scispace - formally typeset
Search or ask a question

Showing papers in "Mycorrhiza in 1997"


Journal ArticleDOI
TL;DR: This review discusses various aspects of the interactions between heavy metals and mycorrhizal fungi, including the effects of heavy metals on the occurrence of mycor RH fungi, heavy metal tolerance in these micro-organisms, and their effect on metal uptake and transfer to plants.
Abstract: High concentrations of heavy metals in soil have an adverse effect on micro-organisms and microbial processes. Among soil microorganisms, mycorrhizal fungi are the only ones providing a direct link between soil and roots, and can therefore be of great importance in heavy metal availability and toxicity to plants. This review discusses various aspects of the interactions between heavy metals and mycorrhizal fungi, including the effects of heavy metals on the occurrence of mycorrhizal fungi, heavy metal tolerance in these micro-organisms, and their effect on metal uptake and transfer to plants. Mechanisms involved in metal tolerance, uptake and accumulation by mycorrhizal hyphae and by endo- or ectomycorrhizae are covered. The possible use of mycorrhizal fungi as bioremediation agents in polluted soils or as bioindicators of pollution is also discussed.

786 citations


Journal ArticleDOI
TL;DR: Although the improvement of plant nutrition, compensation for pathogen damage, and competition for photosynthates or colonization/infection sites have been claimed to play a protective role in the AM symbiosis, information is scarce, fragmentary or even controversial, particularly concerning other mechanisms.
Abstract: Biological control of plant pathogens is currently accepted as a key practice in sustainable agriculture because it is based on the management of a natural resource, i.e. certain rhizosphere organisms, common components of ecosystems, known to develop antagonistic activities against harmful organisms (bacteria, fungi, nematodes etc.). Arbuscular mycorrhizal (AM) associations have been shown to reduce damage caused by soil-borne plant pathogens. Although few AM isolates have been tested in this regard, some appear to be more effective than others. Furthermore, the degree of protection varies with the pathogen involved and can be modified by soil and other environmental conditions. This prophylactic ability of AM fungi could be exploited in cooperation with other rhizospheric microbial angatonists to improve plant growth and health. Despite past achievements on the application of AM in plant protection, further research is needed for a better understanding of both the ecophysiological parameters contributing to effectiveness and of the mechanisms involved. Although the improvement of plant nutrition, compensation for pathogen damage, and competition for photosynthates or colonization/infection sites have been claimed to play a protective role in the AM symbiosis, information is scarce, fragmentary or even controversial, particularly concerning other mechanisms. Such mechanisms include (a) anatomical or morphological AM-induced changes in the root system, (b) microbial changes in rhizosphere populations of AM plants, and (c) local elicitation of plant defence mechanisms by AM fungi. Although compounds typically involved in plant defence reactions are elicited by AM only in low amounts, they could act locally or transiently by making the root more prone to react against pathogens. Current research based on molecular, immunological and histochemical techniques is providing new insights into these mechanisms.

757 citations


Journal ArticleDOI
TL;DR: CR006 benefitted from AM infection more than the CR057 under dry soil conditions, despite the fact that CR057 roots were highly infected, and it appears that CR006 is more dependent on AM symbiosis than CR057.
Abstract: The effects of an arbuscular mycorrhizal (AM) fungus and drought stress on the growth, phosphorus, and micronutrient uptake of two wheat genotypes exhibiting differences in drought resistance were investigated. Plants were grown on a low P (4 mg kg–1 soil) silty clay (Typic Xerochrept) soil-sand mix. Mycorrhizal infection was higher under well-watered than under dry soil conditions and the drought-resistant genotype CR057 had a higher mycorrhizal colonization than the drought-sensitive genotype CR006. Total and root dry matter yields and total root length were higher in mycorrhizal than in nonmycorrhizal plants of both genotypes. CR057 had higher total dry matter but not root dry matter than CR006 plants. The enhancement in total dry matter due to AM inoculation was 42 and 39% under well-watered and 35 and 45% under water-stressed for CR057 and and CR006, respectively. For both genotypes, the contents of P, Zn, Cu, Mn, and Fe were higher in mycorrhizal than in nonmycorrhizal plants and higher under well-watered than under dry soil conditions. The enhancement of P, Zn, Cu, Mn, and Fe uptake due to AM inoculation was more pronounced in CR006 than in CR057, particularly under water-stressed conditions. Thus CR006 benefitted from AM infection more than the CR057 under dry soil conditions, despite the fact that CR057 roots were highly infected. It appears that CR006 is more dependent on AM symbiosis than CR057.

178 citations


Journal ArticleDOI
TL;DR: The arbuscular mycorrhizal status of two plant communities on a calamine spoil mound in southern Poland was surveyed: an undisturbed grassland community and an early succession community that developed after complete removal of the surface layer of the calamine substrate about 10 years earlier.
Abstract: The arbuscular mycorrhizal (AM) status of two plant communities on a calamine spoil mound (rich in cadmium, lead and zinc) in southern Poland was surveyed: an undisturbed grassland community and an early succession community that developed after complete removal of the surface layer of the calamine substrate about 10 years earlier. The undisturbed site harbored 40 herbaceous species making up 87% of the absolute cover. AM colonization was recorded in 25 species accounting for 77% of the relative cover. Species with 51–75% AM root colonization such as Festuca ovina and Leontodon hispidus dominated the undisturbed turf, contributing 45% to the relative cover. Carex ssp. were the most abundant nonmycorrhizal plants and accounted for 9% of the relative cover. Spores of Glomus aggregatum, G. constrictum, G. fasciculatum, G. pansihalos, Glomus sp. and Entrophospora sp. averaged 25 per 100 g dry substrate at the undisturbed site. The disturbed site was colonized by 25 species accounting for 17% of the absolute cover. Among the AM plants, most abundant were the species with up to 20% AM root colonization, such as Agrostis stolonifera and Thymus pulegioides, wich accounted for 24% of the relative cover. Nonmycorrhizal species, such as Biscutella laevigata,Cardaminopsis arenosa, Gypsophila fastigiata and Silene vulgaris, dominated the early succession community and contributed 64% to the relative cover. Spores of G. fasciculatum and Entrophospora sp. averaged 20 per 100 g dry substrate at the disturbed site.

162 citations


Journal ArticleDOI
TL;DR: The overall results suggest that AM inoculation affects host plant nutritional status and growth and thereby alters the reproductive behaviour of maize under drought conditions.
Abstract: The effects of root colonization by the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith on nutritional, growth, and reproductive attributes of two tropical maize cultivars with different sensitivities to drought were studied. Freshly regenerated seeds of selection cycles 0 (cv. C0, drought-sensitive) and 8 (cv. C8, drought-resistant) of the lowland tropical maize population "Tuxpeno sequia" were used in this greenhouse experiment. Maize plants were subjected to drought stress for 3 weeks following tasselling (75–95 days after sowing) and rewatered for the subsequent 5 weeks until harvest. Mycorrhizal (M+) plants had significantly higher uptake of N, P, K, Mg, Mn, and Zn into grain than non-mycorrhizal (M–) plants under drought conditions. AM inoculation also produced significantly greater shoot masses in C0 and C8 regardless of the drought-stress treatment. In the sensitive cultivar C0, drought stress reduced the shoot mass and grain yield by 23% and 55%, respectively, when roots were not colonized, while the reductions were only 12% and 31%, respectively, with mycorrhizal association. In addition, the emergence of tassels and silks was earlier in M+ plants than in M– plants under drought conditions. Mycorrhizal response was more pronounced under both well-watered and drought conditions in C0 than in the C8 cultivar. The overall results suggest that AM inoculation affects host plant nutritional status and growth and thereby alters the reproductive behaviour of maize under drought conditions.

118 citations


Journal ArticleDOI
TL;DR: Different relationships were found between soil variables and spore abundance of different AM fungi species, and some AM species appear to have as yet undefined similarities or complementarities at the biological or ecological levels.
Abstract: Knowledge of physical, chemical and biological soil characteristics influencing plant response to inoculation with arbuscular mycorrhizal (AM) fungi would help to distinguish soils where inoculation could be profitable. The relationship between leek (Allium porrum L.) response to mycorrhizal inoculation with Glomus intraradices Schenck & Smith or G. versiforme (Karsten) Berch and soil texture, bulk density, particle density, porosity, pH, organic matter content, available P, K, Ca, Mg, Fe, Zn, Cu, and Mn, soil structure, soil mycorrhizal potential (SM), preceding crop mycorrhizal potential, composition of indigenous mycorrhizal fungal communities, and the abundance of spores of different species, was studied in 81 agricultural soils using Principal Component Analysis and regression analysis. The nature of the indigenous AM fungi population was an important determinant of leek response to inoculation (RTI). In soils with more than 200 μg available P g–1, SM potential accounted for over 27% of RTI with G. intraradices and G. versiforme, RTI being high in soils with low SM potential. In low P soils, however, a positive relation between the abundance of water stable soil aggregates in the 0.5–2 mm diameter range and RTI was most important. Low soil Zn and high porosity, abundant total mycorrhizal spore as well as scarcity of spores of G. aggregatum and of the group G. etunicatum-rubiforme were also associated to high RTI. The influence of water stable aggregation of soil on RTI was modulated by soil P levels. Abundance of soil aggregates was positively related to RTI at low soil P levels, but negatively related to RTI at high P levels. Different relationships were found between soil variables and spore abundance of different AM fungi species. Some AM species appear to have as yet undefined similarities or complementarities at the biological or ecological levels.

62 citations


Journal ArticleDOI
TL;DR: Results indicate resumption of mycorrhizal activity following the fire, probably from AM hyphae in the roots of these dominant shrubs.
Abstract: Forest fire can affect arbuscular mycorrhizal (AM) fungi by changing the soil conditions and by directly altering AM proliferation. We studied the effects of a severe forest fire at Margalla Hills near Islamabad on the number and viability of AM fungal propagules in the burnt soil and their role in the re-establishment of post-fire infection in colonized plants. Compared with a nearby control area, the burnt site had a similar number of total spores but a lower number of viable AM fungal propagules. The roots of the two most frequent species at the burnt site, Dodonaea viscosa and Aristida adscensionis, showed a gradual increase in percentage root length colonized by AM fungi in general and hyphal infection in particular. Our results indicate resumption of mycorrhizal activity following the fire, probably from AM hyphae in the roots of these dominant shrubs.

62 citations


Journal ArticleDOI
TL;DR: Root samples of 37 species distributed on the beach and along a successional gradient (from mobile to stabilized areas) in a tropical sand dune system on the Gulf of Mexico showed that 97% of the species were mycorrhizal.
Abstract: Root samples of 37 species distributed on the beach and along a successional gradient (from mobile to stabilized areas) in a tropical sand dune system on the Gulf of Mexico showed that 97% of the species were mycorrhizal. The mycorrhizal inoculum potential of the sand from several dune areas was compared using two different bioassays. Firstly, the field rate of colonization by arbuscular mycorrhizal fungi of Chamaecrista chamaecristoides seedlings transplanted to random plots in the foredunes and in the mobile area was measured. The seedlings were harvested at intervals during 3 weeks to record mycorrhizal structures. In the mobile area, no mycorrhizal colonization was observed during the experiment. In the foredunes, hyphae and external mycelium were present in 40% of the seedlings as early as 8 days after transplanting. After 15 days, arbuscules and vesicles were observed in 60 and 20% of the seedlings, respectively, and after 21 days, 100, 46 and 20% of the seedlings showed hyphae, arbuscules and vesicles, respectively. Secondly, maize seedlings were transplanted to pots previously filled with sand from the foredunes, mobile dunes, grassland and a Dyphisa robinoides shrub area. After 1 month, the lowest mycorrhizal inoculum potential was recorded for the mobile dunes and the highest for the shrub area. As expected, mycorrhizal inoculum potential increased with dune stabilization.

59 citations


Journal ArticleDOI
TL;DR: This review of the current state of knowledge of interactions between Pt and its hosts shows that Pt displays much intraspecific heterogeneity of host specificity, physiology and the benefits the fungus can impart upon the host plant.
Abstract: Pisolithus tinctorius (Pers.) Coker and Couch [Syn. = P. arhizus (Scop.: Pers.) Rauschert] (Pt) is a widespread ectomycorrhizal basidiomycete forming mycorrhizas with a variety of hosts. Developmental and functional aspects of the symbiosis are well documented and thus Pt has been adopted as a model organism for investigations of the molecular basis of ectomycorrhizal interactions. In this review of the current state of knowledge of interactions between Pt and its hosts we demonstrate that Pt displays much intraspecific heterogeneity of host specificity, physiology and the benefits the fungus can impart upon the host plant. It is not clear at present how far such heterogeneity reflects systematic segregation within Pt.

58 citations


Journal ArticleDOI
TL;DR: The dominant group of fungi associated with Shorea leprosula ectomycorrhizas were members of the Russulaceae, confirmed by collections of fungal fruiting bodies made under adult ShoreaLeProsula trees in various parts of Peninsular Malaysia over a period of 3 years.
Abstract: The ectomycorrhizas of Shorea leprosula Miq. are described and their putative fungal associates discussed. Of the 24 ectomycorrhizal types reported from seedlings, wildlings and 20-year-old trees of Shorea leprosula, 20 were associated with the Basidiomycotina, two with the Ascomycotina and two with either members of the Ascomycotina or the Russulaceae. The dominant group of fungi associated with Shorea leprosula ectomycorrhizas were members of the Russulaceae. This was confirmed by collections of fungal fruiting bodies made under adult Shorea leprosula trees in various parts of Peninsular Malaysia over a period of 3 years. Of the 28 species of putative ectomycorrhizal fungi collected, 15 were members of the Russulaceae.

54 citations


Journal ArticleDOI
TL;DR: Plants preinoculated with G. intraradices were more tolerant of infection with A. euteiches than non-mycorrhizal plants and the pathogen showed no symptoms of severe root rot even though the pathogenic was present and active in these plants.
Abstract: Fungal enzyme activities were quantified in an interaction study between the fungus Glomus intraradices and the pea pathogen Aphanomyces euteiches. Fungal and host enzymes were separated by polyacrylamide gel electrophoresis and the activity of A. euteiches–specific glucose-6-phosphate dehydrogenase (Gd), phosphoglucomutase and peptidase (PEP) enzymes were quantified by densitometry. The activity of A. euteiches–specific enzymes increased until 14 days after inoculation with A. euteiches, and then decreased. The plants preinoculated with G. intraradices showed no symptoms of severe root rot even though the pathogen was present and active in these plants. Thus, plants preinoculated with G. intraradices were more tolerant of infection with A. euteiches than non-mycorrhizal plants. This effect was evident even though the A. euteiches infection levels of mycorrhizal and non-mycorrhizal plants were the same. A. euteiches enzyme activities in the mycorrhizal plants were different to those in non-mycorrhizal plants. The peaks of PEP and Gd enzyme activity of A. euteiches were lower and the development of A. euteiches PEP activity was later in the mycorrhizal plants than in the non-mycorrhizal plants.

Journal ArticleDOI
TL;DR: The systemic fungicides propiconazole and carbendazim had similar effects on all three fungal species, although P transport efficiency and SDH activity differed markedly between the fungi.
Abstract: The influence of the systemic fungicides propiconazole (Tilt 250E) and carbendazim (Bavistin) at field application rates on the functioning of three arbuscular mycorrhizal fungi was studied. Short-term fungal 32P transport and succinate dehydrogenase (SDH) activity in external hyphae of Glomus intraradices Schenck and Smith, G. claroideum Schenck and Smith and G. invermaium Hall in symbiosis with pea (Pisum sativum L.) were measured. In the experimental system used, the hyphae grew into two root-free hyphal compartments (HCs). The fungicides were applied to each HC 24 days after sowing and 32P was added to one HC of each pot. Four days later, the fungicide effect on fungal P transport was measured as the difference in 32P content of treated and untreated plants. SDH activity in fungal hyphae was determined in the HCs given no 32P. Carbendazim severely inhibited 32P transport and SDH activity in external hyphae at an application rate of 0.5 μg g–1 soil. The ergosterol inhibitor propiconazole affected none of these parameters. The fungicides had similar effects on all three fungal species, although P transport efficiency and SDH activity differed markedly between the fungi.

Journal ArticleDOI
TL;DR: Although enzyme activity varied with season and ectomycorrhizal morphotype, VAM roots of red maple consistently had the lowest enzyme activities on a length and dry weight basis, suggesting similar short-term energy demands by the root types examined.
Abstract: This study examined select, naturally-occurring tree mycorrhizae for differences related to efficiency of organic phosphorus hydrolysis in forest soils. We investigated the activity of several phosphatases and root respiration in field-collected ectomycorrhizae of American beech and gray birch and VAM of red maple. Root materials were collected in the early and late growing season from a common soil type. American beech occurred in a late-successional stand, whereas gray birch and red maple grew in a mid-successional stand. All of the root types examined had phosphatase activities with p-nitrophenyl phosphate, bis-p-nitrophenyl phosphate and phytic acid and thus the potential to mineralize monoester and diester forms of organic phosphorus. Rates of hydrolysis at pH 5.0 were greatest with p-nitrophenyl phosphate. Although enzyme activity varied with season and ectomycorrhizal morphotype, VAM roots of red maple consistently had the lowest enzyme activities on a length and dry weight basis. Comparison of 32P uptake from inositol phosphate by gray birch and red maple roots suggested that phosphomonoesterase activity was linked to P uptake from this source. Differences between species in oxygen consumption rates were less pronounced than those observed for enzymatic activities, suggesting similar short-term energy demands by the root types examined. The quantitative differences observed between plants growing on a common soil potentially relate to differences in host demand or reflect differences in basic morphology and/or physiology of associated mycobionts. Further study is necessary to understand the importance of these enzymes in the functional ecology of mycorrhizal fungi.

Journal ArticleDOI
TL;DR: The coinoculation efficacy of the ectomycorrhizal fungi Laccaria laccata and Thelephora terrestris on Pinus patula seedlings was studied and compared to individual inoculation of these fungi in a nursery.
Abstract: The coinoculation efficacy of the ectomycorrhizal fungi Laccaria laccata and Thelephora terrestris on the growth and mycorrhizal development of Pinus patula seedlings was studied and compared to individual inoculation of these fungi in a nursery. The total number of mycorrhizas was higher in seedlings inoculated with the combined inoculum than with the individual inocula. The colonization by T. terrestris was higher than L. laccata when the seedlings were inoculated with the two fungi simultaneously. Coinoculation significantly increased the height and dry weight of the seedlings compared with individual inoculation, both in steam-sterilized and unsterilized soil.

Journal ArticleDOI
TL;DR: In the spring, living hyphae were more abundant in the presence of roots than in their absence, suggesting that attachment or proximity to roots favored overwinter survival.
Abstract: We investigated the overwinter survival in the field of indigenous arbuscular mycorrhizal (AM) hyphae either connected to corn roots or detached from them, and either intact or disrupted. We buried soil-filled pouches which either allowed root entry or excluded roots in the root zone of a field-grown corn (Zea mays) crop in eastern Canada. Following crop harvest in the fall, pouches either remained undisturbed, were disturbed outside the pouch, or were disturbed both inside and outside the pouch. Total and metabolically active AM hyphae in undisturbed pouches declined 20% and 33% (average of coarse- and fine-mesh treatments), respectively, from fall to spring, presumably because of death overwinter. In the spring, living hyphae were more abundant in the presence of roots than in their absence, suggesting that attachment or proximity to roots favored overwinter survival. Total hyphal density, metabolically active hyphal density, and the proportion of total living hyphae progressively diminished with increased disturbance.

Journal ArticleDOI
TL;DR: Differences in tolerance to soil P availability between VAM species, most likely resulting from their differing abilities to enhance coffee foliar P status are demonstrated.
Abstract: In a pot experiment, the growth and the nutrient status of in vitro propagated coffee (Coffea arabica L.) microcuttings were investigated for 5 months following vesicular-arbuscular mycorrhizal (VAM) inoculation with either Acaulospora melleae or Glomus clarum at four soil P availabilities. Control plants remained P-deficient even at the highest soil P availability while mycorrhizal plants were P-sufficient at all soil P availabilities. Growth of control plants was only improved at the highest soil P availability. In P-deficient soil, neither of the two VAM species improved plant growth. Plant growth increased by 50% following inoculation with either A. melleae or G. clarum when P availability went from deficient to low. No further plant growth improvement was induced by either VAM species at intermediate and high soil P levels. Nevertheless, growth of plants inoculated with G. clarum was still significantly greater than that of non-mycorrhizal plants at the highest soil P availability. Root colonization by G. clarum increased with increasing soil P availability while root colonization by A. mellea decreased with soil P level increasing above low P availability. Soil P availability also affected Zn nutrition through its influence on VAM symbiosis. With increasing soil P availability, foliar Zn status increased with G. clarum or decreased with A. mellea in parallel to root colonization by VAM. This study demonstrates the beneficial effects of VAM inoculation on in vitro propagated Arabica coffee microcuttings, as shown previously for seedlings. This study also demonstrates differences in tolerance to soil P availability between VAM species, most likely resulting from their differing abilities to enhance coffee foliar P status.

Journal ArticleDOI
TL;DR: Helper bacterium strain MB3 (Bacillussubtilis) was effective in inhibiting both pathogens and, when inoculated with either L. proxima or S. granulatus, inhibition of Fusarium growth was enhanced over MB3 alone; with Cylindrocarpon, however, only S.granulatus inoculated along with MB3 showed enhanced inhibition overMB3 alone.
Abstract: Root pathogens cause considerable loss of tree seedlings in nurseries and are generally difficult to control using conventional methods. Inoculation with ectomycorrhizal fungi may provide some suppression of pathogens. Bacteria (so-called mycorrhization helper bacteria) have been isolated that stimulate mycorrhiza formation on seedling roots and enhance seedling growth; however, their role in pathogen inhibition has not been explored. Four strains of helper bacteria were inoculated together with the ectomycorrhizal fungal species Laccaria bicolor, L. proxima and Suillus granulatus on culture plates to determine inhibition of the pathogens Fusarium oxysporum and Cylindrocarpon sp. Buffered medium was used to rule out acidification of the medium as a mechanism of inhibition. None of the ectomycorrhizal fungal species alone inhibited the growth of Fusarium but all showed slight inhibition of Cylindrocarpon growth. Helper bacterium strain MB3 (Bacillus subtilis) was effective in inhibiting both pathogens and, when inoculated with either L. proxima or S. granulatus, inhibition of Fusarium growth was enhanced over MB3 alone. With Cylindrocarpon, however, only S. granulatus inoculated along with MB3 showed enhanced inhibition over MB3 alone. The other three bacterial strains had little effect on the growth of Fusarium or Cylindrocarpon. More research is necessary to determine if these inhibitory effects are reproducible in situ.

Journal ArticleDOI
TL;DR: Mycorrhizal micropropagated Castanea sativa plants were studied in terms of growth and physiological parameters following in vitro mycorrhization with Pisolithus tinctorius to enhance the acclimatization process.
Abstract: Mycorrhizal micropropagated Castanea sativa plants were studied in terms of growth and physiological parameters following in vitro mycorrhization with Pisolithus tinctorius. Mycorrhization enhanced growth of micropropagated chestnut plants, increased their protein content and photosynthetic rates, decreased the respiratory rates and CO2 compensation point. RuBisCO activity was not significantly different in mycorrhizal and control plants, although there was an increase in the amount of RuBisCO in the former. Mycorrhization increased plant biomass and improved plants physiological status, thus enhancing the acclimatization process.

Journal ArticleDOI
TL;DR: All 16 mycorrhizal types collected over a 3-year period within an alder forest were characterised by morphological and anatomical features and appeared to be specific or at least typical for alders, since they have not yet been reported from other tree species.
Abstract: Ectomycorrhizal types of black alder [Alnus glutinosa (L.) Gaertn.] collected over a 3-year period within an alder forest were characterised by morphological and anatomical features. Of the total of 16 types, 14 are described for the first time in this paper. Eight identified types belong to the genera Russula, Lactarius, Naucoria, and Cortinarius, while eight further types remained unidentified. In some cases, similarities of mantle features indicate relationships to identified mycorrhizas. Mycorrhizas of Naucoria escharoides and N. subconspersa were not distinguished. Two unidentified mycorrhizal types exhibited hyphal mantle structures very similar to these Naucoria species. Within the genus Cortinarius, mycorrhizas of C. cf. helvelloides were easily distinguished from all other Cortinarius-like mycorrhizas described on Alnus, which in general showed little anatomical variation. Two further unidentified mycorrhizas, "Alnirhiza lilacina" and "A. violacea", probably also belong to Cortinarius. The ectomycorrhiza of Russula pumila was the only identified type within the genus Russula, but the unidentified type "Alnirhiza cremicolor" also likely belongs to this genus. Three Lactarius species were present in the experimental plot. Two species (L. obscuratus and L. omphaliformis) had indistinguishable mycorrhizal types, but were easily differentiated from the mycorrhizas of L. lilacinus, which caused intracellular penetration of Hartig net hyphae into epidermal and cortical cells. All other mycorrhizal types of black alder exhibited a paraepidermal Hartig net without penetration of root cells. Two unidentified mycorrhizal types "Alnirhiza atroverrucosa" and "A. cystidiobrunnea", already described from North American Alnus rubra as unnamed morphotypes, showed no similarity to identified mycorrhizas. All 16 mycorrhizal types appeared to be specific or at least typical for alders, since they have not yet been reported from other tree species.

Journal ArticleDOI
TL;DR: It is found that the pattern of AM soil to root abundance of the two fungi varied considerably with the host plant, and total length of soil hyphae produced per plant differed little.
Abstract: Two arbuscular mycorrhizal (AM) fungi (Glomusmosseae and G. intraradices) were compared for abundance of intraradical and soil-borne hyphae in association with Astragalus sinicum, a small-seeded, and Glycinemax, a large-seeded legume. A. sinicum was more responsive than G. max to mycorrhizal formation, especially at early growth stages. Biomass allocation was greater in roots than shoots for mycorrhizal A. sinicum, while the opposite was true for G. max. Hyphal development in root and soil compartments was estimated by trypan blue staining and after staining for succinate dehydrogenase (SDH) or alkaline phosphatase (ALP) activity. Total fungal abundance increased steadily in roots and soil with time to a maximum 8 weeks after planting. SDH- and ALP-active AM hyphae increased in roots during plant growth but decreased in soil at later harvests. Mycorrhizal root mass in A. sinicum and G. max increased about 14-fold and 2.5-fold, respectively, but total length of soil hyphae produced per plant differed little, so that the pattern of AM soil to root abundance of the two fungi varied considerably with the host plant.

Journal ArticleDOI
TL;DR: The percentage of mycorrhizal colonization was positively related to the abundance of soil Hyphae, indicating that AM hyphae were the major component of the soil hyPHae in the presence of the mycor rhizal plants in this study.
Abstract: This study investigated the impact of mycorrhizal plants, non-mycorrhizal plants and soil organic matter on the relative abundance of soil hyphae perceived to belong to indigenous arbuscular mycorrhizal (AM) plants. The mycorrhizal plants corn (Zea mays L.) and barley (Hordeum vulgare L.) and a non-mycorrhizal plant, canola (Brassica napus L.), were grown in unsterilized soil in pots inoculated with mycorrhizal corn root fragments. The abundance of hyphae was measured after 5 weeks and the response of fungal growth to the addition of corn residues in the absence of plants was assessed. The abundance of hyphae was higher in the presence of the mycorrhizal plants than in the other treatments. AM hyphae present under mycorrhizal plants accounted for more than 83% of the measured hyphae. The levels of root colonization of 32% in corn and 27% in barley confirmed the mycorrhizal status of the experimental plants. Only a few points of entry were observed in canola, the non-host plant. The percentage of mycorrhizal colonization was positively related (R2 = 0.85) to the abundance of soil hyphae, indicating that AM hyphae were the major component of the soil hyphae in the presence of mycorrhizal plants in this study.

Journal ArticleDOI
TL;DR: A stepwise procedure was investigated to determine the optimal conditions for the establishment of Glomus mosseae in dual in vitro culture with Ri T-DNA-transformed roots of Daucus carota L. Gerdemann & Trappe, and mycorrhizas were successfully established in 14% of dual cultures.
Abstract: A stepwise procedure was investigated to determine the optimal conditions for the establishment of Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe in dual in vitro culture with Ri T-DNA-transformed roots of Daucus carota L. Glomus mosseae spores germinated best in 10 mm Tris or MES-buffered medium at pH values just above neutral. Growth of hyphae from germinated spores was much greater in the presence of Tris than MES, eg. 8 mm versus 4 mm per spore for Tris and MES, respectively, at pH 7.2. Roots exhibited a broad pH optimum for growth of 6.0–7.0 in both MES and Tris, but did not grow well above pH 7.5. In addition, purified gelling agent, gellan gum, was utilized to lower the P concentration of media. With these factors combined, mycorrhizas were successfully established in 14% of dual cultures.

Journal ArticleDOI
TL;DR: Lentil was more dependent on mycorrhizae than wheat and responded to an AMF inoculant even in soil containing high levels of indigenous AMF, suggesting it might be possible to develop mixed inoculants containing rhizobia and AMF for field production of legumes.
Abstract: The growth responses of lentil (Lens esculenta L. cv. Laird) and two wheat cultivars (Triticum aestivum L. cv. Laura and Neepawa) to Glomus clarum NT4 in soil containing indigenous arbuscular mycorrhizal fungi (AMF) and fertilized with phosphorus at different (0, 5, 10, 20 ppm) levels was studied in a growth chamber. Soil was inoculated with a monospecific culture of G. clarum NT4 to provide an inoculant:indigenous AMF ratio of ca. 1 : 100. The shoot and root growth, and AMF colonization levels of NT4-inoculated lentil were significantly (P≤0.05) greater than the appropriate control plants in the unfertilized soil at 48 days after planting (DAP). At 95 DAP, NT4 inoculation had significantly increased the shoot dry weight (P≤0.08) and AMF colonization (P≤0.05) of lentil plants receiving 5 mg P kg–1 soil, whereas 20 mg P kg–1 soil reduced the shoot growth of NT4-inoculated plants. The NT4 inoculant had no effect (P≤0.05) on shoot P content, but increased (P≤0.08) the P-use efficiency of lentil plants receiving 5 mg P kg–1 soil. In contrast to the inoculant's effect on lentil, NT4 generally had no positive effect on any of the parameters assessed for wheat cv. Laura at any P level at 48 or 95 DAP. Similarly, there was no positive effect of NT4 on shoot or root growth, or AMF colonization of wheat cv. Neepawa plants at any P level at 48 DAP. However, NT4 inoculation increased the grain yield of Neepawa by 20% (P≤0.05) when fertilized with 20 mg P kg–1 soil. This yield increase was associated with a significant (P≤0.05) reduction in root biomass and a significant (P≤0.05) increase in the grain P content of inoculated plants. Thus, NT4 appears to have a preference for the Neepawa cultivar. Our results show that lentil was more dependent on mycorrhizae than wheat and responded to an AMF inoculant even in soil containing high levels of indigenous AMF. It might, therefore, be possible to develop mixed inoculants containing rhizobia and AMF for field production of legumes.

Journal ArticleDOI
TL;DR: The foliage of mycorrhizal pine seedlings had lower putrescine concentrations and higher spermidine than foliage of non-mycorrhIZal plants, and defoliation reversed this pattern, and the response to partial defliation differed in birch foliage.
Abstract: We report the effect of ectomycorrhizal fungi (Suillus variegatus, Paxillus involutus) and defoliation on polyamine concentrations in pine (Pinus silvestris) and birch (Betula pendula) foliage and roots. Symbiotic root tips showed consistently higher concentrations of putrescine than non-symbiotic roots. Partial defoliation had no effect on the polyamine levels in mycorrhizal pine or birch roots. The foliage of mycorrhizal pine seedlings had lower putrescine concentrations and higher spermidine than foliage of non-mycorrhizal plants, and defoliation reversed this pattern. The response to partial defoliation differed in birch foliage: mycorrhizal status had no effect and all new growth after defoliation had higher spermidine levels than in non-defoliated birch. The potential role of polyamines in mycorrhizal symbiosis is discussed.

Journal ArticleDOI
TL;DR: Carbon assimilates were also transferred in both directions between birch and spruce; however, there was no conclusive evidence for a net transfer of carbon between the plants.
Abstract: Spruce and birch seedlings were grown together in boxes filled with unsterile peat. Both seedlings were colonized by the ectomycorrhizal fungus Scleroderma citrinum. The two plants thus shared a common external mycelium. 15N-labelled ammonium was supplied exclusively to the fungus, while the birch or the spruce plant was continuously fed with 13C-labelled CO2 for 72 h. The carbon and nitrogen transfer rates were strikingly different for birch and spruce seedlings. The mycorrhizal mycelium received carbohydrates mainly from the birch plant and the nitrogen transfer by the fungus to the plants was largely directed towards the birch. Carbon assimilates were also transferred in both directions between birch and spruce; however, there was no conclusive evidence for a net transfer of carbon between the plants.

Journal ArticleDOI
TL;DR: VAM-inoculated plants were larger, had more green leaves, an increased photosynthesis rate, especially at low light intensities, and higher fresh and dry weights than plants in uninoculated plots.
Abstract: The production of certified garlic propagation material requires measures to be taken against pathogenic nematodes. Methyl bromide (MB) may be used for this purpose, but is known to cause stunting in Allium spp. Vesicular-arbuscular mycorrhizal (VAM) fungal inoculum was applied to the planting furrow after MB treatment. VAM-inoculated plants were larger, had more green leaves, an increased photosynthesis rate, especially at low light intensities, and higher fresh and dry weights than plants in uninoculated plots. The mean bulb weights from uninoculated and VAM-treated plots were 27 g and 51 g respectively. The native or an improved VAM population should be reintroduced after soil disinfection to ensure satisfactory garlic yields.

Journal ArticleDOI
TL;DR: An information system for specific characters of ectomycorrhizae and an interactive key are now provided by DEEMY on CD-ROM and no comprehensive determination tools for non-experts are available.
Abstract: A considerable amount of data has been published on morphological and anatomical characteristics of ectomycorrhizae but these are dispersed in several, sometimes not easily available, journals. The few keys that exist are mostly based upon host tree genera. No comprehensive determination tools for non-experts are available. An information system for specific characters of ectomycorrhizae and an interactive key are now provided by DEEMY on CD-ROM.

Journal ArticleDOI
TL;DR: The influence of mycorrhizal colonization on beech root tannin (procyanidin polymer) and its putative precursors catechin and epicatechin was investigated by high performance liquid chromatography.
Abstract: The influence of mycorrhizal colonization on beech (Fagus sylvatica L.) root tannin (procyanidin polymer) and its putative precursors catechin and epicatechin was investigated by high performance liquid chromatography. Seedlings planted in a sterile mixture of litter, compost, soil and sand were inoculated with brown beech ectomycorrhizas collected from a woodland (Lactarius subdulcis Bull ex Fr. × F. sylvatica). The seedlings were not fertilized during the first year of growth. Nonmycorrhizal control plants showed severe nutrient-deficiency symptoms on their leaves and grew less well than mycorrhizal plants. Mycorrhizal roots contained significantly less catechin, epicatechin and procyanidin polymer than nonmycorrhizal roots. In the second year of growth, the plants were fertilized and procyanidin formation in roots was investigated. None of the fertilized plants showed mineral-deficiency symptoms. Fertilized mycorrhizal roots consistently contained significantly less catechin and epicatechin than nonmycorrhizal controls, but procyanidin polymer content varied between replicate experiments. The possible function of catechin and epicatechin in ectomycorrhizal formation is discussed.

Journal ArticleDOI
TL;DR: It is concluded that these pesticides have no sustained, detrimental effect on mycorrhizal infection or growth of cotton seedlings when applied at recommended rates.
Abstract: The effect of three pesticides on the initiation and early development of arbuscular mycorrhiza in cotton was examined in experiments under controlled conditions. The fungicides Terrazole and Terraclor initially inhibited mycorrhizal infection of roots of cotton. The inhibition disappeared after 4 weeks, and neither fungicide had a lasting effect. The nematicide Fenamiphos slightly increased shoot dry weight at 6–10 weeks from planting and had no effect on mycorrhizal infection. We conclude that these pesticides have no sustained, detrimental effect on mycorrhizal infection or growth of cotton seedlings when applied at recommended rates.

Journal ArticleDOI
TL;DR: Root growth and ectomycorrhizal development were greater in the naturally established stand than in all plots in the planted stand, and the secondary stand may have been negatively affected by the chemical composition of the podzolic sandy soil.
Abstract: The effect on ectomycorrhizal root growth in a nitrogen-enriched planted stand of Scots pine (Pinus sylvestris L.) on podzolic sandy soil to manipulation of litter and humus layers (removal, doubling and control treatments) was examined, and compared to ectomycorrhizal root growth in an untreated naturally established Scots pine stand on nutrient-poor non-podzolic sandy soil. Half a year after manipulation of litter and humus layers in the planted stand, ingrowth-cores to a depth of 60 cm were installed in both stands. Scots pine roots were sampled four times during two growing seasons. Ectomycorrhizal roots were found at all sampled soil depths to 60 cm in all plots. Root growth and ectomycorrhizal development were greater in the naturally established stand than in all plots in the planted stand. Numbers of ectomycorrhizal root tips in the litter and humus removal plots were generally higher than in the control plots in the planted stand until May 1992. Doubling litter and humus did not significantly affect root length or the numbers of ectomycorrhizal root tips. The N dissolved , NH4 + and NO3 – concentrations and the organic matter content in the upper 5 cm of the mineral soil in the planted stand on podzolic sandy soil were generally higher and the pH significantly lower than in the naturally established stand on non-podzolic sandy soil. Root growth and ectomycorrhizal development in the secondary stand may have been negatively affected by the chemical composition of the podzolic sandy soil.