scispace - formally typeset
Search or ask a question

Showing papers in "Neural Computing and Applications in 2023"







Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed a CNN-AOA-based approach for sentiment analysis of tweets about the COVID-19 pandemic in Wuhan city of China, which achieved an accuracy of 95.098%.
Abstract: COVID-19, a novel virus from the coronavirus family, broke out in Wuhan city of China and spread all over the world, killing more than 5.5 million people. The speed of spreading is still critical as an infectious disease, and it causes more and more deaths each passing day. COVID-19 pandemic has resulted in many different psychological effects on people’s mental states, such as anxiety, fear, and similar complex feelings. Millions of people worldwide have shared their opinions on COVID-19 on several social media websites, particularly on Twitter. Therefore, it is likely to minimize the negative psychological impact of the disease on society by obtaining individuals’ views on COVID-19 from social media platforms, making deductions from their statements, and identifying negative statements about the disease. In this respect, Twitter sentiment analysis (TSA), a recently popular research topic, is used to perform data analysis on social media platforms such as Twitter and reach certain conclusions. The present study, too, proposes TSA using convolutional neural network optimized via arithmetic optimization algorithm (TSA-CNN-AOA) approach. Firstly, using a designed API, 173,638 tweets about COVID-19 were extracted from Twitter between July 25, 2020, and August 30, 2020 to create a database. Later, significant information was extracted from this database using FastText Skip-gram. The proposed approach benefits from a designed convolutional neural network (CNN) model as a feature extractor. Thanks to arithmetic optimization algorithm (AOA), a feature selection process was also applied to the features obtained from CNN. Later, K-nearest neighbors (KNN), support vector machine, and decision tree were used to classify tweets as positive, negative, and neutral. In order to measure the TSA performance of the proposed method, it was compared with different approaches. The results demonstrated that TSA-CNN-AOA (KNN) achieved the highest tweet classification performance with an accuracy rate of 95.098. It is evident from the experimental studies that the proposed approach displayed a much higher TSA performance compared to other similar approaches in the existing literature.

5 citations





Journal ArticleDOI
TL;DR: The velocity pausing particle swarm optimization (VPPSO) as mentioned in this paper was proposed to avoid the PSO premature convergence and local optima entrapment by modifying the first term of PSO velocity equation.
Abstract: Abstract Particle swarm optimization (PSO) is one of the most well-regard metaheuristics with remarkable performance when solving diverse optimization problems. However, PSO faces two main problems that degrade its performance: slow convergence and local optima entrapment. In addition, the performance of this algorithm substantially degrades on high-dimensional problems. In the classical PSO, particles can move in each iteration with either slower or faster speed. This work proposes a novel idea called velocity pausing where particles in the proposed velocity pausing PSO (VPPSO) variant are supported by a third movement option that allows them to move with the same velocity as they did in the previous iteration. As a result, VPPSO has a higher potential to balance exploration and exploitation. To avoid the PSO premature convergence, VPPSO modifies the first term of the PSO velocity equation. In addition, the population of VPPSO is divided into two swarms to maintain diversity. The performance of VPPSO is validated on forty three benchmark functions and four real-world engineering problems. According to the Wilcoxon rank-sum and Friedman tests, VPPSO can significantly outperform seven prominent algorithms on most of the tested functions on both low- and high-dimensional cases. Due to its superior performance in solving complex high-dimensional problems, VPPSO can be applied to solve diverse real-world optimization problems. Moreover, the velocity pausing concept can be easily integrated with new or existing metaheuristic algorithms to enhance their performances. The Matlab code of VPPSO is available at: https://uk.mathworks.com/matlabcentral/fileexchange/119633-vppso .

4 citations


Journal ArticleDOI
TL;DR: The authors conducted a systematic literature review of empirical research on the machine learning (ML) models for stance detection that were published from January 2015 to October 2022 and analyzed 96 primary studies, which spanned eight categories of ML techniques.
Abstract: Stance detection is an evolving opinion mining research area motivated by the vast increase in the variety and volume of user-generated content. In this regard, considerable research has been recently carried out in the area of stance detection. In this study, we review the different techniques proposed in the literature for stance detection as well as other applications such as rumor veracity detection. Particularly, we conducted a systematic literature review of empirical research on the machine learning (ML) models for stance detection that were published from January 2015 to October 2022. We analyzed 96 primary studies, which spanned eight categories of ML techniques. In this paper, we categorize the analyzed studies according to a taxonomy of six dimensions: approaches, target dependency, applications, modeling, language, and resources. We further classify and analyze the corresponding techniques from each dimension’s perspective and highlight their strengths and weaknesses. The analysis reveals that deep learning models that adopt a mechanism of self-attention have been used more frequently than the other approaches. It is worth noting that emerging ML techniques such as few-shot learning and multitask learning have been used extensively for stance detection. A major conclusion of our analysis is that despite that ML models have shown to be promising in this field, the application of these models in the real world is still limited. Our analysis lists challenges and gaps to be addressed in future research. Furthermore, the taxonomy presented can assist researchers in developing and positioning new techniques for stance detection-related applications.






Journal ArticleDOI
TL;DR: In this paper , the authors present and implement the SAnDet (SDN anomaly detector) architecture, an anomaly-based intrusion detection system designed to take advantage of the capabilities offered by SDN architecture, as a controller application.
Abstract: In this study, we present and implement the SAnDet (SDN anomaly detector) architecture, an anomaly-based intrusion detection system designed to take advantage of the capabilities offered by software-defined networking (SDN) architecture, as a controller application. The SAnDet system is composed of three modules: statistics collection, anomaly detection, and anomaly prevention. In particular, we utilize replicator neural networks (RNN), which is a specialized variant of the autoencoder, and the LSTM-based encoder–decoder (EncDecAD) method, which is a special type of long short-term memory (LSTM) network that has demonstrated a strong performance on data series particularly, to identify unknown attacks using flow features collected from OpenFlow switches. In our experiments, we utilize flow-based features extracted from network traffic data containing various types of attacks as input to our models in the form of time series. We evaluate the performance of our methods using the accuracy and area under the receiver operating characteristic curve (AUC) metrics. Our experimental results demonstrate that EncDecAD outperforms RNN and that our approach offers several benefits over previously conducted research.



Journal ArticleDOI
TL;DR: In this article , a survey of computer-based approaches to combat the infectious disease Covid-19 based on prevention, detection, and service provision is presented, and a technical taxonomy is presented.
Abstract: The infectious disease Covid-19 has been causing severe social, economic, and human suffering across the globe since 2019. The countries have utilized different strategies in the last few years to combat Covid-19 based on their capabilities, technological infrastructure, and investments. A massive epidemic like this cannot be controlled without an intelligent and automatic health care system. The first reaction to the disease outbreak was lockdown, and researchers focused more on developing methods to diagnose the disease and recognize its behavior. However, as the new lifestyle becomes more normalized, research has shifted to utilizing computer-aided methods to monitor, track, detect, and treat individuals and provide services to citizens. Thus, the Internet of things, based on fog-cloud computing, using artificial intelligence approaches such as machine learning, and deep learning are practical concepts. This article aims to survey computer-based approaches to combat Covid-19 based on prevention, detection, and service provision. Technically and statistically, this article analyzes current methods, categorizes them, presents a technical taxonomy, and explores future and open issues.

Journal ArticleDOI
TL;DR: In this paper , the authors proposed stochastic gradient Langevin dynamics (SGLD) to take into account the model uncertainty to reduce overconfidence of the baseline estimators while retaining predictive accuracy for the best-performing cases.
Abstract: Early detection of the COVID-19 virus is an important task for controlling the spread of the pandemic. Imaging techniques such as chest X-ray are relatively inexpensive and accessible, but its interpretation requires expert knowledge to evaluate the disease severity. Several approaches for automatic COVID-19 detection using deep learning techniques have been proposed. While most approaches show high accuracy on the COVID-19 detection task, there is not enough evidence on external evaluation for this technique. Furthermore, data scarcity and sampling biases make difficult to properly evaluate model predictions. In this paper, we propose stochastic gradient Langevin dynamics (SGLD) to take into account the model uncertainty. Four different deep learning architectures are trained using SGLD and compared to their baselines using stochastic gradient descent. The model uncertainties are also evaluated according to their convergence properties and the leave-one-out predictive densities. The proposed approach is able to reduce overconfidence of the baseline estimators while also retaining predictive accuracy for the best-performing cases.


Journal ArticleDOI
TL;DR: In this article , the authors proposed a deep learning-based network (CovTiNet) to identify Covid text in Bengali, which incorporates an attention-based position embedding feature fusion for text-to-feature representation.
Abstract: Covid text identification (CTI) is a crucial research concern in natural language processing (NLP). Social and electronic media are simultaneously adding a large volume of Covid-affiliated text on the World Wide Web due to the effortless access to the Internet, electronic gadgets and the Covid outbreak. Most of these texts are uninformative and contain misinformation, disinformation and malinformation that create an infodemic. Thus, Covid text identification is essential for controlling societal distrust and panic. Though very little Covid-related research (such as Covid disinformation, misinformation and fake news) has been reported in high-resource languages (e.g. English), CTI in low-resource languages (like Bengali) is in the preliminary stage to date. However, automatic CTI in Bengali text is challenging due to the deficit of benchmark corpora, complex linguistic constructs, immense verb inflexions and scarcity of NLP tools. On the other hand, the manual processing of Bengali Covid texts is arduous and costly due to their messy or unstructured forms. This research proposes a deep learning-based network (CovTiNet) to identify Covid text in Bengali. The CovTiNet incorporates an attention-based position embedding feature fusion for text-to-feature representation and attention-based CNN for Covid text identification. Experimental results show that the proposed CovTiNet achieved the highest accuracy of 96.61±.001% on the developed dataset (BCovC) compared to the other methods and baselines (i.e. BERT-M, IndicBERT, ELECTRA-Bengali, DistilBERT-M, BiLSTM, DCNN, CNN, LSTM, VDCNN and ACNN).


Journal ArticleDOI
TL;DR: In this article , a multi-objective fitness dependent optimizer (MOFDO) was proposed, which is equipped with all five types of knowledge (situational, normative, topographical, domain and historical knowledge) as in FDO.
Abstract: This paper proposes the multi-objective variant of the recently-introduced fitness dependent optimizer (FDO). The algorithm is called a multi-objective fitness dependent optimizer (MOFDO) and is equipped with all five types of knowledge (situational, normative, topographical, domain, and historical knowledge) as in FDO. MOFDO is tested on two standard benchmarks for the performance-proof purpose: classical ZDT test functions, which is a widespread test suite that takes its name from its authors Zitzler, Deb, and Thiele, and on IEEE Congress of Evolutionary Computation benchmark (CEC-2019) multi-modal multi-objective functions. MOFDO results are compared to the latest variant of multi-objective particle swarm optimization, non-dominated sorting genetic algorithm third improvement (NSGA-III), and multi-objective dragonfly algorithm. The comparative study shows the superiority of MOFDO in most cases and comparative results in other cases. Moreover, MOFDO is used for optimizing real-world engineering problems (e.g., welded beam design problems). It is observed that the proposed algorithm successfully provides a wide variety of well-distributed feasible solutions, which enable the decision-makers to have more applicable-comfort choices to consider.





Journal ArticleDOI
TL;DR: In this paper , the authors proposed an approach to identify the mental stress of automotive drivers based on selected biosignals, namely, ECG, EMG, GSR, and respiration rate.
Abstract: Abstract Stress is now thought to be a major cause to a wide range of human health issues. However, many people may ignore their stress feelings and disregard to take action before serious physiological and mental disorders take place. The heart rate (HR) and blood pressure (BP) are the most physiological markers used in various studies to detect mental stress for a human, and because they are captured non-invasively using wearable sensors, these markers are recommended to provide information on a person’s mental state. Most stress assessment studies have been undertaken in a laboratory-based controlled environment. This paper proposes an approach to identify the mental stress of automotive drivers based on selected biosignals, namely, ECG, EMG, GSR, and respiration rate. In this study, six different machine learning models (KNN, SVM, DT, LR, RF, and MLP) have been used to classify between the stressed and relaxation states. Such system can be integrated with a Driver Assistance System (DAS). The proposed stress detection technique (SDT) consists of three main phases: (1) Biosignal Pre-processing, in which the signal is segmented and filtered. (2) Feature Extraction, in which some discriminate features are extracted from each biosignal to describe the mental state of the driver. (3) Classification. The results show that the RF classifier outperforms other techniques with a classification accuracy of 98.2%, sensitivity 97%, and specificity 100% using the drivedb dataset.