scispace - formally typeset
Search or ask a question

Showing papers in "Plant Growth Regulation in 2006"


Journal ArticleDOI
TL;DR: In this paper, the effects of salicylic acid (SA) on lipid peroxidation, chlorophyll fluorescence and antioxidant enzyme activity in cucumber seedlings were studied before heat stress treatment, 36h after heat stress and 24h after recovery.
Abstract: The effects of different treatments of salicylic acid (SA) on lipid peroxidation, chlorophyll fluorescence and antioxidant enzyme activity in seedlings of Cucumis sativa L. were studied before heat stress treatment, 36 h after heat stress and 24 h after recovery. Compared with the controls (foliar spray of distilled water), a foliar spray of 1 mM SA (SSA treatment) decreased electrolyte leakage and the concentration of H2O2 and thiobarbituric acid reactive substances (TBARS). SSA treatment also enhanced maximum yield of photosystem II photochemical reactions (Fv/Fm) and the quantum yield of the photosystem II electron transport (ΦPSII) after both heat stress and recovery; however, adding 1 mM SA to the nutrient solution (ASA treatment) or both adding 1 mM SA to the nutrient solution and foliar spray of 1 mM SA as well (SSA + ASA treatment) had the opposite effects. SOD activity was stimulated by all SA treatments. CAT activity was stimulated by SSA treatment and inhibited by ASA and SSA + ASA treatments after heat stress and recovery. This suggest that SSA treatment can efficiently remove H2O2 and decrease heat stress, and CAT plays a key role in removing H2O2 in cucumber seedlings under heat stress, while more H2O2 accumulates in ASA and SSA + ASA treatments and therefore induces serious oxidative stress. GPX, APX and GR showed higher activities in all SA treatments under heat stress, however, it appears that they were not key enzymes in removing H2O2 in cucumber subject to heat stress.

295 citations


Journal ArticleDOI
TL;DR: SA, when used in appropriate concentrations, alleviates salinity stress without compromising the plants ability for growth under a favourable environment, indicating possible protection of integrity of the cellular membrane.
Abstract: The present study investigates the role of salicylic acid (SA) in inducing plant tolerance to salinity. The application of 0.1 mM SA to tomato [Lycopersicon esculentum Mill.] plants via root drenching provided protection against 150 mM or 200 mM NaCl stress. SA treated plants had greater survival and relative shoot growth rate compared to untreated plants when exposed to salt stress. At 200 mM salt, shoot growth rates were approximately 4 times higher in SA treated plants than untreated plants. Application of SA increased photosynthetic rates in salt stressed plants and may have contributed to the enhanced survival. Transpiration rates and stomatal conductance were also significantly higher in SA treated plants under saline stress conditions. SA application reduced electrolyte leakage by 44% in 150 mM NaCl and 32% in 200 mM NaCl, compared to untreated plants, indicating possible protection of integrity of the cellular membrane. Beneficial effects of SA in saline conditions include sustaining the photosynthetic/transpiration activity and consequently growth, and may have contributed to the reduction or total avoidance of necrosis. SA, when used in appropriate concentrations, alleviates salinity stress without compromising the plants ability for growth under a favourable environment.

290 citations


Journal ArticleDOI
TL;DR: In this article, the effects of salinity and drought on the antioxidative system (SOD, POD, CAT) were studied in liquorice seedlings (Glycyrrhiza uralensis Fisch), and the results showed that both salt and drought stresses could induce oxidative stress, as indicated by an increase level of lipid peroxidation.
Abstract: The effects of salinity and drought on the antioxidative system (SOD, POD, CAT) were studied in liquorice seedlings (Glycyrrhiza uralensis Fisch). The results showed that both salt and drought stresses could induce oxidative stress, as indicated by the increase level of lipid peroxidation. The activities of SOD and POD were up-regulated by salt and drought stress, while CAT activity decreased. An additional MnSOD isoenzyme was detected in liquorice subjected to 2%NaCl stress. The data also showed that although the activity of SOD was differentially influenced by drought and salinity, the changes of antioxidant enzyme activities subjected to drought stress follow a pattern similar to that subjected to salt stress, indicating that similar defensive systems might be involved in the oxidative stress injury in liquorice.

273 citations


Journal ArticleDOI
TL;DR: The results suggest that physiological changes produced by osmohardening enhanced the starch hydrolysis and made more sugars available for embryo growth, vigorous seedling production and, later on, improved allometric, kernel yield and quality attributes.
Abstract: Poor seedling establishment is a major deterrent in adopting direct seeding of rice. Seed priming to obtain better crop stand could be an attractive approach. The objective of this study was to determine the effectiveness of seed priming strategies on the improved agronomic characters of direct-sown rice. Seed priming strategies were: hydropriming for 48 h, osmohardening with KCl or CaCl2 for 24 h, ascorbate priming for 48 h and seed hardening for 24 h, pre-germination (traditional soaking for nursery raising) and untreated control. Seed priming improved germination and emergence, allometry, kernel yield, and its quality, whilst pre-germination displayed poor and erratic emergence of seedling followed by poor plant performance. Faster and uniform emergence was due to improved α-amylase activity, which increased the level of soluble sugars in the primed kernels. Osmohardening with KCl gave greater kernel and straw yield and harvest index, followed by that of CaCl2, hardening and ascorbate priming. Improved yield was attributed principally to number of fertile tillers and 1000 kernel weight. A positive correlation between mean emergence time and days to heading, while a negative one between kernel yield and harvest index suggested long-term effects of seed priming on plant growth and development. The results suggest that physiological changes produced by osmohardening enhanced the starch hydrolysis and made more sugars available for embryo growth, vigorous seedling production and, later on, improved allometric, kernel yield and quality attributes.

257 citations


Journal ArticleDOI
TL;DR: Correlation and path analysis indicated that, to harness high yielding combined with drought tolerance breeders should give selection pressure on relative water content, panicle length, grains per panicle, harvest index, biomass yield, root/shoot ratio and root length in positive direction, and low scores of leaf rolling, leaf drying and drought recovery rate.
Abstract: Rice is one of the most important food crop drastically affected by drought in lowland rice ecosystem. Dissecting out the traits of importance and genomic regions influencing the response of drought tolerance and yield traits on grain yield will aid the breeders to know the genetic mechanism of drought tolerance of rice leads to the development of drought tolerant varieties. Grain yield and its components on drought situation of recombinant inbred population (IR 58821/IR 52561) were investigated under lowland managed stress situation in 2003 and 2004 by given importance to the relative water content. Water deficit resulted in significant effect on phenology and grain yield. Best lines were selected for further varietal development programme. Variability studies showed the traits viz., days to 70% relative water content, leaf rolling, leaf drying, harvest index, biomass yield and grain yield offer high scope for improvement for drought tolerance by way of simple selection technique. Correlation and path analysis indicated that, to harness high yielding combined with drought tolerance breeders should give selection pressure on relative water content, panicle length, grains per panicle, harvest index, biomass yield, root/shoot ratio and root length in positive direction, and low scores of leaf rolling, leaf drying and drought recovery rate. Analysis of quantitative trait loci for drought tolerance, yield and its components allowed the identification of 38 regions associated with both drought tolerant and yield traits. Out of these, 18 were closely linked with DNA markers could be used for marker assisted selection in breeding for drought tolerance in rice. Pleiotropism and G × E effects interaction were noticed in some of the traits. Parent IR 58821 contributed favorable alleles for the entire drought related and most of the yield component traits. Identification of traits of importance and their nature of relationship by morphological and molecular level under lowland condition will be useful to improve drought tolerance of rice.

158 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of increasing salinity stress on plant growth, antioxidant enzymes and proline metabolism in two cultivars of Vigna radiata L. (cv. Pusa Bold and cv. CO 4) was investigated.
Abstract: The influence of increasing salinity stress on plant growth, antioxidant enzymes and proline metabolism in two cultivars of Vigna radiata L. (cv. Pusa Bold and cv. CO 4) was investigated. Salt stress was imposed on 30-days-old cultivars with four different concentrations of NaCl (0, 100, 200 and 300 mM). The roots and shoots of CO 4 showed greater reduction in fresh weight, dry weight and water content when compared to Pusa Bold with increasing salt stress. Under salinity stress, the roots and shoots of CO 4 exhibited higher Na+: K+ ratio than Pusa Bold. The activities of reactive oxygen species (ROS) scavenging enzymes and reduced glutathione (GSH) concentration were found to be higher in the leaves of Pusa Bold than in CO 4, whereas oxidized glutathione (GSSG) concentration was found to be higher in the leaves of CO 4 compared to those in Pusa Bold. Our studies on oxidative damage in two Vigna cultivars showed lower levels of lipid peroxidation and H2O2 concentration in Pusa Bold than in CO 4 under salt stress conditions. High accumulation of proline and glycine betaine under salt stress was also observed in Pusa Bold when compared to CO 4. The activities of proline biosynthetic enzymes were significantly high in Pusa Bold. However, under salinity stress, Pusa Bold showed a greater decline in proline dehydrogenase (ProDH) activity compared to CO 4. Our data in this investigation demonstrate that oxidative stress plays a major role in salt-stressed Vigna cultivars and Pusa Bold has efficient antioxidative characteristics which could provide better protection against oxidative damage in leaves under salt-stressed conditions.

148 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of 5-aminolevulinic acid (ALA), a key precursor in the biosynthesis of porphyrins such as chlorophyll and heme, on development and salt tolerance of microtubers of two potato cultivars Jingshi-2 and Zihuabai were examined under in vitro conditions.
Abstract: The effects of 5-aminolevulinic acid (ALA), a key precursor in the biosynthesis of porphyrins such as chlorophyll and heme, on development and salt tolerance of microtubers of two potato (Solanum tuberosum L.) cultivars Jingshi-2 and Zihuabai were examined under in vitro conditions. ALA at 0.3–3 mg/l promoted microtuber formation by increasing the average number, diameter, and fresh weight of microtubers especially under 0.5% NaCl stress conditions, but further increase in ALA concentration resulted in a reduction of microtuber yield irrespective of NaCl stress. Under 1.0% NaCl stress conditions, microtuberization was seriously repressed and could not be restored by the addition of ALA. The accumulation of malondialdehyde in the microtubers treated with 30 mg/l ALA increased by 22% compared to the controls (no salinity), while only a 7% increase was observed when the microtubers were exposed to 0.5% NaCl, indicating that ALA functions as a protectant against oxidative damages of membranes. Under 0.5% NaCl stress conditions, the highest activities of peroxidase and polyphenoloxidase were detected in microtubers treated with ALA at 0.3 and 3 mg/l, being by 73% and by 28% greater than those in the untreated controls, respectively. These results demonstrate that ALA at lower concentrations of 0.3–3 mg/l promotes development and growth of potato microtubers in vitro and enhances protective functions against oxidative stresses, but ALA at 30 mg/l and higher concentrations seems to induce oxidative damage probably through formation and accumulation of photooxidative porphyrins.

139 citations


Journal ArticleDOI
TL;DR: Phenolics might be playing key role for induction of adventitious rooting, and phenolic compounds can be used as rooting enhancer in tea plant.
Abstract: An attempt was made to induce rooting from single node cuttings of Camellia sinensis var. TV-20 under controlled conditions and study its biochemical changes during rooting. The nodal cuttings were pretreated with different concentrations of IAA, NAA and IBA and kept in a growth chamber (25 ±2 °C, 16 h photoperiod (55 μ mol m−2 s−1) with cool, white fluorescent lamps and 65% relative humidity) for 12 h. Among the three auxins used for pretreatment, IBA showed more positive response on rooting as compared to IAA and NAA within 2 weeks of transfer to potting medium. Among four concentrations of IBA tested, 75 ppm gave maximum percentage of rooting, number of roots and root length. Therefore, IBA was used further in experiments for biochemical investigation. The adventitious rooting was obtained in three distinct phases i.e. induction (0–12 days), initiation (12–14 days) and expression (14–18 days). IAA-oxidase activity of IBA-treated cuttings increased slightly as compared to control. The activity was found to decrease during induction and initiation phases and increase during expression phase. The peroxidase activity in IBA-treated cuttings increased up to initiation phase and declined at the expression phase. Polyphenoloxidase activity increased both in IBA-treated and control cuttings during induction and initiation phase but declined slowly during expression phase. Total phenolic content was higher in IBA-treated cuttings, particularly in initiation and expression phases and it also correlated with peroxidase activity. Phenolics might be playing key role for induction of adventitious rooting, and phenolic compounds can be used as rooting enhancer in tea plant.

132 citations


Journal ArticleDOI
TL;DR: Results imply that 5-deoxy-strigol is one of major germination stimulants of gramineous plants and that major stimulants may differ even among cultivars within the same species.
Abstract: The germination stimulants for root parasitic plants Striga and Orobanche produced by sorghum (Sorghum bicolor (L.) Moench), maize (Zea mays L.), and pearl millet (Pennisetum typhoideum Rich.) were examined. Characterization of strigolactones in the root exudates from the plants grown hydroponically was conducted by comparing retention times of germination stimulants on reverse phase high performance liquid chromatography (HPLC) with those of synthetic standards, and by using HPLC linked with tandem mass spectrometry (LC/MS/MS). All the plants tested, except for a sorghum cultivar Swarna, were found to exude two major stimulants, 5-deoxy-strigol, which is known as a branching factor for arbuscular mycorrhizal (AM) fungi, and an isomer of strigol, tentatively named sorghumol. Swarna was found to exude 5-deoxy-strigol and strigol. These results imply that 5-deoxy-strigol is one of major germination stimulants of gramineous plants and that major stimulants may differ even among cultivars within the same species.

128 citations


Journal ArticleDOI
TL;DR: A simple colorimetric method for determination of hydrogen peroxide in plant materials is described in this article, which is based on a stable red product in reaction with 4-aminoantipyrine and phenol in the presence of peroxidase.
Abstract: A simple colorimetric method for determination of hydrogen peroxide in plant materials is described. The method is based on hydrogen peroxide producing a stable red product in reaction with 4-aminoantipyrine and phenol in the presence of peroxidase. Plant tissues was ground with trichloroacetic acid (5% w/v) and extracts were adjusted to pH 8.4 with ammonia solution. Activated charcoal was added to the homogenate to remove pigments, antioxidants and other interfering substances. The colorimetric reagent (pH 5.6) consisted of 4-aminoantipyrine, phenol, and peroxidase. With this method, we have determined the hydrogen peroxide concentration in leaves of eight species which ranged from 0.2 to 0.8 µmol g−1 FW. Changes in hydrogen peroxide concentration of Stylosanthes guianensis in response to heat stress are also analyzed using this method.

124 citations


Journal ArticleDOI
TL;DR: Among priming agents, kinetin was effective in increasing germination rate in the salt-intolerant and early seedling growth in the Salt-tolerant cultivar when compared with hydropriming under salt stress, and the cytokinin-priming induced effects were cultivar specific.
Abstract: Cytokinins are often considered abscisic acid (ABA) antagonists and auxins antagonists/synergists in various processes in plants. Seed enhancement (seed priming) with cytokinins is reported to increase plant salt tolerance. It was hypothesized that cytokinins could increase salt tolerance in wheat plants by interacting with other plant hormones, especially auxins and ABA. The present studies were therefore conducted to assess the effects of pre-sowing seed treatment with varying concentrations (100, 150 and 200 mg l−1) of cytokinins (kinetin and benzylaminopurine (BAP)) on germination, growth, and concentrations of free endogenous auxins and ABA in two hexaploid spring wheat (Triticum aestivum L.) cultivars. The primed and non-primed seeds of MH-97 (salt-intolerant) and Inqlab-91 (salt-tolerant) were sown in both Petri dishes in a growth room and in the field after treatment with 15 dS m−1 NaCl salinity. Both experiments were repeated during 2002 and 2003. Among priming agents, kinetin was effective in increasing germination rate in the salt-intolerant and early seedling growth in the salt-tolerant cultivar when compared with hydropriming under salt stress. Thus, during germination and early seedling growth, the cytokinin-priming induced effects were cultivar specific. In contrast, kinetin-priming showed a consistent promoting effect in the field and improved growth and grain yield in both cultivars under salt stress. The BAP-priming did not alleviate the inhibitory effects of salinity stress on the germination and early seedling growth in both cultivars. The increase in growth and grain yield in both cultivars was positively correlated with leaf indoleacetic acid concentration and negatively with ABA concentration under both saline and non-saline conditions. The decrease in ABA concentration in the plants raised from kinetin-primed seeds might reflect diminishing influence of salt stress. However, the possibility of involvement of other hormonal interactions is discussed.

Journal ArticleDOI
TL;DR: Exogenous application of SA appeared to induce an adaptive response to Cu toxicity including the accumulation of organic solutes leading to protective reactions to the photosynthetic pigments and a reduction in membrane damage in sunflower.
Abstract: The ameliorative effect of salicylic acid (SA: 0.5 mM) on sunflower (Helianthus annuus L.) under Cu stress (5 mg l−1) was studied. Excess Cu reduced the fresh and dry weights of different organs (roots, stems and leaves) and photosynthetic pigments (chlorophyll a, b and carotenoids) in four-week-old plants. There was a considerable increase in Chl a/b ratio and lipid peroxidation in both the roots and leaves of plants under excess Cu. Soluble sugars and free amino acids in the roots also decreased under Cu stress. However, soluble sugars in the leaves, free amino acids in the stems and leaves, and proline content in all plant organs increased in response to Cu toxicity. Salicylic acid (SA) significantly reduced the Chl a/b ratio and the level of lipid peroxidation in Cu-stressed plants. Under excess Cu, a higher accumulation of soluble sugars, soluble proteins and free amino acids including proline occurred in plants treated with 0.5 mM SA. Exogenous application of SA appeared to induce an adaptive response to Cu toxicity including the accumulation of organic solutes leading to protective reactions to the photosynthetic pigments and a reduction in membrane damage in sunflower.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of Zn and Cd stress on growth, organic acid and phytochelatin accumulation, as well as the activity of several antioxidative enzymes, i.e., superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxide (POX), and catalase (CAT), in hydroponically growing plants of Thlaspi caerulescens population from Plombieres, Belgium.
Abstract: Growth, organic acid and phytochelatin accumulation, as well as the activity of several antioxidative enzymes, i.e. superoxide dismutase (SOD), ascorbate peroxidase (APX) guaiacol peroxidase (POX) and catalase (CAT) were investigated under Zn and Cd stress in hydroponically growing plants of Thlaspi caerulescens population from Plombieres, Belgium. Tissue Zn and Cd concentration increased (the highest concentration of both was in roots) as the concentration of these metals increased in the nutrient solution. Increasing Zn concentration enhanced plant growth, while with Cd it declined compared to the control. Both metals stimulated malate accumulation in shoots, Zn also caused citrate to increase. Zn did not induce phytochelatin (PC) accumulation. In plants exposed to Cd, PC concentration increased with increasing Cd concentration, but decreased with time of exposure. Under Zn stress SOD activity increased, but APX activity was higher at 500 and 1000 μM Zn and CAT activity only at 500 μM Zn in comparison with the control. CAT activity decreased in Cd- and Zn-stressed plants. The results suggest that relative to other populations, a T. caerulescens population from Plombieres, when grown in hydroponics, was characterized by low Zn and Cd uptake and their translocation to shoots and tolerance to both metals. The accumulation of malate and citrate, but not PC accumulation was responsible for Zn tolerance. Cd tolerance seems to be due to neither PC production nor accumulation of organic acids.

Journal ArticleDOI
TL;DR: The influence of low (3 µM) and high (60 and 120 µm) cadmium (Cd) concentrations were studied on selected aspects of metabolism in 4-week-old chamomile (Matricariachamomilla L.) plants as mentioned in this paper.
Abstract: The influence of low (3 µM) and high (60 and 120 µM) cadmium (Cd) concentrations were studied on selected aspects of metabolism in 4-week-old chamomile (Matricaria chamomilla L.) plants. After 10 days’ exposure, dry mass accumulation and nitrogen content were not significantly altered under any of the levels of Cd. However, there was a significant decline in chlorophyll and water content in the leaves. Among coumarin-related compounds, herniarin was not affected by Cd, while its precursors (Z)- and (E)-2-β-d-glucopyranosyloxy-4-methoxycinnamic acids (GMCAs) increased significantly at all the levels of Cd tested. Cd did not have any effect on umbelliferone, a stress metabolite of chamomile. Lipid peroxidation was also not affected by even 120 µM Cd. Cd accumulation was approximately seven- (60 µM Cd treatment) to eleven- (120 µM Cd treatment) fold higher in the roots than that in the leaves. At high concentrations, it stimulated potassium leakage from the roots, while at the lowest concentration it could stimulate potassium uptake. The results supported the hypothesis that metabolism was altered only slightly under high Cd stress, indicating that chamomile is tolerant to this metal. Preferential Cd accumulation in the roots indicated that chamomile could not be classified as a hyperaccumulator and, therefore, it is unsuitable for phytoremediation.

Journal ArticleDOI
TL;DR: Jiang et al. as discussed by the authors showed that salicylic acid (SA) was associated with changes of antioxidant enzyme activities and antioxidant concentration in grape leaves, indicating a role for endogenous SA in heat acclimation.
Abstract: Thermotolerance and related antioxidant enzyme activities induced by both heat acclimation and exogenous salicylic acid (SA) application were studied in grapevine (Vitis vinifera L. cv. Jingxiu). Heat acclimation and exogenous SA application induced comparable changes in thermotolerance, ascorbic acid (AsA), glutathione (GSH), and hydrogen peroxide (H2O2) concentrations, and in activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), ascorbic peroxidase (APX) and catalase (CAT) in grape leaves. Within 1 h at 38 °C, free SA concentration in leaves rose from 3.1 μg g−1 FW to 19.1 μg g−1 FW, then sharply declined. SA application and heat acclimation induced thermotolerance were related to changes of antioxidant enzyme activities and antioxidant concentration, indicating a role for endogenous SA in heat acclimation in grape leaves.

Journal ArticleDOI
TL;DR: In this article, a 2-year field trial was conducted to study the effects of seed treatment (500 ppm) or foliar application of 1000 ppm thiourea (at 25 and 40 days after sowing) or a combination of these, on growth, yield, net photosynthesis and nitrogen metabolism of clusterbean (Cyamopsis tetragonoloba (L.) Taub.) grown for two consecutive years (1999 and 2000) under rainfed conditions of the Indian arid zone.
Abstract: A 2-year field trial was conducted to study the effects of seed treatment (500 ppm) or foliar application of 1000 ppm thiourea (at 25 and 40 days after sowing) or a combination of these, on growth, yield, net photosynthesis and nitrogen metabolism of clusterbean (Cyamopsis tetragonoloba (L.) Taub.) grown for two consecutive years (1999 and 2000) under rainfed conditions of the Indian arid zone. Thiourea application either as pre-sowing seed treatment or as foliar spray significantly increased plant height, leaf area, dry matter production and seed yield as compared to the untreated control plants during both the years. However, maximum favourable effects were obtained with combined application of seed treatment and foliar spray. The beneficial effects of thiourea were attributed to its role in significantly increasing the net photosynthetic rates and the concentrations of total chlorophyll and starch in the leaves. Thiourea also reflected a positive role in enhancing nitrogen metabolism as it significantly increased nitrate reductase activity and concentration of soluble protein in the treated plants. It has been concluded that seed treatment with thiourea followed by foliar spray could significantly improve growth, yield and water use efficiency of rainfed clusterbean under arid conditions due to enhanced photosynthesis and more efficient nitrogen metabolism.

Journal ArticleDOI
TL;DR: Phospholipids are introduced as a novel class of plant growth regulator for use in commercial plant production and a scheme outlining a possible mode of action of exogenously applied phospholipid is proposed.
Abstract: In this paper the potential to use phospholipids and lysophospholipids as plant growth regulators is discussed. Recent evidence shows that phospholipids and phospholipases play an important signalling role in the normal course of plant development and in the response of plants to abiotic and biotic stress. It is apparent that phospholipase A (PLA), C (PLC) and D (PLD), lysophospholipids, and phosphatidic acid (PA) are key components of plant lipid signalling pathways. By comparison, there is very little information available on the effect of exogenously applied phospholipids on plant growth and development. This paper serves to introduce phospholipids as a novel class of plant growth regulator for use in commercial plant production. The biochemistry and physiology of phospholipids is discussed in relation to studies in which phospholipids and lysophospholipids have been applied to plants and plant parts. Implicit in the observations is that phospholipids impact the hypersensitive response and systemic acquired resistance in plants to improve crop performance and product quality. Based on published data, a scheme outlining a possible mode of action of exogenously applied phospholipids is proposed.

Journal ArticleDOI
TL;DR: The authors showed that post-harvest treatment with 1-methylcyclopropene (1-MCP), 50-μg l−1 gibberellic acid (GA3), 2% (v:v) ethanol or 1-μl l− 1 ethylene enhanced lignin synthesis.
Abstract: To understand how lignin synthesis is regulated after harvest, detached green asparagus stalks (Asparagus officinalis L.) were treated with 1 μl l−1 of 1-methylcyclopropene (1-MCP), 50 μg l−1 gibberellic acid (GA3), 2% (v:v) ethanol or 1 μl l−1 ethylene. The results showed that lignin concentration in asparagus stalks stored at room temperature rapidly increased. Three conventional precursors of lignin, 4-hydroxycinnamic acid (coumaric acid), 3,4-dihydroxycinnamic acid (caffeic acid) and 4-hydroxy-3-mythoxycinnamic acid (ferulic acid), were found to be the major phenolics in the asparagus stalks. Furthermore, the concentrations of O 2 − in asparagus stalks steadily increased during the storage. Deposition of lignin in harvested asparagus was significantly reduced by treating the stalks with GA3, 1-MCP or ethanol. The concentration of lignin in stalks treated with GA3, 1-MCP or ethanol was 32, 20 or 27% lower, respectively, than in controls 3 days after treatment. Treating stalks with ethylene enhanced lignin synthesis (p<0.05). The concentration of total phenol in stalks was also significantly reduced by GA3, 1-MCP and ethanol, but was enhanced by ethylene treatment. However, the concentration of active oxygen (O2−⋅) in stalks was significantly reduced by treatment with GA3, 1-MCP and ethanol, but was enhanced by treatment with ethylene. Our study show that postharvest treatment with 1-MCP, GA3 or ethanol may be applied to improve the quality of green asparagus.

Journal ArticleDOI
TL;DR: Results of the present study indicate the potential use of the butenolide compound in restoring normal seed germination and seedling establishment in tomato below and above optimum temperatures.
Abstract: The butenolide, 3-methyl-2H-furo[2, 3-c]pyran-2-one, is an highly active compound isolated from plant-derived smoke. This compound is known to stimulate seed germination in a wide range of plants akin to smoke or aqueous extracts of smoke. The present study attempted to elucidate the role of the butenolide in overcoming detrimental effects of low and high temperatures on tomato seed germination and seedling growth. The germination percentage followed a parabolic curve for temperatures ranging from 10 to 40°C, with 25°C being the optimum for all treatments. Control seeds showed radicle emergence at two extreme temperatures (10 and 40°C) and seedlings failed to develop further, even upon prolonged incubation. By comparison the butenolide-treated seeds grew into phenotypically normal seedlings at these non-optimum temperatures. The smoke–water-treated seeds had an intermediate response as only a fraction of germinated seed developed into normal seedlings. Seedling vigour indices as well as seedling weight were significantly higher (p ≤ 0.05) for butenolide-treated seeds at all temperatures. Furthermore, seedlings developed in the presence of the butenolide had about a 1:1 correspondence between root and shoot length. Butenolide-treated seeds grew better than the control seeds in the temperature shift experiments. A gradual decline in the vigour index values was recorded with an increased duration of incubation at the extreme temperatures. Results of the present study are very important from an horticultural point of view as they indicate the potential use of the butenolide compound in restoring normal seed germination and seedling establishment in tomato below and above optimum temperatures.

Journal ArticleDOI
TL;DR: The regulation of lipoxygenases (LOX) activity was studied in Arabidopsis thaliana grown under excess Cd and Cu in solution cultures and the changes in ultra-structure of the leaf parenchyma cells were more evident in A.Thaliana plants treated with Cd than those treated with Cu.
Abstract: The regulation of lipoxygenases (LOX) activity was studied in Arabidopsis thaliana grown under excess Cd and Cu (0.0, 5.0, 50.0 μM) in solution cultures for 7 days. The LOX activity was determined spectrophotometrically at 234 nm in the leaves of mature plants using linoleic and linolenic acids as substrates, while their cellular localization was assessed by immunogold-labelling. The LOX mainly occurred in the cytoplasm as well as inside the chloroplasts. Two bands of LOX were found in the leaves of A. thaliana, but one more band appeared in plants treated with 50.0 μM Cu. Despite the lower amount of enzymatic protein in plants exposed to heavy metals, the enzyme activity was significantly higher than that in the control; it was especially high at pH 8.0 when linolenic acid was used as a substrate. The role of the redox state of plant cells in modifying the LOX activity was also discussed. The changes in ultra-structure of the leaf parenchyma cells were more evident in A. thaliana plants treated with Cd than those treated with Cu.

Journal ArticleDOI
TL;DR: Results show that changes in the phytohormones (IAA, ABA and PAs) concentrations in combination with amino acids are likely important factors determining the developmental stages of O.
Abstract: The aim of this work was to study morphological and biochemical aspects during zygotic embryogenesis in O. catharinensis, by measuring changes in the endogenous concentrations of proteins, amino acids, polyamines (PAs), indole-3-acetic acid (IAA) and abscisic acid (ABA). Buffer-soluble and insoluble protein contents were determined by spectrometry, and amino acids, PAs, IAA and ABA concentrations were determined by high performance liquid chromatography. Total amino acid accumulation, predominantly asparagine, occurred when the embryo showed completely developed cotyledons, with posterior reduction in the mature embryo. This decrease in total amino acid concentration in the mature embryo may result from their use in storage␣as well as for LEA protein synthesis. Free putrescine (Put) concentration decreased, while free spermine (Spm) increased during embryo development. This suggest a role for Put in the initial phases of embryogenesis when high rates of cell division occur, while elevated concentration of Spm are essential from the middle to the end of embryo development, when growth is mainly due to cell elongation. An IAA peak in zygotic embryos occurred during initial development, suggesting a link between growth and cellular division as well as with the establishment of bilateral symmetry. ABA concentration declined during initial stages of development then increased at the mature embryo stage, suggesting a possible relationship with dormancy and recalcitrance characteristics. Our results show that changes in the phytohormones (IAA, ABA and PAs) concentrations in combination with amino acids are likely important factors determining the developmental stages of O.␣catharinensis zygotic embryos.

Journal ArticleDOI
TL;DR: In this paper, the effects of exogenous nickel (Ni: 10 and 200 µM) on growth, mitotic activity, Ni accumulation, H2O2 content and lipid peroxidation as well as the activities of various antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxide (GSH-Px) were investigated in wheat roots.
Abstract: Effects of exogenous nickel (Ni: 10 and 200 µM) on growth, mitotic activity, Ni accumulation, H2O2 content and lipid peroxidation as well as the activities of various antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GSH-Px) were investigated in wheat roots. A considerable Ni accumulation in the roots occurred at both the concentrations. Although Ni at 10 µM did not have any significant effect on root growth, it strongly inhibited the root growth at 200 µM. Mitotic activity in the root tips was not significantly affected by exposure of the seedlings to 10 µM Ni; however, it was almost completely inhibited at 200 µM treatment. Ni stress did not result in any significant changes in CAT and APX activities as well as lipid peroxidation. However, H2O2 concentration increased up to 82% over the control in the roots of seedlings exposed to 200 µM Ni. There was a significant decline in both SOD (50%) and GSH-Px (20–30%) activities in the roots when the seedlings were treated with 200 µM Ni. The results indicated that a strong inhibition of wheat root growth caused by Ni stress was not due to enhanced lipid peroxidation, but might be related to the accumulation of H2O2 in root tissue.

Journal ArticleDOI
TL;DR: Comparison of partial cDNA sequences of transcripts Zmspds2A and ZmsPds2B with the corresponding genomic DNA region revealed the existence of alternative splicing mechanism, opening a new aspect in plant polyamine biosynthesis modulation under abiotic stress.
Abstract: A cDNA for spermidine synthase (SPDS), which converts putrescine to the higher polyamine spermidine using decarboxylated S-adenosylmethionine as a cofactor, was isolated from Zea mays leaves (Zmspds2A). Comparison of the deduced amino acid sequence revealed a high homology (81.9%) with Oryza sativa SPDS2. RT-PCR analyses showed that Zmspds2A was equally expressed in leaves, stem and roots. In contrast, transcripts of other genes related to polyamine biosynthesis (Zmodc, adc and samdc) showed tissue-specific regulation. The effect of salt stress on the expression of all these genes in maize leaves exposed to NaCl solutions of different concentrations was analysed. Our results showed that only Zmodc and Zmspds2A were up-regulated by salt stress; whereas the other two genes were barely affected by this treatment. In addition to Zmspds2A, a second transcript encoding a maize spermidine synthase (Zmspds2B) that also became up-regulated by salt stress, was identified. Comparison of partial cDNA sequences of transcripts Zmspds2A and Zmspds2B with the corresponding genomic DNA region revealed the existence of alternative splicing mechanism, opening a new aspect in plant polyamine biosynthesis modulation under abiotic stress.

Journal ArticleDOI
TL;DR: A highly sensitive chemiluminescence (CL) method based on the Co (II) catalysed oxidation of luminol by H2O2 that can be diluted to such a level that pre-treatments with PVP and ascorbate oxidase to remove quenchers from plant-extracts become unnecessary.
Abstract: As a consequence of the increasing importance of hydrogen peroxide in plant metabolism, more efficient methods are required for accurate determinations of its concentration in plant tissue and organs. Here we present a highly sensitive chemiluminescence (CL) method based on the Co (II) catalysed oxidation of luminol by H2O2. The replacement of ferricyanide, the traditional catalyst of luminol luminescence by Co (II), enhanced the sensitivity of the reaction towards H2O2 in three orders of magnitude. Thus, plant extracts can be diluted to such a level that quenching effects of phenols and ascorbic acid (ASA), which are normally present at high concentrations in plant tissues is avoided, and therefore, pre-treatments with PVP and ascorbate oxidase to remove these quenchers from plant-extracts become unnecessary. To exemplified the high performance of the method, measurements of H2O2 were carried out in PVP treated and non-treated extracts of grapevine leaf, a plant tissue that contain high levels of phenols and ASA. Moreover, increases in H2O2 levels were detected in disc-leaf treated with aminotriazole, a specific Cat inhibitor, showing the importance of Cat as a H2O2 scavenging enzyme in leaves of grapevine.

Journal ArticleDOI
TL;DR: The activation of oxidative degradation of polyamines combined with H2O2–peroxidase reaction in cells are involved in the regulation of free and conjugated polyamines titers under salinity.
Abstract: The accumulation of conjugated and free polyamines in plants is very important for their protection against oxidative stress induced by abiotic factors. In the present study, the species halophytic plant Mesembryanthemum crystallinum L. was used as a model system in which the process of Crassulacean Acid Metabolism induction is linked with oxidative stress, especially under salinity conditions. A comparative analysis of the content of free polyamines, perchloric (PCA)-soluble and PCA-insoluble conjugated polyamines in mature leaves and roots was carried out with plants exposed to salinity. It was found that adult leaves and roots under normal conditions or salinity (400 mM NaCl) contained all types of free polyamines (putrescine, spermidine, spermine, and cadaverine). In leaves only PCA-insoluble conjugates were found, which showed a tendency to grow with increased duration of salt action (1.5–48 h). In contrast to leaves, in roots all forms of polyamine conjugates (PCA-soluble and -insoluble) were detected. However, the formation of all conjugates, especially PCA-soluble forms in roots, was sharply inhibited by salt shock (400 mM NaCl, 1.5 h) or exogenous cadaverine (1 mM) treatment. PCA-soluble conjugates of cadaverine in roots were found only when the treatment was carried out in combination with aminoguanidine (1 mM), as a result of diamine oxidase inhibition and consequently a decreasing of H2O2 production in plant cells. The activation of diamine oxidase and guaiacol peroxidase by NaCl or exogenous cadaverine was observed in leaves and roots. Thus, the activation of oxidative degradation of polyamines combined with H2O2–peroxidase reaction in cells are involved in the regulation of free and conjugated polyamines titers under salinity.

Journal ArticleDOI
TL;DR: The constitutive expression of a cDNA encoding a pea (Pisum sativum L.) PR 10 protein in Brassica napus leading to an enhancement of germination under saline conditions is reported and its cDNA has been expressed in Escherichia coli and the recombinant protein purified to homogeneity.
Abstract: The constitutive expression of a cDNA encoding a pea (Pisum sativum L.) PR 10 protein in Brassica napus leading to an enhancement of germination under saline conditions has been previously reported. In order to understand the biochemical function of this pea PR 10 protein, its cDNA has been expressed in Escherichia coli and the recombinant protein purified to homogeneity. Ribonuclease activity of the recombinant pea PR 10 protein has been demonstrated for the first time using an in-solution as well as an in-gel RNA degradation assay. Furthermore, in order to characterize the changes brought about as a result of the constitutive expression of the pea PR 10 cDNA in B. napus, we have measured the endogenous concentrations of several phytohormones. Increased cytokinin and, decreased abscisic acid (ABA) were observed in 7-day-old transgenic seedlings whereas no significant changes in the concentrations of gibberellin (GA) or indoleacetic acid (IAA) were observed at this stage of growth and development. The potential role(s) of PR 10 proteins with RNase activity and elevated cytokinins during plant stress responses as well as the possible relationship between PR 10 protein and changes in cytokinin concentrations are discussed.

Journal ArticleDOI
TL;DR: The study concludes that enhancement of lignin biosynthesis probably not only adds rigidity to plant cell walls but also induces defence against radiation stress.
Abstract: Effects of three levels of photosynthetic photon flux (PPF: 60, 160 and 300 µmol m−2s−1) were investigated in one-month-old Phalaenopsis plantlets acclimatised ex vitro. Optimal growth, chlorophyll and carotenoid concentations, and a high carotenoid:chlorophyll a ratio were obtained at 160 µmol m−2s−1, while net CO2 assimilation (A), stomatal conductance (g), transpiration rate (E) and leaf temperature peaked at 300 µmol m−2s−1, indicating the ability of the plants to grow ex vitro. Adverse effects of the highest PPF were reflected in loss of chlorophyll, biomass, non-protein thiol and cysteine, but increased proline. After acclimatisation, glucose-6-phosphate dehydrogenase, shikimate dehydrogenase, phenylalanine ammonia-lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) increased, as did lignin. Peroxidases (POD), which play an important role in lignin synthesis, were induced in acclimatised plants. Polyphenol oxidase (PPO) and β-glucosidase (β-GS) activities increased to a maximum in acclimatised plants at 300 µmol m−2s−1. A positive correlation between PAL, CAD activity and lignin concentration was observed, especially at 160 and 300 µmol m−2s−1. The study concludes that enhancement of lignin biosynthesis probably not only adds rigidity to plant cell walls but also induces defence against radiation stress. A PPF of 160 µmol m−2s−1was suitable for acclimatisation when plants were transferred from in vitro conditions.

Journal ArticleDOI
TL;DR: A new, simple, quick and genotype-independent method for direct regeneration of sugarcane using novel midrib segment explants using auxin pretreatment is developed and numerous globular structures appeared from the explants and subsequently differentiated into shoots.
Abstract: We have developed a new, simple, quick and genotype-independent method for direct regeneration of sugarcane using novel midrib segment explants. Our protocol involves two steps: the pretreatment of starting material on MS (Murashige and Skoog (1962) Physiol Plant 15:473–497) medium containing 3.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) for 8 days under continuous dark and subsequent transfer of the explants to MS medium augmented with 0.1 mg/l benzyladenine (BA) and 0.1 mg/l naphthaleneacetic acid (NAA) under light-dark conditions. On the regeneration medium, numerous globular structures appeared from the explants and subsequently differentiated into shoots. Regenerated shoots attained 2–5 cm height within 30 days of culture initiation and readily rooted on MS basal medium. Hardened plants were successfully established in the greenhouse. The regulation of sugarcane morphogenesis by auxin pretreatment is discussed.

Journal ArticleDOI
TL;DR: In this paper, the changes in morphological, photosynthetic and physiological responses of Mono Maple seedlings to UV-B radiation, nitrogen supply and their combination were investigated to determine whether the adverse effects of UV radiation on plants are eased by nitrogen supply.
Abstract: In the southeast of the Qinghai-Tibetan Plateau of China, Mono Maple is a common species in reforestation processes. The paper mainly investigated the changes in morphological, photosynthetic and physiological responses of Mono Maple seedlings to UV-B radiation, nitrogen supply and their combination. The experimental design included two levels of UV-B treatments (ambient UV-B, 11.02 KJ m−2 day−1; enhanced UV-B, 14.33 KJ m−2 day−1) and two nitrogen levels (0; 20 g N m−2 a−1)—to determine whether the adverse effects of UV-B on plants are eased by nitrogen supply. Enhanced UV-B caused a marked decline in growth parameters, net photosynthetic rate, and photosynthetic pigments, whereas it induced an increase in reaction oxygen species (hydrogen peroxide accumulation and the rate of superoxide radical production) and malondialdehyde content. Enhance UV-B also induced an increase in antioxidant compounds of Mono Maple, such as UV-B absorbing compounds, proline content, and activities of antioxidant enzymes (peroxidase, superoxide dimutase and catalase). On the other hand, nitrogen supply caused an increase in some growth parameters, net photosynthetic rate, photosynthetic pigments and antioxidant compounds (peroxidase, proline content and UV-B absorbing compounds), and reduced the content of reaction oxygen species (H2O2 accumulation, the rate of O2− production) and malondialdehyde content under ambient UV-B. However, under enhanced UV-B, nitrogen supply inhibited some growth parameters, and increased H2O2 accumulation, the rate of O2− production and MDA content, though proline content, UV-B absorbing compounds and activities of POD and SOD increased. These results implied that enhanced UV-B brought harmful effects on Mono Maple seedlings and nitrogen supply made plants more sensitive to enhanced UV-B, though increased some antioxidant activity.

Journal ArticleDOI
TL;DR: The ability of exogenous CKs and gelrite to induce hyperhydricity in shoots of Aloe polyphylla is at least partially due to up-regulation of endogenous CK levels, however, hyperHydricity is a multifactor process in which different factors intervene.
Abstract: The process of hyperhydricity in tissue cultured plants of Aloe polyphylla is affected by both applied cytokinins (CKs) and the type of gelling agent used to solidify the medium. Shoots were grown on media with agar or gelrite and supplemented with different concentrations of N6-benzyladenine (BA) or zeatin (0, 5 and 15 μM). Endogenous CKs were measured in in vitro regenerants after an 8-weeks cycle to examine whether the hyperhydricity-inducing effect of exogenous CKs and gelling agents is associated with changes in the endogenous CK content. On media with agar a reduction in hyperhydricity occurred, while the gelrite treatment produced both normal and hyperhydric shoots (HS). The content of endogenous CKs, determined by HPLC-mass spectrometry, in the shoots grown on CK-free media comprised isopentenyladenine-, trans-zeatin- and cis-zeatin-type CKs. The application of exogenous CKs resulted in an increase in the CK content of the shoots. Following application of zeatin, dihydrozeatin-type CKs were also detected in the newly-formed shoots. Application of BA to the media led to a transition from isoprenoid CKs to aromatic CKs in the shoots. Shoots grown on gelrite media contained higher levels of endogenous CKs compared to those on agar media. Total CK content of HS was higher than that of normal shoots grown on the same medium. We suggest that the ability of exogenous CKs and gelrite to induce hyperhydricity in shoots of Aloe polyphylla is at least partially due to up-regulation of endogenous CK levels. However, hyperhydricity is a multifactor process in which different factors intervene.