Coronavirus Disease 19-Associated Hospitalization Surveillance Network (COVID-NET)† data were analyzed to describe COVID-19-associated hospitalizations among U.S. infants and children aged 0-4 years since March 2020. During the period of Omicron predominance (December 19, 2021-February 19, 2022), weekly COVID-19-associated hospitalization rates per 100,000 infants and children aged 0-4 years peaked at 14.5 (week ending January 8, 2022); this Omicron-predominant period peak was approximately five times that during the period of SARS-CoV-2 B.1.617.2 (Delta) predominance (June 27-December 18, 2021, which peaked the week ending September 11, 2021).§ During Omicron predominance, 63% of hospitalized infants and children had no underlying medical conditions; infants aged <6 months accounted for 44% of hospitalizations, although no differences were observed in indicators of severity by age. Strategies to prevent COVID-19 among infants and young children are important and include vaccination among currently eligible populations (2) such as pregnant women (3), family members, and caregivers of infants and young children (4).

Journal ArticleDOI
TL;DR: Although 20% of SARS-CoV-2-associated hospitalizations during the period of Omicron predominance might be driven by non-COVID-19 conditions, large numbers of hospitalizations place a strain on health systems.
Abstract: In mid-December 2021, the B.1.1.529 (Omicron) variant of SARS-CoV-2, the virus that causes COVID-19, surpassed the B.1.617.2 (Delta) variant as the predominant strain in California.§ Initial reports suggest that the Omicron variant is more transmissible and resistant to vaccine neutralization but causes less severe illness compared with previous variants (1-3). To describe characteristics of patients hospitalized with SARS-CoV-2 infection during periods of Delta and Omicron predominance, clinical characteristics and outcomes were retrospectively abstracted from the electronic health records (EHRs) of adults aged ≥18 years with positive reverse transcription-polymerase chain reaction (RT-PCR) SARS-CoV-2 test results admitted to one academic hospital in Los Angeles, California, during July 15-September 23, 2021 (Delta predominant period, 339 patients) and December 21, 2021-January 27, 2022 (Omicron predominant period, 737 patients). Compared with patients during the period of Delta predominance, a higher proportion of adults admitted during Omicron predominance had received the final dose in a primary COVID-19 vaccination series (were fully vaccinated) (39.6% versus 25.1%), and fewer received COVID-19-directed therapies. Although fewer required intensive care unit (ICU) admission and invasive mechanical ventilation (IMV), and fewer died while hospitalized during Omicron predominance, there were no significant differences in ICU admission or IMV when stratified by vaccination status. Fewer fully vaccinated Omicron-period patients died while hospitalized (3.4%), compared with Delta-period patients (10.6%). Among Omicron-period patients, vaccination was associated with lower likelihood of ICU admission, and among adults aged ≥65 years, lower likelihood of death while hospitalized. Likelihood of ICU admission and death were lowest among adults who had received a booster dose. Among the first 131 Omicron-period hospitalizations, 19.8% of patients were clinically assessed as admitted for non-COVID-19 conditions. Compared with adults considered likely to have been admitted because of COVID-19, these patients were younger (median age = 38 versus 67 years) and more likely to have received at least one dose of a COVID-19 vaccine (84.6% versus 61.0%). Although 20% of SARS-CoV-2-associated hospitalizations during the period of Omicron predominance might be driven by non-COVID-19 conditions, large numbers of hospitalizations place a strain on health systems. Vaccination, including a booster dose for those who are fully vaccinated, remains critical to minimizing risk for severe health outcomes among adults with SARS-CoV-2 infection.

Journal ArticleDOI
TL;DR: During October-November 2021, clinicians at a children's hospital in Alabama identified five pediatric patients with severe hepatitis and adenovirus viremia upon admission and an investigation began.
Abstract: During October-November 2021, clinicians at a children's hospital in Alabama identified five pediatric patients with severe hepatitis and adenovirus viremia upon admission. In November 2021, hospital clinicians, the Alabama Department of Public Health, the Jefferson County Department of Health, and CDC began an investigation. This activity was reviewed by CDC and conducted consistent with applicable federal law and CDC policy.

Journal ArticleDOI
TL;DR: Although data are limited for monkeypox in patients with HIV, prompt diagnosis, treatment, and prevention might reduce the risk for adverse outcomes and limit monkeypox spread.
Abstract: Monkeypox virus, an orthopoxvirus sharing clinical features with smallpox virus, is endemic in several countries in Central and West Africa. The last reported outbreak in the United States, in 2003, was linked to contact with infected prairie dogs that had been housed or transported with African rodents imported from Ghana (1). Since May 2022, the World Health Organization (WHO) has reported a multinational outbreak of monkeypox centered in Europe and North America, with approximately 25,000 cases reported worldwide; the current outbreak is disproportionately affecting gay, bisexual, and other men who have sex with men (MSM) (2). Monkeypox was declared a public health emergency in the United States on August 4, 2022.† Available summary surveillance data from the European Union, England, and the United States indicate that among MSM patients with monkeypox for whom HIV status is known, 28%-51% have HIV infection (3-10). Treatment of monkeypox with tecovirimat as a first-line agent is available through CDC for compassionate use through an investigational drug protocol. No identified drug interactions would preclude coadministration of tecovirimat with antiretroviral therapy (ART) for HIV infection. Pre- and postexposure prophylaxis can be considered with JYNNEOS vaccine, if indicated. Although data are limited for monkeypox in patients with HIV, prompt diagnosis, treatment, and prevention might reduce the risk for adverse outcomes and limit monkeypox spread. Prevention and treatment considerations will be updated as more information becomes available.

Journal ArticleDOI
TL;DR: In this article , the effectiveness of the bivalent COVID-19 mRNA vaccines against symptomatic SARS-CoV-2 infection was examined using data from the Increasing Community Access to Testing (ICATT) national SARS CoV2 testing program, where a total of 360,626 nucleic acid amplification tests (NAATs) performed at 9,995 retail pharmacies for adults aged ≥18 years, who reported symptoms consistent with COVID19 at the time of testing and no immunocompromising conditions, were included in the analysis.
Abstract: On September 1, 2022, bivalent COVID-19 mRNA vaccines, composed of components from the SARS-CoV-2 ancestral and Omicron BA.4/BA.5 strains, were recommended by the Advisory Committee on Immunization Practices (ACIP) to address reduced effectiveness of COVID-19 monovalent vaccines during SARS-CoV-2 Omicron variant predominance (1). Initial recommendations included persons aged ≥12 years (Pfizer-BioNTech) and ≥18 years (Moderna) who had completed at least a primary series of any Food and Drug Administration-authorized or -approved monovalent vaccine ≥2 months earlier (1). On October 12, 2022, the recommendation was expanded to include children aged 5-11 years. At the time of recommendation, immunogenicity data were available from clinical trials of bivalent vaccines composed of ancestral and Omicron BA.1 strains; however, no clinical efficacy data were available. In this study, effectiveness of the bivalent (Omicron BA.4/BA.5-containing) booster formulation against symptomatic SARS-CoV-2 infection was examined using data from the Increasing Community Access to Testing (ICATT) national SARS-CoV-2 testing program.* During September 14-November 11, 2022, a total of 360,626 nucleic acid amplification tests (NAATs) performed at 9,995 retail pharmacies for adults aged ≥18 years, who reported symptoms consistent with COVID-19 at the time of testing and no immunocompromising conditions, were included in the analysis. Relative vaccine effectiveness (rVE) of a bivalent booster dose compared with that of ≥2 monovalent vaccine doses among persons for whom 2-3 months and ≥8 months had elapsed since last monovalent dose was 30% and 56% among persons aged 18-49 years, 31% and 48% among persons aged 50-64 years, and 28% and 43% among persons aged ≥65 years, respectively. Bivalent mRNA booster doses provide additional protection against symptomatic SARS-CoV-2 in immunocompetent persons who previously received monovalent vaccine only, with relative benefits increasing with time since receipt of the most recent monovalent vaccine dose. Staying up to date with COVID-19 vaccination, including getting a bivalent booster dose when eligible, is critical to maximizing protection against COVID-19 (1).

Journal ArticleDOI
TL;DR: The potential for serious illness among children aged 5-11 years, including those with no underlying health conditions, highlights the importance of vaccination among this age group and increasing vaccination coverage among children is critical to preventing COVID-19-associated hospitalization and severe outcomes.
Abstract: On October 29, 2021, the Food and Drug Administration expanded the Emergency Use Authorization for Pfizer-BioNTech COVID-19 vaccine to children aged 5-11 years; CDC's Advisory Committee on Immunization Practices' recommendation followed on November 2, 2021.* In late December 2021, the B.1.1.529 (Omicron) variant of SARS-CoV-2 (the virus that causes COVID-19) became the predominant strain in the United States,† coinciding with a rapid increase in COVID-19-associated hospitalizations among all age groups, including children aged 5-11 years (1). COVID-19-Associated Hospitalization Surveillance Network (COVID-NET)§ data were analyzed to describe characteristics of COVID-19-associated hospitalizations among 1,475 U.S. children aged 5-11 years throughout the pandemic, focusing on the period of early Omicron predominance (December 19, 2021-February 28, 2022). Among 397 children hospitalized during the Omicron-predominant period, 87% were unvaccinated, 30% had no underlying medical conditions, and 19% were admitted to an intensive care unit (ICU). The cumulative hospitalization rate during the Omicron-predominant period was 2.1 times as high among unvaccinated children (19.1 per 100,000 population) as among vaccinated¶ children (9.2).** Non-Hispanic Black (Black) children accounted for the largest proportion of unvaccinated children (34%) and represented approximately one third of COVID-19-associated hospitalizations in this age group. Children with diabetes and obesity were more likely to experience severe COVID-19. The potential for serious illness among children aged 5-11 years, including those with no underlying health conditions, highlights the importance of vaccination among this age group. Increasing vaccination coverage among children, particularly among racial and ethnic minority groups disproportionately affected by COVID-19, is critical to preventing COVID-19-associated hospitalization and severe outcomes.

Journal ArticleDOI
TL;DR: Multicomponent COVID-19 prevention strategies, including up-to-date vaccination, isolation of infected persons, and mask use at home, are critical to reducing Omicron transmission in household settings.
Abstract: The B.1.1.529 (Omicron) variant, first detected in November 2021, was responsible for a surge in U.S. infections with SARS-CoV-2, the virus that causes COVID-19, during December 2021-January 2022 (1). To investigate the effectiveness of prevention strategies in household settings, CDC partnered with four U.S. jurisdictions to describe Omicron household transmission during November 2021-February 2022. Persons with sequence-confirmed Omicron infection and their household contacts were interviewed. Omicron transmission occurred in 124 (67.8%) of 183 households. Among 431 household contacts, 227 were classified as having a case of COVID-19 (attack rate [AR] = 52.7%).† The ARs among household contacts of index patients who had received a COVID-19 booster dose, of fully vaccinated index patients who completed their COVID-19 primary series within the previous 5 months, and of unvaccinated index patients were 42.7% (47 of 110), 43.6% (17 of 39), and 63.9% (69 of 108), respectively. The AR was lower among household contacts of index patients who isolated (41.2%, 99 of 240) compared with those of index patients who did not isolate (67.5%, 112 of 166) (p-value <0.01). Similarly, the AR was lower among household contacts of index patients who ever wore a mask at home during their potentially infectious period (39.5%, 88 of 223) compared with those of index patients who never wore a mask at home (68.9%, 124 of 180) (p-value <0.01). Multicomponent COVID-19 prevention strategies, including up-to-date vaccination, isolation of infected persons, and mask use at home, are critical to reducing Omicron transmission in household settings.

Journal ArticleDOI
TL;DR: Findings support continued use of mRNA COVID-19 vaccines among all eligible persons aged ≥5 years after SARS-CoV-2 infection and Multisystem inflammatory syndrome.
Abstract: Cardiac complications, particularly myocarditis and pericarditis, have been associated with SARS-CoV-2 (the virus that causes COVID-19) infection (1-3) and mRNA COVID-19 vaccination (2-5). Multisystem inflammatory syndrome (MIS) is a rare but serious complication of SARS-CoV-2 infection with frequent cardiac involvement (6). Using electronic health record (EHR) data from 40 U.S. health care systems during January 1, 2021-January 31, 2022, investigators calculated incidences of cardiac outcomes (myocarditis; myocarditis or pericarditis; and myocarditis, pericarditis, or MIS) among persons aged ≥5 years who had SARS-CoV-2 infection, stratified by sex (male or female) and age group (5-11, 12-17, 18-29, and ≥30 years). Incidences of myocarditis and myocarditis or pericarditis were calculated after first, second, unspecified, or any (first, second, or unspecified) dose of mRNA COVID-19 (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) vaccines, stratified by sex and age group. Risk ratios (RR) were calculated to compare risk for cardiac outcomes after SARS-CoV-2 infection to that after mRNA COVID-19 vaccination. The incidence of cardiac outcomes after mRNA COVID-19 vaccination was highest for males aged 12-17 years after the second vaccine dose; however, within this demographic group, the risk for cardiac outcomes was 1.8-5.6 times as high after SARS-CoV-2 infection than after the second vaccine dose. The risk for cardiac outcomes was likewise significantly higher after SARS-CoV-2 infection than after first, second, or unspecified dose of mRNA COVID-19 vaccination for all other groups by sex and age (RR 2.2-115.2). These findings support continued use of mRNA COVID-19 vaccines among all eligible persons aged ≥5 years.